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Abstract

This paper is concerned with the use of compositional
modelling for effectively building and (re-)using reposi-
tories of ecological models, with a focus on the impor-
tant issue of model granularity. The techniques pre-
sented herein differ from existing work in that a meta-
modelling approach to grain choices is taken by trans-
forming an emerging model’s level of detail through
disaggregation. The result is a means of choosing a
model’s level of detail that is sufficiently flexible for eco-
modelling and that allows grain choices to be described
in terms of scenario-level concepts. Model disaggrega-
tions are implemented as model transformations. Thus,
different disaggregations of a model can be composed
themselves. As such, a small number of disaggregations
may encompass a much larger selection of models at
different levels of detail. The paper shows that due to
the use of dynamic constraint satisfaction techniques,
grain choices are not necessarily made from the outset,
but can be postponed until after an initial model is con-
structed.

Introduction

Compositional modelling techniques (Falkenhainer, B.
& Forbus, K.D. 1991; Keppens, J. & Shen, Q. 2001)
offer tools for explicit knowledge representation and to
facilitate model based reasoning. Although convention-
ally designed for physical systems, compositional mod-
ellers have been recently applied to ecological modelling
(Struss 1998). This paper presents work following this
line of development. In particular, it aims at building
a tool for establishing model repositories and exploring
modelling alternatives of eco-systems, based on the ex-
isting work reported in (Keppens, J. & Shen, Q. 2000).

By means of dynamic constraint satisfaction, the ex-
isting approach allows ecological models of different
topology, scope and/or involving alternative types of re-
lation to be constructed with respect to a given scenario.
However, the important issue of model granularity has
not been resolved. The granularity of a model is the level
of detail at which it describes a system. Some composi-
tional modellers, aimed at physical systems, tackle gran-
ularity by defining a component hierarchy from which
an appropriate level of detail can be selected. Alter-
native approaches allow variables and influences of dif-
ferent grain sizes to be defined and the knowledge base

prescribes how these relate to one another. The former
approach is more comprehensible in that it can express
granularity in terms of the inherent concepts of the sce-
nario under consideration. Yet, it makes the assumption
that the concepts being modelled can be organised into a
component hierarchy, which does not generally hold for
ecological systems. The latter approach is more generic
because it can be applied to systems that are conven-
tionally modelled by means of processes as well as com-
ponents. Unfortunately, because the grain choices are
embedded in the variables and their relations (typically
represented as equations) they cannot be named in terms
of scenario-level concepts.

It is important for an ecological model repository
to satisfy both the criteria of comprehensibility and
generality. To this end, this paper incorporates grain
choices through disaggregation. A disaggregation is a
model transformation that involves replacing variables
and/or equations in a model by sets of variables and/or
equations, each representing a partition of parts of
the concepts/processes described by the original vari-
ables/equations. This entails the change of model gran-
ularity. The work allows for a variety of disaggregations
of processes and components and for them to be related
to the scenario level concepts. Furthermore, it enables
disaggregations to be automatically composed with one
another, such that the knowledge base can be specified
with a minimal amount of redundancy.

The work presented herein incorporates disaggrega-
tion into compositional modelling, again, by means of
dynamic constraint satisfaction. Through this, disaggre-
gation can be dynamically made after an initial model
has been constructed, by repairing and extending the
previous solution. This is particularly desirable in eco-
modelling as a model repository is typically bound to be
used in a relatively interactive fashion.

Basic concepts

Definition 1 (Model). A model 1 is a tuple (P, R)
where P is a set of object constants and R is a set of
relations over these objects. The object constants in P
are called participants, since they refer to objects that
participate in the model.



The objects referred to by the participants and rela-
tions may be interpreted as real-world objects and in-
terrelationships, such as a population and predation,
or conceptual objects and interrelationships, such as a
variable representing population size and an equation
modelling predation as a function of predator popula-
tion size. A representation (which is itself a model) of
only real-world objects and interrelationships is called a
scenario. The purpose of compositional modelling is to
infer a mathematical model pp; from a given scenario ug
by committing a consistent set of assumptions A. The
knowledge that us used to deduce pg, A - pas consists
of model fragments.

