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Abstract 

Back of the envelope reasoning involves generating 
quantitative answers in situations where exact data and 
models are unavailable and where available data is often 
incomplete and/or inconsistent. A rough estimate generated 
quickly is more valuable and useful than a detailed analysis, 
which might be unnecessary, impractical, or impossible 
because the situation does not provide enough time, 
information, or other resources to perform one. Such 
reasoning is a key component of commonsense reasoning 
about everyday physical situations. This paper presents a 
similarity-based approach to such reasoning. In a new 
scenario or problem, retrieving a similar example from 
experience, sets the stage for solving the new problem by 
borrowing relevant modeling assumptions and reasonable 
values for parameters.  We believe that this tight 
interweaving of qualitative and analogical reasoning is 
characteristic of common sense reasoning more broadly.  
Incorporating effects of quantitative dimensions in similarity 
judgments and generalizations, hitherto unexplored, raises 
very interesting questions. 

1 Introduction 

One goal of qualitative reasoning (QR) is to understand and 
model common sense. Forbus and Gentner (1997) proposed 
a hybrid model of QR where analogical reasoning and 
qualitative reasoning are tightly interwoven. In this paper, 
we look at quantitative estimation (also called rough 
estimation, back of the envelope analysis, etc), which we 
believe highlights some of the very important questions at 
the intersection of analogical and qualitative reasoning. 
Back of the envelope (BotE) analysis involves the 
estimation of rough but quantitative answers to questions 
where the models and the data might be incomplete. In 
domains like engineering, design, or experimental science, 
one often comes across situations where a rough answer 
generated quickly is more valuable than waiting for more 
information or resources. Some domains like 
environmental science [Harte, 1988] and biophysics 
[O’Connor and Spotila, 1992] are so complex that BotE 
analysis is the best that can be done with the available 
knowledge and data.  BotE reasoning is ubiquitous in daily 

life as well.  Common sense reasoning often hinges upon 
the ability to rapidly make approximate estimates that are 
fine-grained enough for the task at hand. We live in a world 
of quantitative dimensions, and reasonably accurate 
estimation of quantitative values is necessary for 
understanding and interacting with the world. Our life is 
full of evaluations and rough estimates of all sorts. How 
long will it take to get there? Do I have enough money with 
me? How much of the load can I carry at once? These 
everyday, common sense estimates utilize our ability to 
draw a quantitative sense of world from our experiences.   
We believe that the same processes underlie both these 
common sense estimates and expert’s BotE reasoning to 
generate ballpark estimates.  Specifically, the drawing upon 
experience to make such estimates, and the achievement of 
expertise in part by accumulating, organizing, and 
abstracting from experience to provide the background for 
such estimates, are the same fundamental processes.  We 
claim that qualitative reasoning is essential for such 
analyses for two reasons: 

1. Qualitative models provide analytic framework. 
Understanding what entities and physical processes 
are relevant is crucial in determining what 
parameters are relevant.  Modeling assumptions 
expressed in terms of the conceptual understanding 
of the situation determine when particular 
quantitative estimation techniques are appropriate.  

2. Qualitative models facilitate comparison.  Similarity 
in qualitative, causal structure helps determine what 
experience is relevant when making an estimate.  
Similarity is also used in helping evaluate the 
reasonableness of an estimate.  Including qualitative 
descriptions in remembered experiences along with 
quantitative data facilitates comparison and 
abstraction from experiences.  

  
 However, some of the central assumptions of QR in 
practice must be rethought when considering common 
sense knowledge, as opposed to narrow domain expertise.  
It is commonplace in QR to assume that a domain theory is 
complete.  This assumption is implausible for common 
sense reasoning, whether or not one views QR purely in 



terms of a component in a performance system or as a 
psychological model.  The closer one looks at human 
knowledge, the more it appears that it is fragmentary, and 
more concrete than abstract.  It may be that such an 
organization is a necessity for human-level performance, 
whether or not one is making psychological claims.  Let us 
call this approach Common Sense QR (CSQR) for 
concreteness.  Here are the constraints we currently think 
guide CSQR: 

1. Incompleteness.  Domain theories are incomplete in 
terms of their coverage, and even what they do 
cover is incompletely covered.   

