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Abstract

In this paper, we deal with the problem of abstracting
behavior models such that their level of granularity is
as coarse as possible, but still fine enough to carry out a
given behavior prediction or diagnosis task. The focus
is on determining task—dependent distinctions within
the domains of variables — i.e. qualitative values —
that are both necessary and sufficient, given a model
composed from a library, a granularity of possible ob-
servations, and a granularity of desired results.

We present a formalization of the problem, present fun-
damental results regarding the existence and character-
ization of solutions to task—dependent qualitative ab-
straction, and devise a method for automatically deter-
mining qualitative values based on a hierarchical rep-
resentation of the device model that allows to exploit
its specific structure.

A principled application is to turn real-valued models,
as commonly used in industry, into qualitative mod-
els to make them accessible to model-based reasoning
methods. The resulting tool set thus enhances the abil-
ity to use a behavior model of an engineered device as
a common basis to support different tasks along its life
cycle.

Introduction

The increasing complexity of engineered devices, e.g. in
the domain of automotive systems, has lead to an in-
creased demand for computer—supported behavior pre-
diction, diagnosis, and testing. Model-based reason-
ing is concerned with representing knowledge about the
structure and behavior of physical systems in terms of
a model and using it to automate the above-mentioned
tasks. In order to make it feasible, there are two fun-
damental ideas:

e to break down knowledge into model fragments such
that it can be re-used in order to solve different prob-
lems in varying contexts, and

e to formulate behavior models at a level of granular-
ity that is appropriate to provide an effective and
efficient solution of the respective problem.

The former idea leads to compositional descriptions
of a system’s behavior (FF91). A system description

(SD) consists of variables v, domains DOM (v;) and re-
lations (constraints) describing the behavior of individ-
ual components. Together, they define a relation R(v)
capturing the possible behaviors of the system.

The latter idea corresponds to abstraction of a be-
havior model. Abstraction might affect each of the
constituents in SD. Thus, there are three basic types
of possible abstractions: abstraction of variables, ab-
straction of domains, and abstraction of the relations
between variables.

This paper is about automating the transformation
of models to a level of abstraction adequate for a spe-
cific structure and task, much like an engineer’s ability
to come up with a suitable representation when faced
with a certain problem. We tackle this problem in the
context of domain abstraction.

Example

Consider the system depicted in figure 1. The device is
a simplified version of a pedal position sensor used in
a passenger car. Its purpose is to deliver information
about the position of the accelerator pedal to the elec-
tronic control unit (ECU) of the engine management
system. The ECU uses this information to calculate
the amount of fuel that will be delivered to the car en-
gine. The pedal position is sensed in two ways, via the
potentiometer as an analogue signal, vy, and via the
idle switch as a binary signal, vsyitcn- The idle switch
changes its state at a particular value pos.itching Of the
mechanically transferred pedal position. The two pos-
sible values of vgyitcn correspond to two ranges of vy,
separated by a particular voltage value. The reason for
the redundant sensing of the pedal position is that the
signals vpot and Vswiten, are cross-checked against each
other by the on-board control software of the ECU. This
plausibility check is a safety feature of the system, in
order to avoid cases where a wrong amount of injected
fuel evokes dangerous driving situations.

Assume that, for instance, vg,q lies between 0V and
1V, vpesr lies between 9V and 10V, and posgwitching
equals 40%, where 0% means that the gas pedal is in
rest position, and 100% means that it is fully pushed
through. Consider a situation where the ECU receives
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Figure 1: The Pedal Position Sensor

the following sequence of real-valued sensor readings:
t=1:vpot = 2.3V, Vspiter, = 0.5V
t=2: vpot = 2.5V, Vspiten, = 0.5V
t=3: Upot = 3.4V, Vspiten = 0.4V
t=4:Upot = 5.6V, 5itcn = 0.4V
t =5 : Vot = 6.8V, vspiten = 0.5V
t=6: 0t = 8.1V, vsiten = 9.7V

The measurements reflect a delayed switch—over be-
havior of the switch component, as caused e.g. by a me-
chanical failure of this component. Suppose we want to
perform the plausibility check between the electrical sig-
nals vpor and Vgytcn, automatically by the means of a be-
havior model of the system. We could use a real-valued
component model for the potentiometer that precisely
relates each position to a particular potentiometer volt-
age vVpot. However, this model would be overly detailed
for the purpose considered. It would be unlikely to meet
the tight space and run-time requirements of being part
of the control unit’s on-board software, for instance.
Consider an abstraction of this real-valued model that
abstracts voltage into three qualitative values:

{0V, 2V), [2V,8V), [8V,10V)}.