Definition 2 (Model fragment). A model fragment is
a tuple (P%, Pt A, ®* &) where the source-participants

Ps = {...,P? ...} and the target-participants P' =

..., Pt ...} are sets of participant classes!, the struc-
tural conditions ®° = {...,¢$,...} and assumptions
A={...,ai,...} aresets of relations® defined over P x

... X P? and the set of postconditions ®' = {... ,¢!...}
is a set of relations defined over P} x ... x P x P x P,
such that Vp§ € P¢, ... ,pS, € PS5, 3t € PE,... pl €
P (N5 (B7) — (Aya; (57) — Awdh(B7))-

As described in (Keppens, J. & Shen, Q. 2000), the
participants and relations that can be derived from a
given scenario g and a knowledge base I' of model frag-
ments is formalised in a hypergraph, called the model
space. Such a hypergraph has a root node for each of the
participants and relations of the scenario, a root node
for each instantiated assumption and a derived node for
each of all the other instantiated participants, relations
and model fragments. The hyperarcs between these
nodes describe how new participants and relations can
be derived from existing ones. More specifically, for each
instantiation of a model fragment, a hyperarc connects
the nodes that instantiate the source-participants, struc-
tural conditions and assumptions with the node repre-
senting the model fragment instantiation. The latter
node is in turn connected by arcs to nodes that instan-
tiate the target-participants and postconditions.

To construct a scenario model efficiently, this model
space is translated into a dynamic constraint satisfaction
problem (Mittal, S. & Falkenhainer, B. 1990) or DCSP.
A DCSP consists of:

o A set of attributes X = {x1,...,z,}. An attribute
x; is either active (denoted as active(x;)) or inactive
(—active(x;))

e A domain for each attribute: D = {Di,...,D,}
where D; = {v;1,... ,0in,} is a set of possible values
of that attribute. Each active attribute x; is assigned
a value d;, from its domain, denoted as x; : d;g, .

LA participant class is a well-formed formula that defines
a set of participants. In this paper, without causing con-
fusion, participant classes are referred to as actual sets of
participants.

2In what follows, instances of relations 7(pr,... ,pq) are
denoted as r(p’) and domains of relations P, X ... X Py are

denoted as P.

o A set of activity constraints C* = {Cf,...,C%.}
where C' is an implication x; : dg, A ... Axj : dj,; —
active(zy).

o A set of compatibility constraints C¢ = {Cf,... ,CSc}
where Cf is a relation D; x ... x D; — {T,L}. If
Ci(dig;, .. ,djr;) = T, then any set of assignments
S, such that {x; : dix, ... x; : dj,} € 5, is said to
satisfy Cy.

Table 1 summarises how a model space is translated
into a DCSP (see (Keppens, J. & Shen, Q. 2000) for a
more detailed description). In essence, assumptions that
represent alternatives of the same phenomenon or model
are grouped into assumption classes. These assumption
classes correspond to DCSP attributes whereas the indi-
vidual assumptions correspond to domain values. From
the structure of the model space, the activity constraints
are derived. Certain relations (i.e. instantiated postcon-
ditions in the model space) cannot be composed into the
same model, e.g. because they assign different equations
to the same variable. Furthermore, certain properties
can be defined about the variables and relations in the
model space, e.g. the conditions that make a variable
endogenous. Both of these features are translated into
compatibility constraints.

A solution to a DCSP is a set of assignments such that
all the activity constraints and all the compatibility con-
straints whose attributes are active are satisfied. This
DCSP solution implies a composed model that follows
from the model space under the assumptions that are
equivalent to the attribute-value assignments. Figure 1
shows a typical system dynamics model that can be con-
structed by this early version of the DCSP-based com-
positional modeller. It represents an ecological system
in which a predator population feeds on a prey popula-
tion, using the logistic population growth model (Ver-
hulst 1838) and a predation model based on Hollings
disc equation (Holling 1959).
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Figure 1: Sample system dynamics model of an ecologi-
cal system
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CM or model space concept