2. Concreteness.  Domain knowledge includes 
knowledge of many concrete, specific situations.  
These concrete descriptions are used directly in 
analogical reasoning, in addition to first-principles 
reasoning. 

3. Highly experiential.  Domain expertise improves 
through the accumulation of information, both 
concrete and abstract.  Experience improves our 
abilities to reason through similar situations, and 
helps us develop intuitions for what is reasonable, 
high, low, etc.  

4. Focused reasoning.  Instead of maintaining 
uncertainty and ambiguity for completeness, 
assumptions are made aggressively to tightly 
constrict the number of possibilities considered.   
Common sense reasoning is required for action in 
the world, and there are opportunities for interaction 
and further reflection, reducing the amount of stress 
on any particular computation.  Thus it is better to 
answer rapidly and sometimes be wrong than to 
answer slowly and vaguely. 

5. Pervasively quantitative.  Our interaction with the 
real world requires concrete choices for quantities.  
For example, the amount of salt one adds while 
cooking a certain dish cannot be safely specified as 
“+”.   While there are certainly tolerances, and we 
believe that estimation requires drawing upon lots of 
examples, but our actions in the end require that 
estimates manifest as exact values.  Quite possibly 
this is true for every step along the way, as per the 
focused reasoning constraint. 

 
 BotE reasoning (even when the problems are from non 
common-sense domains) operates within these constraints. 
A combination of QR and experiential knowledge seems to 
be the key to BotE reasoning. QR helps us determine what 
phenomena are relevant, and experiential knowledge 
supplies useful default and pre-computed information, 
including both numeric values and relevant modeling 
assumptions, as well as knowledge about similar situations 
that can serve as a reality check for the estimates.   The 
need to compare parameters and to make estimates guided 
by similarity in turn raises interesting questions about what 
role(s) quantitative dimensions play in our judgements of 
similarity, and how we develop our quantitative sense of a 
domain with experience. 

 Section 2 presents a brief review of relevant research. 
Section 3 explains what we think BotE reasoning is, and 
our approach towards building such a reasoner.  Section 4 
contains two extended examples that illustrate our 
arguments. Section 5 presents some open research issues, 
and we wind up with our plans for future work. 
 

2 Background Review 

This section is divided into three subsections. We start with 
a review of psychological work on real-world quantitative 
estimation of dimensions and probabilities. In section 2.2, 
we review how models of similarity have developed over 
the years. Section 2.3 makes clear the distinction between 
our work and semi-quantitative reasoning.  

2.1 Psychology of Quantitative Estimation  
Peterson and Beach (1967) review a set of psychological 
studies to test people’s abilities to derive statistical 
measures of populations and samples such as proportions, 
means, variances, correlations, etc. Although some of the 
studies have conflicting results, the key result that people 
are quite good at abstracting measures of central tendency, 
and there are systematic differences in intuitive judgments 
and objective statistical values. For example, people don’t 
weigh all deviations equally in computing variance.  
Instead, they are quick to believe in a distribution even 
from a few samples, and tend to be conservative in revising 
their measures on the basis of new data points. Tversky and 
Kahneman (1974) reported people’s assessment of 
probabilities of uncertain events. In a very important set of 
results, they show that people make systematic errors 
because of a set of heuristics that they employ.  
 
 Brown and Siegler (1993) proposed a framework for 
real-world quantitative estimation called the metrics and 
mappings framework. They make a distinction between the 
quantitative, or metric knowledge (which includes 
distributional properties of parameters), and ordinal 
information (mapping knowledge). Through a set of 
experiments they showed that the ways people revise and 
assimilate quantitative and ordinal information are quite 
different. Their experiments involved subjects making 
quantitative estimates of populations of ninety-nine 
countries.  Afterwards participants were told the correct 
value for populations of 24 of the countries, and then they 
went through and re-estimated the full set of 99 populations 
(the 24 seed countries and 75 transfer countries). Metric 
properties (as measured by sum of absolute value of errors 
for all of the estimates) improved, but ordinal knowledge 
(the order of different population, as measured by the rank-
order correlation) remained unchanged. On the other hand, 
telling them laws like “Population of European countries 
are generally overestimated”, and “Population of Asian 
countries are generally underestimated”, improved their 
ordinal knowledge.  