This representation (call the corresponding system de-
scription SDgeneric) is sufficient to reason about simple
failures in the electrical harness, for instance, shorts to
ground or battery. However, it is too coarse—grained
for the above-mentioned task. At ¢ = ¢4 and ¢t = 5,
the values for vy, are subsumed by the value [2V, 8V),
which is consistent with the switch being either on its
left or right position. Distinguishing the failure from
the normal operation of the device requires an addi-
tional distinction in the domain of v, which is not
reflected in SDgeneric. A more fine-grained abstraction
for the domain of each voltage variable is

{0V, 2V), [2V,4V), [4V, 6V), [6V,8V), [8V, 10V)}.

With the corresponding model SDpqse, the failure can
be discovered, because at t5, vpor = [6V,8V) is incon-
sistent with vsyien = [0V, 2V). However, SDp,s is un-
necessarily fine-grained for the purpose at hand. E.g.

the distinction between [0V, 2V') and [2V,4V) in the do-
main of vy, is not required for the potentiometer model.
The deeper problem is that the required distinctions in
the domains of the variables cannot be anticipated in
generic models of the components. E.g. the separation
of values for v, as required in the example, would
not make any sense in a different structure. It is only
the specific combination of the potentiometer and the
switch that requires this distinction. We would like to
obtain component models that make just the right dis-
tinctions as required by the behavioral constraints of
the device and the task the model is intended for.

Towards Qualitative Abstraction from
First Principles

The example above has confronted us with the problem
that simply picking model fragments from a library and
composing the model is not enough. Instead, the ability
to transform the model to the right level of abstraction
after composing it is a crucial requirement.

The problem is important, because it impairs the
idea of using a model as a common basis for different
tasks. E.g. for automotive systems, it is typical that
several tasks along a product’s life cycle — such as fail-
ure modes and effects analysis (FMEA), on-board di-
agnostics development, generation of repair manuals or
workshop diagnosis — each share a significant amount
of common knowledge about the behavior of the sys-
tem under consideration. It would be unacceptable to
manually create models from scratch that are tailored
to each of these tasks.

Deriving models that are adequate for the task at
hand requires a notion of the purpose the model is used
for, usually understood as a query on the relationship
of certain variables that needs to be answered based
on a model (FF91), (Nay95). However, such a notion
of the purpose of a model is of limited use, regarding
the aim to support different problem—solving tasks. For
instance, it would not be helpful in order to construct
a model for a diagnostic task where the goal is to dis-
criminate among different behavior modes of a com-
ponent, or for a prediction task where the goal is to
decide whether a certain output variable, like e.g. brak-
ing force, is above the required level. To achieve this
requires a more general notion that takes into account
more of the goals and conditions of problem solving. In
particular, it is necessary to express what aspects of the
outcome of the problem solving process are interesting
or useful, and which inputs to the problem solving pro-
cess (i.e. possible external restrictions) can occur or
have to be considered.

Moreover, existing approaches to automated model-
ing often cannot give guarantees that transformation
makes the model more “optimal” with respect to the in-
tended task, and that the transformed model covers at
least the same physical behaviors as the original (base)
model. For instance, in (Nay95), where the ultimate
goal is to generate parsimonious causal explanations of
device behavior, it cannot be guaranteed that the trans-



formed model leads to a most parsimonious causal ex-
planation. Instead, the transformations are used as a
heuristics in order to approach this goal. The devised
simplifications ensure that a causal explanation can still
be derived from the transformed model. Whereas these
aspects are important for the kind of task pursued in
this work, the resulting approzrimation not necessarily
covers the same physical behaviors as the base model.

These considerations have motivated our goal to de-
velop a first-principles approach to deriving qualitative
abstractions of models from a ground representation,
based on the following requirements:

e the applied transformation steps must be sound ab-
stractions that guarantee that the result covers at
least the same physical situations as the base model
(which is e.g. the case for domain abstraction);

e there has to be a notion of a modeling goal that al-
lows to express what aspects of the outcome of the
problem solving process we are after;

e there has to be a notion of modeling conditions that
allows to express what inputs to the problem solving
process (i.e. possible external restrictions) can occur;

e the method has to be applicable to arbitrary rela-
tional models, and not be limited to restricted cases
such as e.g. monotonic functions.