DCSP concept

Assumption class

Attribute

Assumption

Domain value

Set of assumptions that support a model frag-
ment instance

Activity constraints

Inconsistent relations

Compatibility constraints

Properties

Compatibility constraints

Table 1: Translating a model space into a DCSP

Granularity of ecological models

The compositional modeller described above is suitable
to compose models of different phenomena and of model
types given a fixed scenario and level of detail. How-
ever, the issue of granularity has not been sufficiently
addressed. Depending on the modelling task at hand,
ecologists may require a model to represent certain fea-
tures in more detail than previously modelled. For ex-
ample, the predator population may need to be divided
into different age categories because the subpopulations
representing different feeding requirements and repro-
duction patterns may be required. Or, the prey pop-
ulation could consist of different subspecies with differ-
ent characteristics of, say, reproduction rate and running
speed and hence the ability of avoiding being hunted up.
Also, it may become necessary to model explicitly the
spatial distribution of the vegetation because of an in-
terest in migration is established at the later stage of
modelling.

These phenomena involving more detailed information
or smaller granularity could still be modelled by means
of the representations discussed in the previous sec-
tion. However, composition of model fragments, describ-
ing ecological processes at different granularities, is not
straightforward. When instead of a single participant,
e.g. that representing the total population size, a num-
ber of participants of smaller grain are needed, e.g. those
representing population sizes of different age classes, a
significant number of phenomena such as growth, preda-
tion and competition are affected. New model fragments
must be defined for all of these. To address this type
of modelling problem, the approach taken herein is to
capture the intuitive model transformation mechanism,
which are typically used by ecologists, and to represent
it explicitly as disaggregations of the most basic case.

Concept of model disaggregation

The purpose of disaggregating an existing model into
a more detailed one is to provide a concise way of ex-
pressing different phenomena, i.e. the participants and
relations that describe them, with varying granularities.
The grain size or granularity refers to the level of detail
at which populations, instead of individual components,
and the phenomena that are relevant to them are de-
scribed. For this reason, increasing the level of detail is
hereafter referred to as disaggregation into classes. The
classes are subpopulations of individuals that are simi-
lar with regard to certain attributes, such as age, sex,

species or social status, and that are being considered as
the result of disaggregation.

In general, disaggregating a model into n classes in-
volves one or more of the following:

1. Replacing a certain participant by a set of n partici-
pants.

2. Mapping the relations of the disaggregated partici-
pants onto disaggregate relations. That is, each re-
lation 7(p¢,... ,p,p1,... ,pn), where p{, ... pl are
the disaggregated participants, is replaced by n rela-
tions r(py, ... , 0t p1s. .y D0), i =1,... 0.

3. Adding additional participants and relations. These

are typically used to describe migration between the
resulting disaggregate classes.

Definition 3 (Disaggregate model). A model (P?UP°U
P', RYUURUR') is said to be a disaggregate one of another
(P*UP°, R*URUR") if there exits a surjection o : P4 —
P? and a injection p : dom(p) — R? (with dom(p)C R?),
such that Vp* € P2 3{p{,...,pd} C PL(o(p?) =
pUA . Aa(ph) =p*) and Vr(pd, ... pl, DS, 0%) €
R* —dom(p), (e (pl), - .. ,o(®}), 15, ,p,) € R*. The
relations in R* are said to be disaggregated into the dis-
aggregate relations of R? (as described in item 2 above).

For example, the simple model of logistic population
growth (Verhulst 1838) can be summarised by the fol-
lowing differential equations:

d d

2N =C"(B), 2N =0 (D) (1)

T
B:rxN,D:dexE,T:CJF(N) (2)

where N is the population size, B is the number of births
within a given time interval, D is the number of deaths
within the same time interval, r is the reproduction rate,
d is the death rate, T is the total relevant population and
K is the population capacity. A disaggregate model of
this logistic growth model with respect to, say, n age
classes may be:

d d

— Ny =CH(B;),—N; =C~(D;

SNo=CHB), 2 Ni=C (D) (3)
Bi:’l“iXNi,Di:diXNiX%,T:C+(Ni) (4)

%Ni = C_ (Mi), Mi+1 = delay(Ni, ti) (5)



In the aggregate model, P* = {N,D,r,d}, P° =
{B,T,K} and equations (1) and (2) are rela-
tions in R®. In accordance with definition 3,
the participants of P® are mapped to P¢ =
{No,... ,Nn,Do,... ,Dn,To,... ,Tn,do,... ,dn}, those
in P¢ are retained and the equations in R® are mapped
onto (3) and (4) respectively, which are the relations in
R?. Migration is described by the set of participants
P'={M,... ,M,} and by the set of relations contain-
ing the equations expressed by (5).

