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Abstract

Modeling an experimental system often results in a number of
alternative models that are justified equally well by the exper-
imental data. In order to discriminate between these models,
additional experiments are needed. We present a method for
the discrimination of models in the form of semi-quantitative
differential equations. The method is a generalization of pre-
vious work in model discrimination. It is based on an en-
tropy criterion for the selection of the most informative exper-
iment which can handle cases where the models predict mul-
tiple qualitative behaviors. The applicability of the method is
demonstrated on a real-life example, the discrimination of a
set of competing models of the growth of phytoplankton in a
bioreactor.

Introduction
Obtaining an adequate model of an experimental system is a
laborious and error-prone task. In many cases one arrives at
a number of rival models that are justified equally well by the
experimental data. In order to discriminate between these
models, additional experiments are needed. Since in real-life
applications the number of experiments to perform may be
quite large, and the costs of each of them considerable, it is
important that the experiments be selected carefully. In fact,
experiments need to be chosen such that the set of possible
models is maximally reduced at minimal costs.

For experimental systems described by differential equa-
tions, several approaches for model discrimination have
been proposed in the literature (e.g. (Espie and Mac-
chietto 1989)). With few exceptions (e.g. (Struss 1994;
Vatcheva et al. 2000)), these methods apply to completely
specified quantitative models. That is, they cannot be used
when precise numerical values for the parameters are not
available and the precise form of functional relations is un-
known.

This has motivated the development of a method for
model discrimination that is able to handle incompletely
specified models in the form of semi-quantitative differen-
tial equations (SQDEs). The method is based on an entropy
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criterion for the selection of the most informative discrimi-
natory experiment. This experiment is determined from the
behavioral predictions obtained from the competing models
through simulation under various experimental conditions.

In earlier work, we have developed a method for the
discrimination of semi-quantitative models (Vatcheva et al.
2000). However, the previously proposed approach is re-
stricted to the case that all models predict the same qualita-
tive behavior, a situation rarely occuring in the case of more
complex models. The method described in this paper is a
generalization of the approach above in that it allows one to
deal with situations in which multiple qualitative behaviors
are predicted.

The applicability of the method is demonstrated on a real
problem in population biology, the selection of experiments
to discriminate between competing models of the growth of
phytoplankton in a bioreactor. The choice of good discrimi-
natory experiments is critical in this application, since the
experiments may take several weeks to complete. Semi-
quantitative models are appropriate, because the available
data is incomplete and imprecise, as for most biological sys-
tems. We have compared the optimal experiment as deter-
mined by our method with an experiment that has been actu-
ally carried out. Furthermore, taking into account the results
of the latter experiment, the best next experiment to perform
has been suggested.

The paper is organized as follows. The next section deals
with the basic concepts of semi-quantitative modeling and
simulation. Then, an outline of the method for model dis-
crimination is given, focusing on the criterion for selecting
the most informative experiment. Next, the results of the
application of the method to the modeling of phytoplank-
ton growth in a bioreactor are presented. The final section
discusses achievements and limitations of our work in the
context of related work on model discrimination and gives
some perspectives on further research.

Semi-quantitative modeling and simulation
Semi-quantitative differential equations (SQDEs) are ab-
stractions of ordinary differential equations (ODEs) that al-
low incompletely or imprecisely specified dynamical sys-
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Figure 1: An example of an SQDE describing the growth
of phytoplankton in a bioreactor, the Monod model. The
physical meaning of the variables and parameters is given in
the caption of Figure 3.

tems to be modeled (Berleant and Kuipers 1997). In an
SQDE, bounding envelopes are defined for unknown func-
tions, as well as numerical intervals to bound the values of
parameters and initial conditions.

Figure 1 shows an example of a second-order SQDE de-
scribing the growth of the microalgae Dunaliella tertiolecta
under nutrient limitation in a bioreactor (Monod 1942). The
state variables are the biomass x and the concentration of
the limiting nutrient s. The intervals bounding the model
parameters µmax, ks, and y have been estimated from pre-
liminary experiments.