Hence, our goal and contribution is to make explicit
task-dependency in order to reason directly about such
aspects as desired distinctions, necessary distinctions,
and unnecessary distinctions in a model. The ability
to explicitly reason about task-dependency is the pre-
requisite to automate the task of finding qualitative ab-
stractions of a model.

Task-dependent Qualitative Abstraction

The following sections address the problem of charac-
terizing the adequate granularity of behavior models
relative to task-dependent characteristics, namely

e the purpose the model is used for, as given by the
set of possible solutions that we want to discriminate
(e.g., different behavior modes for diagnosis),

e the contextin which the model is used, as given by the
set of possible external restrictions (e.g., observations
corresponding to measurements).

The set of external restrictions characterizes the
available “inputs” to the model, while the set of possible
solutions characterizes the “outputs” that we are inter-
ested in when solving problems using the model. Both
aspects of task-dependency influence the appropriate
granularity of the behavior model. They are explic-
itly incorporated into the model-based problem solving
framework by means of two different abstractions: the
identification of states that need not be distinguished,
given the granularity of solutions (termed target dis-
tinctions), and the identification of states that cannot
be distinguished, given the granularity of external re-
strictions (termed observable distinctions).

Target Distinctions

Target distinctions identify solutions that need not be
distinguished from each other. Target distinctions give
rise to abstractions of a device model because they in-
troduce a “don’t care” indeterminism among its be-
havioral states. For instance, in behavior analysis for
FMEA, we might be interested in the values of certain
output variables only, such as the torque of the engine
or the braking force at the wheels. As another example,
consider the task of diagnosis, where we are interested
only in the possible behavior modes of the components.
For on—board diagnosis, it might even not be necessary
to know the particular behavior mode of the compo-
nents, but it is instead only necessary to distinguish
such classes of behavior modes that require different
recovery actions. A target distinction corresponds to a
partition:

Definition 1 (Target Distinction) A target distinc-
tion, denoted Tiqarg, is a partition of the space DOM (v),
i.€. Ttarg = (ﬂ-tm‘g,l: Ttarg,2s -+ s Ttarg,n)-

A variable v; is said to have no target partition if the
domain partition for v; specified by 74,4 is equal to the
trivial domain partition w4y ; := {DOM (v;)}.

Observable Distinctions

Observable distinctions identify states that cannot be
distinguished from each other. Similar to target distinc-
tions, observable distinctions give rise to abstractions of
a model because they introduce a “don’t know” inde-
terminism among the behavioral states of a device. Ob-
servable distinctions reflect the granularity of external
restrictions to the model. They are a means to express
measurement granularity or incomplete observability of
variables. The latter case occurs e.g. in on-board di-
agnosis, where only certain variables corresponding to
the sensor inputs are observable. Note that observa-
tions are only a special case of external restrictions,
which could also correspond specifications given by the
user or hypothetical situations as considered e.g. in an
FMEA. Analog to target distinctions, observable dis-
tinctions can be represented as a partition:

Definition 2 (Observable Distinction) An observ-
able distinction, denoted Tops, 1S a partition Tops =
(T‘-obs,la Tobs, 2y« « 77Tobs,n) .

A variable v; is not observable at all if its domain
partition 7, ; is equal to the trivial partition.

There is a duality between domain partitions and do-
main abstractions. A domain partition m; can be un-
derstood as a mapping

7 DOM (v;) — 9DOM(vi)

from a base domain to a transformed domain that con-
sists of sets of elements of the base domain. Depending
on the situation, the first view or the second might be
more convenient.



Definition 3 A qualitative abstraction problem QAP
is a tuple (R, Tobs, Ttarg), where Tops is a domain ab-
straction defined by observable distinctions, Tiqrg 15 @
domain abstraction defined by target distinctions, and
R is a relational behavior model.