Representing and inferring disaggregation

The purpose of the compositional modeller is not to dis-
aggregate individual models but to produce correctly
disaggregated models. As argued earlier, it is not appro-
priate to represent such knowledge directly by means of
model fragments because this would result in much du-
plication of knowledge which makes the knowledge base
harder to construct and maintain. This would also cause
overly large model spaces to be constructed that com-
plicate the search for a solution for problems that do
not require consideration of all possible disaggregations.
More importantly, in eco-modelling, what model or part
of a model is needed to be disaggregated may not be
known when the modelling task starts. It is usually re-
quired to disaggregate during or after the modelling pro-
cess has been initiated as the ecologists may feel there is
a need to examine further details of certain part(s) of the
phenomenon being modelled. To facilitate the required
dynamicity in knowledge representation, the concepts
of disaggregation mapping and disaggregation fragments
are introduced.

Definition 4 (Disaggregation mapping). A disaggre-
gation mapping M is a tuple (N, p,dr) where

e N = Nj x...x N, with N; being a set of integers
that represent names of classes,

e 0p is a bijection Ny X...x N;x dom(dp) — range(dp)
(dom(dp),range(dp) C P and P is the set of all par-
ticipants),

e Jp is a bijection Ny X ...x N;x dom(dg) — range(dg)
(dom(dR),range(dr) C R and R is the set of all rela-
tions),

such that Vp € dom(dp), (Vi # 7,0p(... ,4,...
(SP(' . 7j= s ap))7

In terms of definition 3, the participant mapping ép
states which participant classes belong to P® and how
they are mapped onto P? of the disaggregate model.
For what follows, a transformation called the generalised
participant mapping 6% : P — P is defined such that for
all p € dom(6p),d0%(... ,n4,...,p) =6p(... ,N4,...,D)
and all p € P —dom(ép), (... ,n,...,p) = p. The
bijection dr describes how the relations of R* in defini-
tion 3 that do not disaggregate according to the defined
classes map onto R

For the above example of disaggregating a population

D) #

into age classes, a suitable disaggregation mapping is:

5P(77N):N776P(77D):D77 (6)
Vp, parameter(p) — 6p( 7 ,p) = -5 (7)
ST (SN = CH(B) = (SN = CH(B)  (8)

This disaggregation mapping states that N,B and D and
the parameters b and d are mapped into n age classes.
It furthermore specifies a specific mapping for 4N =

CH(B) in (1) to 4Ny = C*(B) in (3). h

Definition 5 (Disaggregation fragment). A disaggre-
gation fragment is a tuple (P* Pt A, ®° ®' M) where

o P° = {P; ... P5} is a set of participant classes,
called source-participants,
o Pt = [P},... P!} is a set of participant classes,

called target-participants,

e A is the set of assumptions that a disaggregation frag-
ment depends on. All assumption specifications in A
refer to assumption instances other than those referred
to in the (normal) model fragments in the knowledge
base (see below).

e ®° is a set of relations defined over Py x ... x P?,
called structural conditions,

e ®is a set of relations defined over P; x ... x P? x
P! x Pt called target participants, and

e M is a disaggregation mapping

such  that Y(P*, R*) € {um | ns, A U

{—disaggregation(P(M))} H ,uM} (us, A U

{disaggregation(P(M))} H (P, RYY), where

Pt = {p* | p* = B(ny,...,m,p"),p* € P} U P

and Rd {r(6p(na, ... yn,pg), ooy Op(na, ... 0, 7))