For the simulation of SQDEs we employ the techniques
Q2+Q3 (Berleant and Kuipers 1997), which refine the
qualitative behavior tree produced by the QSIM algorithm
(Kuipers 1994). The results of semi-quantitative simulation
consist of one or more qualitative behaviors supplemented
by ranges for the values of the variables at qualitatively sig-
nificant time-points. The behaviors resulting from the simu-
lation of the SQDE in Figure 1 are shown in Figure 2. In or-
der to narrow down the interval predictions, we use the com-
parative analysis technique SQCA (Vatcheva and de Jong
1999). SQCA refines the simulation results by comparing a
behavior predicted for one experiment with behaviors pre-
dicted for related experiments.

Method for model discrimination

The predictions obtained through semi-quantitative simula-
tion can be exploited to maximally discriminate a set of
competing models against minimal costs. The method for
achieving this is based on a generalization of the entropy
criterion for the most informative experiment developed in
(Vatcheva et al. 2000).

Model discrimination and behavior predictions
Consider a set M of competing models of an experimental
system. Each mi ∈ M has a probability p(mi) to be the
correct model of the system. We assume that the set M is
complete, that is

∑

mi∈M p(mi) = 1 (Fedorov 1972). The a
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Figure 2: Behaviors resulting from the simulation of the
SQDE in Figure 1, for the initial conditions x0 ∈ [36, 39],
s0 ∈ [0.005, 0.01]. Behavior b1 predicts that the system
reaches its equilibrium (x∗, s∗) asymptotically. In b2, the
nutrient concentration s reaches a maximum, before the sys-
tem approaches its equilibrium. In b3, x reaches first a max-
imum, followed by a minimum of s and the equilibrium.
The table summarizes the interval predictions for each of
the three behaviors.

priori model probabilities are estimated from data obtained
in preliminary experiments or assumed equal when no such
data exist. Each time an experiment is executed, and new
data becomes available, the model probabilities are being
updated. If the data does not justify the predictions of some
mi, its a posteriori probability becomes zero.

For the discrimination of the models in M , experiments
from a set E of experiments need to be selected. The ex-
periment that discriminates best between the models is es-
timated from the model predictions. For each experiment
e ∈ E, the models in M are perturbed according to e, and
then simulated to predict the behavior of the system under
the experimental conditions. The prediction of mi for some
e is a set of behaviors Be

i . The set of all qualitatively distinct
behaviors resulting from the simulation of the models in M
for e is denoted by Be.

For discrimination purposes, only certain characteristics
of the predicted behaviors b ∈ Be are taken into account.



This gives rise to a set of behavioral features Fb for b. The
set of behavioral feature consists of minima, maxima and
equilibria of the system variables. The behavioral features
defined for b3 in Figure 2, for instance, are the maximum of
x and the minimum of s (xmax and smin), and the steady
state levels of these variables (s∗ and x∗). Here we will
assume that the value of a behavioral feature is an interval.

Intuitively, the experiment that can be expected to opti-
mally discriminate between the models is the experiment for
which the predicted values of the behavioral features over-
lap least. This intuition will be formalized below by defining
the most informative experiment. A set of competing mod-
els can then be discriminated by repeatedly determining the
most informative experiment, performing this experiment,
and updating the model probabilities in the light of the out-
comes.

Criterion for most informative experiment
A standard measure in information theory is the information
increment of an experiment (Fedorov 1972). For every ex-
periment e ∈ E we define

∆H(be, ye) = −
∑

mi∈M

p(mi) ln p(mi) +

∑

mi∈M

p(mi | be, ye) ln p(mi | be, ye), (1)

where p(mi) and p(mi | be, ye) are the a priori and a pos-
teriori probabilities of mi. be is the behavior of the system
observed in e, and y

e is the vector of midpoints of the obser-
vations for the behavioral features Fbe . The observations are
assumed to be intervals Y e

j = [ye
j − εj/2, ye

j + εj/2], with
ye

j the midpoint, and εj the estimated size of the confidence
interval for the jth behavioral feature. For clarity of presen-
tation, we will assume for the moment, that each behavior b
is characterized by a single feature.