The solutions to a qualitative abstraction problem

are given by a domain partition m, which corresponds
to a domain abstraction 7. If 7 contains sufficient dis-
tinctions to derive all information about the resulting
solutions, it is denoted distinguishing domain abstrac-
tion:
Definition 4 Let QAP = (R, Tobs; Ttarg) e a quali-
tative abstraction problem. A distinguishing domain
abstraction for QAP is a domain abstraction Tiu,q =
(Tind,1,-- > Tind,n) Such that for the considered exter-
nal restrictions Rezt C Tops(DOM (v)), the abstracted
model derives a solution SOL C Ti4rg (DOM (v)) if and
only if the base model derives the same solution:

Ttarg(R > Rea:t) = SOL
g Ttarg(Tind(R) > Tind(Rea:t)) = SOL.

The requirement expressed in definition 4 means that
if we are given an external restriction on the level of ob-
servable distinctions, then applying the distinguishing
domain abstraction 7;,4 before determining the result
does not change the result on the level of the target
distinction. That is, the abstracted behavior model
contains sufficient distinctions for the task.

There might exist more than one possible domain ab-
straction that fulfills this criterion. In particular, the
domain abstraction 7;4 corresponding to identical map-
ping and the merge of the observable and target dis-
tinctions

Tmerge *— MERGE(TOI)87 Ttm‘g)

contain sufficient distinctions to be distinguishing do-
main abstractions. Thus, we also have to state the re-
quirement that a qualitative abstraction contains only
necessary distinctions. A mazimal abstraction guaran-
tees that any finer abstraction incorporates distinctions
that are unnecessary:

Definition 5 Let QAP = (R, Tops, Ttarg) be a qualita-
tive abstraction problem. A distinguishing domain ab-
straction Tinq 1S a mazimal distinguishing domain ab-
straction for QAP, if there does not exist a distinguish-
ing domain abstraction 7/, , for QAP such that Ting is
a strict refinement of 7/, ;.

A maximal abstraction incorporates only distinctions
that are both necessary and sufficient according to the
target and observable distinctions. It represents a level
of abstraction that is adequate to solve the problem,
as it neither makes any unnecessary distinctions, nor
does it abstract away any distinctions that are crucial
to solve the problem.

A maximal distinguishing domain abstraction thus
captures the intuition behind a qualitative model. More
precisely, it formalizes the problem of finding qualita-
tive values for the domains of variables: finding 7,4

means finding sets of qualitative values for the individ-
ual variables v;. We use the term induced distinction
for the domain partition corresponding to 7;,q. An in-
duced distinction expresses and formalizes our goal of
determining qualitative values for model variables from
first principles.

Definition 6 Let QAP = (R, Tops, Ttarg) be a qualita-
tive abstraction problem. QAP is said to be

e complete, if each Reyt C Tobs(DOM(v)) has to be
considered as possible external restriction,

o minimal, if Yv; o € DOM(v;) : vio € I, (R), i.e
none of the domains contains redundant values (see
also (Tsa93));

o observable, if VSOL € Tigrg(R(v)), FRest C
Tobs (DOM (v)) s.th. SOL = Tyqrg(R > Regt),

o consistent, if Tops(R) = Tobs(DOM (v)), i.e. all ex-
ternal restrictions are consistent with the model.

The condition to be consistent is not a restriction,
for a given QAP can be modified in such a way that
this condition is satisfied. The principle is to antici-
pate possible revisions in the behavior model, in the
extreme case by adding unknown behavior modes that
correspond to unrestricted behavior of components.

Induced Distinctions vs. Interchangeability

This section shows that the problem of finding inter-
changeable values in constraint satisfaction (Fre91) can
be reconstructed as a special case of a QAP. Fully
interchangeable values define equivalence classes on the
set of domain values. Thus, replacing fully interchange-
able values by a single new domain value corresponds
to a special case of domain abstraction:

Definition 7 For a relation R, the domain abstrac-
tion Tpr r is defined by the domain partitions m; =
{Pi1, P2, .., Pix} given as

valy, valy € PiJ = H~~~7'Ui—17")i+17~~~(O-'Ui:"}all(R)) =

H~~~7'Ui—1771i+17~~~(O-'Ui:'U‘IZQ (R))

In 7pr R, two values vali,valy appear in the same
partition element if and only if they belong to tuples of
the relation that differ only w.r.t. the value for variable
v;, and are equal for all the other variables.

Proposition 1 Let QAP be a complete and minimal
qualitative abstraction problem such that Tops = Tid,
Ttarg = Teriv- 1hen the mazimal distinguishing domain
abstraction T;nq for QAP is equal to Tpy R.

Since finding fully interchangeable values is NP-hard,
the proposition implies that finding induced distinc-
tions is also NP-hard.