 
 In a recent study, Linder (1999) studied quantitative 
estimation in the context of engineering education. Based 
on responses to real world questions, he tried to build a 
framework for how people do rough estimations. About a 
hundred mechanical engineering seniors at MIT, and fifty 
each at five other universities attempted these estimation 
questions. He also compiled responses from a hundred 
professionals, out of which about there were about thirty 
each of electrical and mechanical engineers, and the rest 
from other engineering and science backgrounds. It gives 
us a chance to look at people’s back of the envelope 
reasoning. His focus was how to improve engineering 
curricula, and thus his framework is informal and not 
couched in computational terms; nevertheless, it provides 
an interesting source of data. In one experiment, when 
people were asked to estimate dimensions of an aluminum 
bar, more than 50% came up with correct estimates and all 
the answers were in the correct order of magnitude.  
However, in the same experiment, when people were asked 
to estimate the power of a DC motor, only about 30% got it 
right and the responses varied by six orders of magnitude!  
We suggest a possible explanation for this discrepancy in 
terms of our model below.   
 
 

2.2 Models of Similarity 
In the 1960s, a popular psychological model for similarity 
was to represent objects as points in a psychological space 
of stimulus dimensions, where similarity is defined as the 
distance between points. Multidimensional scaling 
[Shepard, 1962; Torgerson, 1965] is a technique designed 
to uncover this psychological space by analyzing people’s 
similarity judgments. This work drew a distinction between 
integral and separable dimensions, and explored how this 
distinction affects our similarity judgments. Tversky’s set-
theoretic account (1977), where feature commonalities and 
feature differences both affect the similarity between two 
concepts, raised many questions about the metric space 
model. Gentner’s (1983) structure-mapping theory provides 
an account of analogy and similarity that better fits the 
psychological data than either feature space or feature set 
models.  For example, structure-mapping handles 
relationships as well as features, which is crucial for the use 
of similarity in reasoning.  The idea of structural alignment 
also provides deeper insights into the comparison process 
that has led to many new predictions.  For example, 
Markman and Gentner (1993) proposed a structure-based 
model that makes three distinctions: commonalities, 
alignable differences and non-alignable differences. 
Alignable differences are differences along the same roles 
in two representations, whereas non-alignable are 
differences along different roles. So, a hotel and motel have 
a lot of alignable differences, whereas a hotel and 
motorbike has a lot of non-alignable differences. In their 
recent studies, they have shown that people value alignable 

differences more than non-alignable while making 
similarity judgments.  

2.3 Semi-quantitative Reasoning 
It is important to distinguish between the notion of 
quantitativeness in semi-quantitative reasoning [Berleant 
and Kuipers, 1997] and BotE reasoning. In semi-
quantitative reasoning, functional uncertainty is represented 
by defining envelopes within which functional constraints 
must lie, and parametric uncertainty is represented by 
numeric intervals. Clearly, this is still in the spirit of purely 
first-principles reasoning, in contrast to our similarity-
based approach to model formulation and parameter 
estimation. Also, the quantitativeness that we are proposing 
is based on our belief that common-sense reasoning is 
indeed able to come up with fine-grained estimates, and we 
are able to develop our notions of scale and quantitative 
dimensions with experience in a domain.  

 3 A Similarity-Based Model of BotE 
Reasoning 

Back of the envelope (BotE) reasoning involves the 
estimation of rough but quantitative answers to questions. 
Most of the questions are real-world problems, where 
usually one does not have complete or accurate models or 
model parameters. Yet one can get a lot out of approximate 
estimates. This type of reasoning is particularly common in 
engineering practice and experimental sciences, including 
activities like evaluating the feasibility of an idea, planning 
experiments, sizing components, and setting up and double-
checking detailed analyses. There is a tradeoff between 
specificity (resolution and certainty in the answer) and 
economy. As we try to increase the specificity in the 
answer, the analysis requires more resources in the form of 
time, information, formalization, and computation; and one 
might not have one or more of these at hand. 
 