| AR, . DY) € RO A (r(p, ... ,p%) & dom(dr))}

U{or(r(pg, .-, p7)) | (r(pg,--- .py) € dom(dr))} U @

(defDisaggregationFragment population-age-classes
:source-participants ((?p :type population)
(?pn :type stock :unit population)
(?pb :type flow :unit population)
(?pd :type flow :unit population))
:structural-conditions ((stock ?p ?7pl)
(flow ?pb source 7pn)
(flow ?pd 7pn sink))
:meta-participants ((?n :type integer))
:assumptions ((disaggregation ?p age-classes ?n))
:mapping-types (((age-classes ?7t) :type (array (0 7n) 7t)))
:target-participants
((?pn* :type (age-classes stock) :mapped-from ?pn)
(?pd* :type (age-classes flow) :mapped-from 7?pd)
(7 :type (age-classes parameter) :mapped-from (7 :type parameter))
(?pm :type (array (1 ?n) flow))
(?ts :type (array (0 (1- ?n)) variable)))
:postconditions
(((flow ?pb source (?pn 0)) :mapped-from (flow ?pb source ?pn))
(for (7i 1 7n) (flow (?pm (1- 7i)) (?pn (1- 7i)) (?pn 7i)))

(for (?i 1 7n) (== (7pm i) (delay (?pn (1- ?7i)) (?ts ?i))))))

Figure 2: Disaggregation fragment for population age
classes

Figure 2 shows the disaggregation fragment for the
ongoing example of splitting up a population into n age
classes. It states that this disaggregation is applicable to



a population ?p for which a stock ?pn and two flows 7pb
and 7pd are known, such that ?pb is the flow into ?pn
and that ?pd is the flow out of ?pn. Both the predator
and the prey populations in figure 1 can be modelled
in this way. The following changes are needed to the
part of the model space that can be derived from the
model fragments which have been used to produce the
source-participants and structural conditions of the dis-
aggregation fragment:

e The labels £L(mf;) of the instances of the model frag-
ments mf; that derived the instances of the source-
participants and structural conditions is replaced
by L(mf) A (—disaggregation(?p,age-classes,_)).
The participants and relations derived be-
low will depend on the set of assumptions
L(mf) A (disaggregation(?p, age-classes, 7n))

e Any participants, relations or model fragments that
are derived from the original model fragments m f; are
transformed according to the disaggregation mapping
introduced earlier. The mapping-types item defines
the disaggregation of a participant type 7t into an ar-
ray of 7n+1 items of type 7t. As given in the example,
the population size (?pn), the deaths (?pb) and all
parameters are mapped onto such an array.

e The flow of births %N = C™T(B), represented by
(flow ?pb source 7pn) in the knowledge base, is
mapped to 2 Ny = CF(B), represented by (flow ?pb
source (7pn 0)) in the disaggregation fragment.

e An array of ?n flows 7pm are added to represent mi-
gration from one age class to the next. Equation (5)
of the disaggregate model is described by the last two
postconditions of figure 2.

Intuitively it is clear how an expert human modeller may
derive this disaggregate model from given disaggrega-
tion fragments. The compositional modeller developed
in this work formalises the intuitions as explained below.

Inferring disaggregations

Similar to the normal model fragments, disaggregation
fragments are applicable with respect to a set of in-
stances of source-participants and structural conditions.
However, the application of a disaggregation fragment
requires copying and transforming all of the participants
and relations that depend upon the model fragments
which have instantiated the source-participants and the
structural conditions.

The algorithm ApplyDF(d, M) describes the proce-
dure of extending and transforming the model space for
an application of a disaggregation fragment d, which is
applicable with respect to the set of model fragment in-
stances M. In less abstract terms, the example given in
figure 3 shows the result of applying ApplyDF(d, M) to
the disaggregation fragment of figure 2, with respect to
an instance of a model fragment for population growth.
ApplyDF(d, M) essentially copies the subtree of conse-
quents of M, disaggregates all participants and relations
according to the bijections dp and dr of the disaggre-
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Figure 3: Model space expansion via disaggregation
fragment

gation mapping respectively, and adds the new partici-
pants and relations for migration.