Determining Induced Distinctions

In the following, we assume that the given qualitative
abstraction problem QAP is complete, minimal, and
observable. In addition, we assume that 7,4 is the
merge of an abstraction 7/, of 7., and an abstraction
Ttarg Of Tearg- It will be shown that in this case there
exists a unique solution for QAP.



Theorem 1 Let QAP be a complete, minimal, and ob-
servable qualitative abstraction problem. If Tinq is a
mazximal distinguishing domain abstraction for QAP,
then T;nq is the merge of an abstraction of T,,s with a
refinement of Tiarg, i-€. Tinga = MERGE(T),,, Ttarg)-

Theorem 1 implies that the source for abstraction of
the induced distinctions can only be abstractions of the
observable distinctions.

The space for external restrictions 1is given
by Tops(DOM (v)). For each tuple OBS; €
Tobs(DOM (v)), define Ropsyk to be the join of
the observation with the model relation:

ROBS,k =R OBSk.

Because the observations are complete, i.e. each
OBSy; € Tous(DOM(v)) is considered, the Ropsk
cover the model relation. Because the OB.S; are mu-
tually disjoint, the Rops are mutually disjoint. It
follows that the elements of the set

Q(R,Tobs) = {RoBs,k}

form a partition of the model relation R. Let further
Rsor,i; be the solution obtained for Ropg i on the level
of Tearg, i.€.

Rsor.k = Tiarg(RoBs,k)-

Then the Rops, that obtain the same solution, i.e.
for which Rsor k. is equal, form a partition of the set
Q(R, Tobs)- Let RSOL,OBS,I@ be defined by

Rsor,oBsk == UROBs,j Vj s.th. Rsor,; = Rsor k-
J

Then the elements of the set of all such relations
Rsor,0Bs,k, denoted

Y(R, Tobss Ttarg) = {RsoL,0BS,k

form a partition of the set Q(R,Tops). In other words,
Y(R, Tobs, Ttarg) defines a partition of the model rela-
tion that is an abstraction of the partition of the model
relation defined by Q(R, Tops)-

Theorem 2 (Sufficient Condition) Let QAP be a

complete, minimal and observable qualitative abstrac-

tion problem. If Tinq is a maximal distinguishing do-

main abstraction for QAP, then Tinq,; is a refinement

of any domain partition m; = {P; 1, P, 2} gwen by

P, 1 =11(7obs(Rsor,0Bs)), Pi,2 = DOM (v;)\P; 1
where Rsor,os € L(R, Tobs, Trarg)-

The following theorem presents the complete solution
to the problem of deriving induced distinctions.
Theorem 3 (Complete Condition) Let QAP be a
complete, minimal, observable and consistent qualita-
tive abstraction problem. Then T;nq s given as the
merge of the target distinctions with any domain parti-
tion mw; given by

Trr,n Where A = Tos(Rsor,0Bs)
and Rsor,0Bs € X(R, Tobs, Ttarg)-

Theorem 2 and theorem 3 can be considered as limit-
ing cases in a spectrum of definitions that varies on how
much detailed the elements of the set X(R, Tobs, Ttarg)
are distinguished from each other. While theorem 2
considers only differences taking into account single
variables, theorem 3 considers differences taking into
account all variables.

This coincides with the intuitive idea that domain
values have to be distinguished if either the domain
values themselves already lead to different solutions, or
the domain values lead to different solutions if combined
with additional restrictions for other variables.

Computing Task-dependent Model
Abstractions

The computation of 7;,4 for a QAP involves, based on
the theorems above, the subproblems of constructing
the model relation R, checking (or establishing) the pre-
conditions for applying the theorems, and computing
the partition (R, Tobs, Ttarg)-

Computation of Model Relations

Determining the model relation R can in principle be
done by computing the join of the relations R¢ ; for the
individual components C;, i.e.

R(v) = Rci < Rea<... < Re .

However, R(v) can be extremely large. The number
of tuples in R(v) grows, in worst case, exponentially
with the number of the variables and the size of the
domains. Thus, we need a representation of R that
is tmplicit, but still allows to efficiently carry out the
necessary operations.

In engineered devices, it is typical that the interac-
tions will be mediated through several components (i.e.
defined interfaces, buses, supplies), and it is unlikely
that every variable directly affects each other variable.