There is a large variety of such questions, such as  

Q1. Estimate the amount of work a person does 
shoveling the walk after a snowstorm.  

Q2. Estimate the drag force on a bicycle and rider 
traveling at 20 mph.  

Q3. Estimate the energy stored in a new 9-volt transistor 
battery.  

Q4. Estimate the tension of a car’s safety belt if the car 
crashes into a pillar (at speed of 30km/h and 
produces a 30 cm deep dent).  

Q5. How long does it take to reach home from your 
office, or to get ready in the morning? 

Q6. How much money would you be spending on that 
vacation you have planned? 

Q7. You know a recipe that you made for yourself some 
time back – now you have to make it for eight 
people, and you want it less spicy and you ran out of 
one of the ingredients.  

  



 Questions 1 to 4 are questions that might arise in 
engineering circumstances, whereas Questions 5 to 7 are 
questions that arise in daily life. Question 5 seems more 
based on direct observation than others.  For example, you 
might have earlier noticed how much time it takes for you 
to arrive, or what were your best/worst times, and you 
recall those, and might employ some measure of central 
tendency to come up with a time estimate. In Question 6 
(and others), it seems that one must build a simple 
estimation model, and use this model to answer the 
question by estimating in turn values for the parameters in 
the model.  
 
 Essentially, BotE reasoning involves coming up with a 
numeric estimate for a parameter. This can be decomposed 
into two distinct (but not independent) processes –  

1. Direct parameter estimation – This involves directly 
estimating a parameter based on previous experience 
or domain knowledge.  For instance, we might know 
the value of a physical constant, or use a value from 
a previous experience that is highly similar to the 
current problem, or combine multiple similar 
experiences to estimate a value based on those prior 
values.  Thus the methods here are either direct 
retrieval or statistical estimation based on retrieved 
information. 

2. Building an estimation model – This is required 
when the parameter to be estimated is not usually 
directly stored or encountered.  In such cases one 
has to build a model that relates the parameter in 
question to other parameters, which in turn must be 
estimated.  

  
 Lets look at a small example to make this distinction 
clear. Consider the question – How many pieces of popcorn 
would fill the room you are now sitting in? The parameter, 
num-popcorn is not one that one can recall a value from 
the memory – so one way to derive it would be  

num-popcorn = volume-room/volume-
popcorn  …(1) 

Approximating room to a cuboid, and popcorn to a cube 
(considering the voids left after packing in popcorn kernels1 
this is a reasonable assumption),  

num-popcorn = l*b*h / a^3  …(2)  
where l , b, h are length, breadth and height of the room 
and a is the edge of the cube that describes a popcorn.  In 
(2), we have built an estimation-model for the number of 
popcorn kernels, which we have now described in terms of 
a set of parameters that can be estimated by direct 
parameter estimation. Estimation-model building can be 
recursive (after our initial model in (1), we had to build 
sub-models for the volumes of the room and popcorn).  
 
                                                 
1 Of course, if we didn’t have the volume of a popcorn in our 
domain theory, the fact that a cube is a reasonable approximation 
for a single popcorn and its related void, is an interesting (and 
general purpose) estimation modeling strategy.  

 What makes someone good at BotE reasoning? 
Experience with similar estimation tasks, ability to 
compare a parameter with other known values, ease of 
access to estimation models seem to be some of the 
important factors in numeric estimation skill. Some 
parameters are clearly more accessible than others, and 
there are strong domain expertise effects, too. One of the 
important things as one learns a domain is extensive 
familiarity with the quantitative aspects of a domain: when 
is a parameter value to be reasonable/typical, or high, or on 
the conservative side, etc.  This could explain Linder’s 
(1999) results about the variability in accuracy of BotE 
reasoning.  It is not surprising that the intuitions of an 
electrical engineer about motors and batteries is more 
accurate than an a mechanical engineer’s intuition, or that 
mechanical engineers’ answers about drag force and 
tension are more accurate than those of electrical engineers. 
What is this experiential knowledge, and how exactly does 
that help in BotE? 