In particular, the upper half of figure 3 shows the
model space generated using the model fragments for the
population growth phenomenon (mfl) and the one for
the logistic growth model (mf2) with respect to a single
population. Under the set of assumptions of “relevance
of growth of p”, “logistic growth model for N” and “no
disaggregation of p in age classes”, the model specified
in equations (1) and (2) follows. The bottom half of the
figure is the disaggregated version of the model space
added due to the application of the aforementioned dis-
aggregation fragment. By committing the assumptions
“relevance of growth of p”, “logistic growth model for N”
and “disaggregation of p into n age classes”, the model
specified in equations (3), (4) and (5) follows.

Theorem 6. If a model M can be derived from a model
space A, M can also be derived from A’ representing A
extended by the application of a disaggregation fragment
df

Proof not included in this version due to space limita-
tions. |

Theorem 7. Given that (i) A is a model space, (ii) A’



is the model space resulting from extending A by the
application of a disaggregation fragment df to a set of
model fragment nodes M f, (iii) A is a set of assump-
tions such that A, A ¥ 1, and (iv) M4 is a model
such that A, A F M4, then the model Mp such that
AU Ag, A’ Mp is a disaggregate model of M4

Proof not included in this version due to space limita-
tions. [ ]

ApplyDF(d, M);
begin
Q:=M; S:={};
repeat
m := dequeue(M);
m' := new model fragment instance node;
ifme M
then
begin
justify(m/, L(m) A d(A));
justification(m) := L(m)
end
else justify(m’, substitute(A(m), S)
for p € consequents(m), participan
if p € dom(dp)then
begin
S:=S5U(p,or(p));
n :=node(dp(p));
end;
elsen := node(p);
justify (n, m’);
vm", (successor(m
end for;
for ¢(P’) € consequents(m), relation(¢(p’
if (p’) € dom(dr)
then n := node(dr(d(7P)));
else n := node(disaggregate(¢(7p’), S));
justify (n, m’);
vYm", (successor(m
end for;
if m € Mthen
begin
Vp € P'(d), (n := node(p), justify(n, m’));
Vé(P) € ®(d), (n := node(¢p(P)), justify(n,m’));
end;
untilM = {};
end

A —d(A)

)7
t(p) do

",p) — enqueue(m”, Q))

) do

", p) — enqueue(m”, Q));

Algorithm 1: Extending the model space

Combining disaggregations

Up to now, only individual disaggregations have been
discussed. There are, however, many scenarios where it
may be necessary to apply different disaggregations to
the same participant. For example, in addition to dis-
aggregating a population into age classes, a population
could be disaggregated according to sex, physical loca-
tion or subspecies. The effects of these disaggregations
must therefore be combined.

Definition 8 (Combined application of two disaggre-
gation fragments). The combined application of two

disaggregation fragments to a model fragment instance,
denoted ApplyDF(ds ody,M), involves (i) applying ds to
the set of model fragments generated by applying d; to
M and (ii) applying the disaggregation mapping of d;
to the instances of the target-participants and postcon-
ditions introduced into the model space by applying ds.

Consider, for example, disaggregation into g popula-
tions of subspecies. This requires a disaggregation map-
ping that disaggregates all participants other than T
(total population) and K (maximal sustainable popu-
lation). The application this disaggregation mapping to
equations (1) and (2) results in (with j =0,...,q):

d )d
dt dt
B; =1; x N;,Dj =d; x Nj XK

—N; = C*(By), =N; = C~(Dy) (9)

T =CH(N;) (10)

Now consider combining this with the disaggregation
into n age-classes discussed earlier. Following definition
8, applying age-class disaggregation to (9) and (10) in-
Volves (i) applying the age-class disaggregation fragment
and (ii) applying the subspecies disaggregation fragment
to the target-participants and postconditions introduced
by age-class disaggregation. More specifically, step (i)
results in:

d d _
2 Noj = C(By), =Ny = C™ (D) (11)
T
Bij =i X Nijy Dij = dij x Nig x 2, T = CT(Nyj)
(12)
d
ZNi—1= C™(M;), M; = delay (N, t;) (13)
withi=0,... ,nand j=0,...,¢in (11) and (12) and
with ¢ = 0,...,n in (13). Step (ii) applies to (13) and
results in:
d _
ENi_l’j =C (Mij), Mij = delay(Nij,tij) (14)