Thus, in a constraint satisfaction problem (CSP) as
defined by the behavior model e.g. of an automotive
system, subproblems can be expected to occur that are
significantly smaller than the complete CSP.

Techniques referred to as solution synthesis and de-
composition in constraint satisfaction (Tsa93; WF99)
alm at systematically exploiting such problem—specific
features. They operate on a representation of a CSP
as a graph. Graph representations for CSPs can be
constructed in two ways, either as a primal constraint
graph or as a dual constraint graph. A dual constraint
graph represents each constraint by a node (called
meta-variable) and associates a labeled arc with any
two nodes that share variables. The arcs are labeled
by the shared variables. Thus, a dual constraint graph
representation transforms any CSP to a special type of
binary CSP, where the domain of the meta—variables
ranges over all value combinations permitted by the
corresponding constraint, and adjacent meta—variables
are restricted by equality constraints stating that their
shared variables must have the same values.



Definition 8 (Meta-Variable) A meta—variable cor-
responds to a subset S = (Vk1,Vk2...,Vkn) Of
variables of a ground CSP. The domain values
of the meta—variable are tuples of the relation
DOM (vi1) x DOM (vg2) X .. . X DOM (v, ) with scheme
Vi1, Vk2 - -+, Vkn-

The dual constraint graph for a system description
SD will be called the SD Graph. In an SD Graph, the
meta—variables are given by the component behavior
descriptions R¢;, and the arcs are given by the vari-
ables in SD.

Hierarchical Clustering of System Descriptions
Dechter and Pearl (DP88) observe that directional arc
consistency (DAC) is sufficient for determining global
consistency in a tree—structured (acyclic) CSP. Thus,
the basic idea to derive the model relation from an SD
Graph is to transform the SD Graph into a tree repre-
sentation, even if the original SD Graph representation
of the system description does not correspond to a tree.
This can be achieved by systematically forming larger
clusters (i.e. new meta—variables) and arranging them
hierarchically in the form of a SD Tree:

Definition 9 (SD Tree) A SD Tree is a tree whose
leaf nodes are the nodes of the SD Graph, and the in-
termediate nodes are meta—variables corresponding to
the combination of meta—variables of the SD Graph. A
SD Tree is called minimal, iff each meta—variable rep-
resents only value combinations that are consistent with
the model relation.

In a SD Tree, the meta—variables can be interpreted
as super—components (clusters) formed from compo-
nents of the original system description. Clustering is
accomplished by repeatedly identifying cliques in the
SD Graph, and building a new meta—variable for a
clique by eliminating the arcs between the nodes in
the clique. The nodes of the clique then become the
children of the new meta-variable in the tree. A spe-
cial case occurs when the considered clique consists of
a single node, i.e. when the arcs to be eliminated are
self-arcs that refer to a single meta—variable. In this
case, the corresponding node in the SD Tree (which
would otherwise have a branch factor of one) can be
represented together with its child node as a single en-
tity by attributing nodes z in a SD Tree both with a
meta—variable MV (z) as outlined above and a meta—
variable M Vsparea(z) with reduced scheme comprising
only variables further shared with other meta—variables:

Procedure Reduce(x,ns)

s := scheme(MVipared(x)) = scheme(MV (x))\ns,
DOM (MVspareda(z)) = I (DOM(MV (x))).

Algorithm (Generation of SD Tree)

Step 1 For each node x in the SD Graph, let ns be
labels of self-arcs of z. Call Reduce(x,ns). Remove
self-arcs of z in the SD Graph.

Step 2 Identify a clique in the SD Graph.

Step 3 Build a new node y for clique zi1,zo,...,zk
connected by arcs labeled with variables s. Set

scheme(MV (x)) = U scheme(MV (x;)),
i=1,....k
DOM(MV(CC)) :|><]i:17,,,7k DOM(MVtShared(xi))'

The nodes x1, xs, ..., T become the children of y in
the SD Tree.

Step 4 Replace the clique z1, o, ...,z by y in the SD
Graph.

Step 5 Call procedure Reduce(y, s).

Step 6 Proceed with step 1 until there are no more
arcs left in the SD Graph.