1. Knowing a large number of examples of various 
problems and scenarios helps in building the 
estimation model. Given a new problem, we can 
solve it by retrieving a similar example from which 
we can borrow relevant modeling assumptions, 
default values, etc.  

2. A mental scale of values helps in the direct 
parameter estimation task. One might directly know 
the value for a parameter (or maybe a bunch of 
values, for say something like the salary of a 
computer science professor, in which case we have 
to have some way of deciding what is a 
representative value). If not, then we try to recall a 
similar scenario, or in worst case even make a guess 
based on our intuitions of the domain. 

  
 Thus we see analogical reasoning about within-domain 
experience as being central both to building estimation 
models and to selecting reasonable values for model 
parameters.  To make these ideas clearer, we turn to some 
extended examples for illustration. 

4 Extended Examples 

In this section we look at two examples that illustrate 
various points that we made earlier. Both the questions in 
this section were used in Linder’s study. 

Q2 Estimate the drag force on a bicycle and rider 
traveling at 20 mph (9 m/s).  
 One of the important things to note about this problem 
(which is the case with most of real-world estimation tasks) 
is that it is not completely specified.  The basic description 
of the physical situation is very abstract, and most of the 
quantitative information that is needed to solve the problem 
is not provided.   Several subjects, given this problem, 
indicated that they pictured a person on a bicycle from a 
distance from the side and/or the front; and often they made 



sketches of these views [Linder, 1999]. This strongly 
suggests to us that the model formulation phase itself 
involves retrieving a similar known scenario, to fill in the 
details.  
 
Solution I  
 This is a very simple solution. All of the power 
generated by the human is used up in propelling the bicycle 
at the given speed, and that all of it goes to overcoming the 
drag force. Since the estimate of the power that the human 
is producing while cycling under given conditions is the 
only parameter that it uses, the estimate strongly depends 
upon how representative the estimate of power is in the 
circumstances of the problem. 
 

 
Table 1: Solution I for Q2 

  
 In the direct parameter estimation for power, it is key 
that we look for human power output during similar 
activity. It turns out that humans can comfortably produce 
100 watts of power, and up to 1500 watts in spurts.   
 
Solution II 

 This is the more standard solution that a mechanical 
engineer would come up with. The drag equation (1), 
which helps calculate the drag force on a moving object 
due to surrounding fluid, is definitely relevant to the 
problem. The difficulty though is that it has a bunch of 
other parameters that we don’t know of, e.g., the drag 
coefficient, density of air, reference area of the body. The 
drag coefficient (Cdrag) itself captures all complex 
dependencies (on the viscosity and compressibility of air, 
geometry of the body, and the inclination to flow) and is 
usually derived empirically. We look for similar scenarios, 
and indeed there is one, of human falling with terminal 
velocity (maybe in context of skydiving, and this is not a 
rare piece of information, considering that quite a few 
people did use this). In the free-fall scenario, the terminal 
velocity is known, and the drag force is known (as it 
counterbalances gravity, it equals the weight of the person). 
This allows us to estimate the constant of proportionality in 
the drag equation (2), and thus the drag force during 
cycling.   

 
Table 2: Solution II for Q2   

Q3 Estimate the energy stored in a new 9-volt 
transistor battery.  
 This problem is an interesting example, where first 
principles reasoning from the chemistry of energy 
generation in the battery involves complicated domain 
knowledge, and none of the people asked even attempted to 
reason that way. What most of the people did was to 
imagine scenarios where such a battery was being used, and 
try to think from there. And the thing that is beautiful is the 
fact that this calculation gives us an estimate that is just as 
good as the more complex method. This is a nice example 
of where, for the purposes of BotE estimates, ability to 
successfully reason from known scenarios and examples 
buys us as much as far more first principles knowledge 
would. The solution below presents reasoning with very 
little knowledge about the battery. If I don’t know anything 
about 9-volt battery, what is the next similar thing? A lot of 
people thought about car batteries, 1.5-volt AA batteries, 
etc. 
  
 This example also demonstrates that using examples 
allows us to transform the problem into ways that 
parameter estimation, or model building become more 
intuitive or accessible. For example, knowledge of 
parameters like the rated capacity of the battery, or, 
resistive load of the bulb would have led us to solutions, but 
we think in terms of parameters that are more accessible to 
us. Besides helping understand common sense qualitative 
reasoning, this is a great problem solving strategy for 
scientific and engineering reasoning as well. 
 