Theorem 9. ApplyDF(d2od;,M)=ApplyDF(d;ods,M)
Proof not included in this version due to space limita-
tions. ]

Due to theorem 9, the combined application of dis-
aggregation fragments is commutative. Therefore, the
significance of using disaggregation fragments to assist
combining disaggregations lies in the fact that, if the dis-
aggregation fragments are sufficiently general, combina-
tions amongst them are implemented automatically. If,
however, only model fragments were used to specify dis-
aggregations a different set of model fragments would be
necessary for each combination of disaggregations. This
is because each combination implies a different, whilst
similar, set of participants and relations. As disaggrega-
tion fragments can be composed, only one is needed for
each type of disaggregation instead of one per combina-
tion of disaggregations.



Dynamic Constraint Satisfaction

The extended model space produced by applying disag-
gregation fragments to an existing model space can be
translated into an CSP in the same way as discussed in
(Keppens, J. & Shen, Q. 2000). This CSP contains ac-
tivity constraints within it that restrict the assignments
under which attributes, and the constraints containing
these attributes apply (Mittal, S. & Falkenhainer, B.
1990). Such a CSP is therefore called an internally dy-
namic CSP (iDCSP). However, the model space may
grow exponentially when all disaggregation fragments
are automatically applied and combined. Thus, it is
necessary to disaggregate only when the user presents
such requests. This setting poses a CSP that allows the
attributes, domains and constraints to change due to
requirements imposed externally over the initially spec-
ified CSP. Such kind of dynamic CSP will be referred
to as an externally dynamic CSP (eDCSP). As with
any DCSPs, solving an eDCSP requires solution tech-
niques that can repair an existing solution (Dechter, R.
& Dechter, A. 1988; Miguel, I. & Shen, Q. 2000). This
section describes how finding a solution to a CSP which
is internally and externally dynamic leads to the con-
struction of a disaggregate model.

Note that expanding a model space with respect to
the application of a disaggregation fragment to a set of
model fragment instances may result in the following
changes to the model space:

1. The new assumptions in the transformed model
subspace are grouped into new assumption
classes. These may include the assumption class
as  containing  —disaggregation(subject,_)  and
disaggregation(subject, '), where T covers all
possible numbers of disaggregation classes and the
subject refers to the (existing scenario-level) partic-
ipant or relation that is being disaggregated (e.g.
predator-population) and the kind of disaggregation
applied to it (e.g. disaggregation into age-classes).

2. The justifications of certain existing nodes are ex-
tended with an additional (negated) assumption.

3. The affected subgraph in the model space is trans-
formed with respect to the disaggregation fragment
and forms a new subgraph containing additional par-
ticipants, relations and model fragment instances and
uses the new assumptions and assumption classes.

4. The new subgraph may contain new inconsistencies
within itself or with respect to an existing part of the
original model space. Note that inconsistencies arise
from assignments to the same exogenous variable that
cannot be composed.

By following the guidelines summarised in table 1, these
extensions require alterations to the iDCSP respectively
as follows:

1. For each new assumption class, a new attribute and
domain is added to the iDCSP. The domain contains
a value for each assumption in the assumption class.
The domain of disaggregation assumption class con-
tains a value for the negated assumption and one

value for each possible 7. For example, the as-

sumptions on disaggregating a population into age-
classes can be represented by the following domain:
{—disaggregation(?p, age-classes, .),0,... ,n}.

2. Adding an assumption to a justification potentially af-

fects all nodes that can be derived from that justifica-
tion. The new label, i.e. the union of the assumption
sets supporting a justification, is propagated as if a
new justification is added to a node the model space.
This may affect the labels of the participants, rela-
tions and model fragment instances, and hence, cause
the antecedent of activity constraints to change. The
propagation may also extend the label of the node rep-
resenting inconsistency, which is translated to a new
compatibility constraint per inconsistency. The imple-
mentation of iDCSP reads the activity and compati-
bility constraints directly from the model space, and
hence, the label propagation takes effect immediately.

3. The subgraph that extends the model space because of

the application of a disaggregation fragment is trans-
lated into an iDCSP in exactly the same way as ex-
plained in (Keppens, J. & Shen, Q. 2000).