In a SD Tree, for each variable v; in the system de-
scription, there exists exactly one node = such that
v; € scheme(MV (z))\ scheme(MVipared(x)). SD Tree
generation can be viewed of as a method to transform
an arbitrary CSP corresponding to a system description
to a new CSP whose constraint graph is equal to a tree.
The number of meta—variables in the SD Tree is bound
by ¢ + s — 1, where c is the number of components and
s n the number of shared variables in the system de-
scription. For a given system description, different SD
Trees are possible, corresponding to different ways of
choosing cliques in step 2 of the algorithm.

Minimality of the SD Tree is achieved by establishing
directional arc consistency between the meta—variables
of the SD Tree. The complexity for this operation is
O(m - k%), where m is the number of meta—variables in
the tree, and k the (maximum) domain size of meta—
variables. A minimal SD Tree implicitly represents the
model relation R. Figure 2 shows an example of a SD
Tree for the pedal position sensor (the ECU component
is not contained in the model).

| Node, | | Battery |

| Pedal | | Potentiometer | | Switch |

Figure 2: SD Tree for the Pedal Position Sensor



Computing Induced Distinctions

Basic operations necessary to compute (R, Tops) and
Y (R, Tobss Ttarg) can be carried out efficiently using an
SD Tree, without the need to refer to the base model
relation R explicitly. Computing Q(R, Tops) amounts to
determining the partition elements Ropsy € R that
are consistent with different tuples of 7,,s(DOM (v)).
Computing 3(R, Tobs, Ttarg) amounts to determining, in
turn, partition elements Rgor,0Bs,k for Q(R, Tops) that
are consistent with different tuples of 7i4.q(DOM (v)).
For a partition = = (my,...,7,) corresponding to a do-
main abstraction 7, the following algorithm determines
the partition elements of R that are consistent with dif-
ferent tuples of 7(DOM (v)):

Algorithm (SD Tree Partition)

Step 1 For each node =z, set the partition 7, of
DOM(MV (z)) equal to the trivial partition.

Step 2 Choose a variable v; and a partition element
Pi € ;.

Step 3 Determine o,,—p,(R). For each meta—variable
MV (z), this yields a partition 7}, = {P.on, Pincon }
where P,,, denotes the domain values consistent and
Piycon the domain values inconsistent with P;.

Step 4 Merge 7, with 7.

Step 5 Proceed with step 2 until all variables and all
partition elements of m have been considered.

Using the algorithm above, Q(R, Top5) is obtained as
the SD Tree partition for mops. L(R, Tobs, Ttarg) Can in
turn be obtained as the SD Tree partition for m,,, “on
top” of the SD Tree partition Q(R, Tops)-

The implicit representation of Q(R,7wps) and
Y(R, Tobss Ttarg) through partitions of meta—variables
in the SD Tree collapses the overall number of parti-
tion elements that are needed to be represented. While
e.g. Q(R,T,ps) can contain as many elements as tuples
in R, there are maximally m - k partition elements in
an SD Tree, where is m the number of nodes in the
SD Tree and k the maximal domain size of a meta—
variable. The result is an implicit representation of the
partition (R, Tobs, Trarg) through partitions 7s of the
meta—variables in the SD Tree.

Theorem 4 For a model relation R given as an SD
Tree, X(R, Tobs; Ttarg) can be computed in time polyno-
mial in n, o, t, m and k, where n is the number of
variables, o and t the maximal number of elements in
the domain partitions Tops; and Tiarg,i, M the number
of meta—variables in the SD Tree, and k the mazimal
domain size of a meta—variable.

The necessary preconditions for applying the theo-
rems in the previous section (definition 6) to a quali-
tative abstraction problem QAP can be checked with
the same effort (see (Sac01)). For instance, minimality
can be determined (or, alternatively, be established) by
projecting each meta—variable on the variables occuring
in its scheme.
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Figure 3: Components of the AQUA framework

A Prototypic System for
Task-dependent Qualitative Abstraction

The methods outlined in the previous sections have
been implemented in a prototypic system termed
AQUA (Automated Qualitative Abstraction). It builds
on components of an existing model-based reasoning
framework called Raz’r that consists of a development
system for defining domains, constraint types and de-
vice structures for composing system descriptions and a
runtime system for performing behavior prediction and
diagnosis. In addition to the basic Raz’r components,
AQUA consists of (figure 3)

e a component for Computation of Induced Distinc-
tions that determines task-dependent qualitative ab-
stractions based on the algorithms described above;

e a System Description Generator that applies domain
abstractions to a (real-valued or finite) system de-
scription, transforming it (in particular, the involved
constraint types) to the specified level of granularity;

e a Signal Transformation Module that generates qual-
itative observations by applying domain abstractions
to numerical (time—varying) data.