Model Power = Force * Velocity 
Parameters Power (produced by the human during 

cycling) = 200 Watts 
Velocity (given) = 9m/s 
Force (to be estimated) 

Solution Fdrag = 200/9 §����1 

Fdrag = Cdrag������ 9
2) A                       …(1) 

Or,  Fdrag = KV2  for same sized objects in 
the same density fluid.                        …(2) 
Plugging the value of K back into (2) gives 
us  Fdrag. 

Model 

Similar scenario: Free-fall, known terminal 
velocity, VT = 50 m/s 
Here, Fdrag_free_fall  = Weight.                  …(3) 
K = Fdrag_free_fall /VT 

2 = Weight/ VT 

2       …(4) 

Parameters [A, Cdrag�� ��GHQVLW\�RI�DLU�@�FDQ�EH�OXPSHG�
into K, V (velocity), VT = 50 m/s 

Calculations K = 750/ 50^2 =  0.3  
Fdrag = 0.3 * 9 *9 §����1� 



Suppose I did not know anything about 
the 9v battery except its size, but I knew 
examples of where 1.5v AA batteries 
were being used. If I make the 
assumption that these two batteries are 
fundamentally the same, and only the 
difference in volume should be 
responsible for difference in energies 
stored. 
Etransistor/EAA = Vtransistor/VAA               …(1) 

Model 

In a small hand-held flashlight, all the 
power provided by the batteries is used 
up in lighting the bulb.  
N * EAA = Pbulb * Life                     …(2) 
Where Pbulb is power rating of the 
flashlight bulb, and Life is the time that 
a new set of batteries will take before 
they die out, and N is the number of 
batteries in a flashlight. 

Parameters and 
Calculations 

N = 2 (number of batteries) 
Pbulb = 1 Watts 
Life = 2 hours 
EAA = 1 * 2 * 3600 * 0.5 = 3600 J 
V transistor/VAA = 2 
Etransistor = 7200 J 

 
Table 3: Solution for Q3 

5 Open Issues  

Our approach is to use similarity to guide the estimation 
process. In this section we look at our current models of 
similarity and generalization, and discuss the interesting 
issues that BotE reasoning raises.  
 Structure-mapping theory [Gentner, 1983] is a widely 
accepted model of analogy and similarity. Structure-
mapping engine (SME) [Falkenhainer et al 1989] is a 
computational model of structure-mapping theory. Given 
two structured propositional representations as inputs, the 
base (about which we know more) and a target, SME 
computes a mapping (or a handful of them). Each mapping 
is a set of correspondences that align particular items in the 
base with items in the target, and candidate inferences 
which are statements from the base that are hypothesized to 
hold in the target by the virtue of these correspondences. 
Another important component is making generalizations 
based on experiential knowledge, and SEQL [Skorstad, 
Gentner and Medin, 1988; Kuehne et al, 2000] provides a 
framework for such reasoning. With a large number of 
examples, generalizations will serve to ease the 
organization of information, and also help in defining 
typicality and representativeness with respect to parameter 
values, e.g., the number of cylinders in a sports car, the 
weight of a truck, etc.  
 

 In achieving our goal of being able to use experiential 
knowledge to guide BotE reasoning, SME and SEQL have 
to be extended so that they can make sense of quantitative 
information.  That is, they already can handle 
representations with numerical parameters, but similarity in 
aligned numerical parameter values does not affect the 
perceived similarity of the descriptions compared.  Given a 
problem, or a scenario, we can retrieve similar examples 
from the corpus using MAC/FAC (Many Are Called, Few 
are Chosen) [Forbus et al, 1995]. Going from here to doing 
BotE reasoning raises some important and open research 
questions –  

1. How do quantitative dimensions factor in our 
similarity judgments? In our example with the 
battery, why do we think that an AA battery is more 
similar to the 9-volt than a car battery, for example? 
Because we intend to come up with quantitative 
answers, the similarity comparisons that help us 
retrieve the relevant examples must take into 
account the quantitative dimensions in the 
representations in the first place. Markman and his 
colleagues have shown in many different 
experiments that people value aligned differences to 
be more important for comparison than non-aligned 
differences. An important question that remains to 
be explored is in the case of more than one aligned 
dimension, are all of them equally important, or can 
one deduce relative importance from structural 
representations? 