4. As each assignment relation in the newly transformed

subgraph is added, it is compared with already stored
assignment relations of the same exogenous variable
and any resulting inconsistency is reported to the
model space.

Algorithms for finding solutions to the internally and
externally dynamic constraint satisfaction problems al-
ready exist. For instance, the work reported in (Miguel,
I. & Shen, Q. 2000) tackles the dynamicity by means
of local repair techniques (Verfaillie, G. & Schiex, T.
1994). The employment of such an algorithm enables a
limited form of model construction and selection. This is
because they typically handle prioritised constraints and
assignment preferences by the use of maximum and min-
imum operators. However, the specific requirement for
combining processes and modelling choices at multiple
levels presented by eco-modelling often demands more
sophisticated combinations of preferences. For example,
the worth of models of population growth does not only
depend on their intrinsic usefulness, but also on the mod-
elling choices (e.g. predation and competition phenom-
ena, and models thereof) which they can be combined
with. As min-max operators have the limitation of miss-
ing detailed information conveyed by those constraints
that have a preference degree other than the smallest or
largest value. To entail better forms of model selection,
work on building solution techniques that can handle
both internally and externally dynamic constraint sat-
isfaction problems, with assignment preferences allowed
to be combined in a more detailed manner, is currently
ongoing.

Conclusions

This paper has presented ongoing work in the develop-
ment of compositional modelling techniques for building



repositories of modelling alternatives of ecological sys-
tems. As such, this work is complementary to the impor-
tant existing work on compositional modelling of ecolog-
ical systems, presented in (Heller, U. & Struss, P. 1998),
which performs diagnosis and therapy recognition of eco-
logical systems. It achieves this by considering multi-
ple plausible configurations of an ecosystem through al-
ternative sets of closed-world assumptions, but without
considering multiple modelling alternatives with respect
to any individual configuration.

A method to construct ecological models at differ-
ent levels of detail has been proposed. This method
differs from other techniques in that it takes a meta-
modelling approach to granularity by changing an
emerging model’s level of detail through disaggregation.
It is sufficiently flexible to describe grain choices and
represent them in terms of scenario-level objects and re-
lations. The knowledge representation scheme proposed
to enable disaggregation does not contain an alternative
set of model fragments for each level of detail but de-
scribes the underlying transformation. Not only is this
a more concise form of representation, it automatically
entails the composition of disaggregations also.

The possibility of combining disaggregation fragments
could potentially lead to an explosion of the model space,
however. In order to prevent this, disaggregation may
need to be postponed until a basic model has been con-
structed and an expert user asks for a more appropri-
ate disaggregation. It is indeed quite common for the
ecologist-user to make requests for more detailed sce-
nario representations interactively and do so only after
an initial model has been constructed (Robertson, D. et
al. 1991). This paper has explained how such model
composition task can be treated as externally dynamic
constraint satisfaction problems for which existing solu-
tion techniques can be applied to select and construct
disaggregate models.

Nevertheless, it remains as a piece of further research
to integrate a sufficiently flexible means of combining
attribute-value assignment preferences into the existing
internally and externally dynamic constraint satisfaction
techniques. This is in order to maximise the utilisation
of available information about the preferences of mod-
elling choices, as preference combination methods differ-
ent from that using the standard min-max operations
seem to be potentially more beneficial.

Although the proposed compositional modeller is in-
tended to be used interactively, it needs to select an
appropriate default model. In this respect, the current
implementation can take formal requirements, such as
which variables must be exogenous or endogenous, and
allows preferences to be assigned to individual assump-
tions. Automating the selection of these requirements
and preferences based on the presumed needs of the user
forms a fascinating, yet challenging Also, the important
issues of space and time complexity of the proposed ap-
proach to compositional modelling remains to be studied
in detail, although the work presented in (Miguel, I. &
Shen, Q. 2000) has demonstrated that the solution tech-

niques to DCSPs are efficient. Once the task of composi-
tional modelling with disaggregations is translated into
a DCSP, computational complexity can be coped with
by the use of these efficient algorithms.
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