Using AQUA, several tasks can be supported in the
context of model-based problem solving that, up to
now, essentially had to be carried out manually. Con-
sider again the device shown in figure 1. For the base
model SDpyse, the domain was

{[0V,2V), [2V,4V'), [4V,6V), [6V,8V'), [8V, 10V) }.
for variables involving voltage. Assume
{0%, 20%, 40%, 60%, 80%, 100% }

to be the domain for variables involving position. The
fact that the control unit observes the signal from the
potentiometer and the signal from the switch can be
expressed by the observable distinction

Tobs,vpot = {{[OV7 2V)}7 s 7{[8V7 10V)}}7
Tobs,vawiteh — Hov,2v)},... . {[8V,10V)}}.



The target distinctions are determined by the goal
to distinguish between the domain values for the vari-
able vgyitcn (assume the plausibility check itself is not
represented in the model):

Ttarg,vswitch — {{[0V7 2V)}7 R {[8V7 IOV)}}-

Based on these inputs, AQUA determines a partition
for vyt that consists of three partition elements:

{lov;2v), 2V, 4V)}, {[4V,6V)}, {[6V, 8V, [8V, 10V )} }.

The resulting abstracted behavior model SD;ransform
has a tuple space of 9216. The original model SDy e,
in contrast, had a tuple space of 5.6-107. Compared to
the model SDgeneric, the derived model SDiransform
uses the same domain size for wv,, (i.e. the tuple
space is equal), but it is more adequate in the context
of the specified task. For the granularity of the base
model SDyyqnsform, the signal transformation compo-
nent yields four qualitative observations at time points
t =1, 4,5 and 6, respectively. For time point ¢ = 5, the
runtime system detects an inconsistency of SDyyqnform
with the observations. The runtime for diagnosis is
0.256 seconds, which is about 43% less than for the
finer—grained model S Dy, which corresponds roughly
to the reduction of the domain size of vp:. This exam-
ple illustrates AQUA’s ability to support the modeling
problem of determining distinctions for the domains of
variables that are essential for a certain task.

Discussion

This paper identifies fundamental properties of qual-
itative abstraction that is based on domain abstrac-
tion and reveals relationships between qualitative rea-
soning and constraint satisfaction techniques to struc-
ture problems and compactly describe their solutions
(Fre9l), (WF99).

AQUA offers a principled way to turn base behavior
models (also real-valued models, as common in indus-
trial applications) into qualitative models in order to
make them amenable to model-based problem solving
methods. In this way, AQUA can be seen as a con-
tribution to bridging the gap between quantitative and
qualitative modeling, a problem that has been identified
as one of the major roadblocks to a more wide—spread
use of model-based reasoning techniques.

QSIM and its extensions (Kui94) incorporate meth-
ods for deriving landmarks and performing semi-
quantitative reasoning based on a behavior model, how-
ever, only within the context of simulation of device be-
havior over time. Another difference is that AQUA can
process arbitrary relations and is not limited to pre—
defined algebraic constraints such as addition or multi-
plication. E.g., (Sac01) presents an application where
qualitative values are derived for a model involving a
diesel engine described by a characteristic map.

The methods devised for computing qualitative ab-
stractions are based on the SD Tree as a data structure
that “compiles” a model relation into a an implicit rep-
resentation in order to avoid combinatorial explosion.

As the computational complexity of deriving induced
distinctions with an SD Tree can be bound to struc-
tural properties of the system description, this offers
a basis to identify tractable subsets of qualitative ab-
straction problems. The principle is that if the maxi-
mal size of meta—variables is bounded, then the com-
plexity of deriving task—dependent qualitative abstrac-
tion is polynomial (see also theorem 4). Resistive net-
works (Ran98) are a special class of devices that can
be modeled by component types describing the gener-
ation, transportation and consumption of energy. For
clustering such component types, the resulting super—
components have the same relation types as the orig-
inal component relations (called “closure property”
in (Ran98)). Consequently, for behavior models de-
scribing resistive networks, the maximal size of meta—
variables is bounded by the size of the original compo-
nent relations, and hence such devices correspond to a
class of problems for which task—dependent qualitative
abstraction is tractable.
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