2. What are the quantitative inferences that analogy 
sanctions? So, in the direct parameter estimation 
task, given a base description with a missing value 
on a dimension, after we retrieve one (or more) 
matches for which value on that dimension is 
known, what kind of strategies do we use to impute 
the value for the unknown in our original scenario. 
This is an interesting question, as it is not necessary 
that we have an overall match to make estimates 
along a certain dimension only; and a good match 
does not mean that all the aligned (numeric) 
dimensions in the base and the target are equally 
close.  

3. How do we generalize along quantitative 
dimensions? In solving the battery example, for 
example, people say things like “1 Amp is too high a 
current for a walkman.” For domains like the price 
of a computer, for example, there is no formal way 
to carve the parameter space into qualitatively 
distinct regions. Yet, with exposure to multiple 
examples, we sharpen our notions of what it means 
for a personal computer to be cheap, medium-range, 
or expensive. For most of dimensions like the sizes 
of objects, price of particular consumer goods, etc., 
we typically encounter multiple different values for 
a particular parameter whose statistical distribution 
is unknown to us. To be able to estimate a 
reasonable value for the parameter in a scenario, one 
would need to have a notion of what values 



represent the central tendency, and which are the 
outliers, and so on. Peterson and Beach (1967) 
review a number of studies that show that we are 
equipped with intuitive statistics that helps us make 
such judgments. We are planning to extend SEQL to 
accumulate distribution information about the 
parameters assimilated into a generalization.  

4. How correct are we? Similarity is indeed helpful, 
and gives us inferential power, but how do we judge 
soundness of a solution? Our current proposal is to 
generate multiple solutions to double-check our 
results. Another possibility is that, as per the 
previous point, we might build a scale of what is a 
reasonable value for the answer, to serve as a reality 
check. 

 
 The above emphasis on quantitativeness is not to say that 
our internal representations of quantity are necessarily 
numeric. A large class of real-world tasks involves coming 
up with fine-grained estimates quickly and the ability to do 
naïve arithmetic, e.g., how many people can get into the 
elevator, etc. Numbers are a very powerful representation 
that can capture as much fine-graininess as one wants, and 
support operations like the ability to compare quantities and 
arithmetic across different quantity spaces. A 
representation of quantity that captures common-sense 
reasoning will have to support these types of tasks. One of 
the important things in estimation is the ability to compare 
quantities. If the parameter itself is not known, then finding 
a comparable parameter, e.g., one might think of the ceiling 
as 1.5 times the height of a person, so about 10ft is a 
reasonable estimate. Guerrin (1995) presents a scheme to 
map a quality space onto the set of integers so that one can 
define arithmetic, and with the refinement and abstraction 
operator, symbols from different quality spaces can be 
compared. We think an approach like that might be helpful 
in mapping between qualitative and quantitative scales.  
 

6 Summary 

In this paper we have proposed a similarity-based model of 
back of the envelope reasoning.  We propose that the same 
processes are used in both everyday common sense 
reasoning and in scientific and engineering reasoning.  We 
also propose that these processes are highly experience-
based, using within-domain analogical reasoning and 
similarity to retrieve, apply, use, and generalize from 
specific examples and previous problem-solving 
experience.  This model of qualitative reasoning that relies 
heavily on analogical reasoning, and equipped with a strong 
sense of quantitative dimensions, is we suspect at the heart 
of common sense reasoning about the physical world.   
 
 We are currently exploring this model by using our 
analogical processing software (SME, MAC/FAC, and 
SEQL) to create a BotE problem solver.  This involves 
developing a corpus of examples, including descriptions of 

objects, situations, and behaviors with quantitative 
parameters.  The BotE problem solver we are building will 
store the solutions it derives in its memory, to model the 
accumulation of problem-solving expertise.   
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