∆H reaches its maximum when all posterior probabilities
but one are zero. That is, when the observations obtained in
e confirm the predictions of a single model. On the other
hand, a minimal value is attained, when all posterior proba-
bilities are equal.

Since the a posteriori probabilities of the models depend
on the outcome of the experiment which is not yet known,
∆H cannot be computed directly. Instead, we can compute
its expected value, or the expected information increment of
e.

Assume, for the moment, that the system behavior in ex-
periment e is known. The expected value of ∆H(be, ye) is
defined as an integral of the function ∆H(be, y) weighted
according to the possible values of y:

∆J(e, be) =

∫

y∈D

∆H(be, y)ge(y|be)dy, (2)

where D is the domain of the behavioral feature, and
ge(y|be) the probability density function of its midpoint,
provided be is the behavior of the system in e. In general,
be would not be known. However, we know the set Be of

the possible system behaviors. Recall, that Be is the set of
qualitatively distinct behaviors predicted by the competing
models mi ∈ M . From the assumption that M is complete,
and the soundness of the simulation algorithms, it follows
that Be contains all possible behaviors the system can ex-
hibit. Hence, the expected value of ∆J(e, be) can be com-
puted as a weighted sum over the behaviors b ∈ Be:

∆J(e) =
∑

b∈Be

∆J(e, b)pe(b), (3)

where pe(b) is the probability the system behavior observed
in e to be b.

Combining (2) and (3), we obtain:

∆J(e) =
∑

b∈Be

∫

y∈D

∆H(b, y)ge(y|b)pe(b)dy. (4)

The probability of behavior b can be expressed as an
weighted sum of the conditional behavior probabilities
pe(b|mi):

pe(b) =
∑

mi∈M

p(mi)p
e(b|mi), (5)

where pe(b|mi) is the probability of behavior b in e, pro-
vided mi is the correct model of the system. Similarly, we
have

ge(y|b) =
∑

mi∈M

p(mi|b)g
e
i (y|b), (6)

where p(mi|b) is the a posteriori probability of mi if the ob-
served behavior is b, and ge

i (y|b) is the model-specific prob-
ability density function of y, defined by

g
e
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with V e
i the interval prediction of mi for the behavioral fea-

ture of b in experiment e, and | · | denoting interval length.
The definition of ge

i (y|b) can be explained as follows. As-
sume Y is an interval, and p(ye ∈ Y ) denotes the probability
of ye to be in Y . That is, the probability that the midpoint
of the value of the behavioral feature belongs to Y . By def-
inition, p(ye ∈ Y ) =

∫

y∈Y
ge

i (y|b)dy. The definition of ge
i

expresses the idea that for intervals Y not overlapping with
the model prediction V e

i , the probability p(ye ∈ Y ) is zero.
Otherwise, p(ye ∈ Y ) is weighted according to the size of
the overlap between Y and V e

i .
By substituting (5) and (6) in (4) and using the Bayes’

rule:

p(mi|b) =
p(mi)p

e(b|mi)
∑

mk∈M p(mk)pe(b|mk)
,



we obtain:

∆J(e) =
∑

mi∈M

p(mi)
∑

b∈Be

p
e(b|mi)

∫

y∈D

∆H(b, y)ge
i (y|b)dy.

(7)

Finally, the substitution of the expression for ∆H in (7) and
the use of the Bayes’ rule

p(mi|b, y) =
p(mi)p

e(b|mi)g
e
i (y|b)

∑

mk∈M p(mk)pe(b|mk)ge
k(y|b)

,

leads to the following expression for the expected informa-
tion increment of an experiment e:

∆J(e) =
∑

mi∈M

p(mi)
∑

b∈Be

i

pe(b|mi)

∫

y∈D

ge
i (y|b)ln

ge
i (y|b)p(b|mi)

ge(y|b)
dy. (8)

The criterion ranks the experiments in E according to
their expected informativeness. The optimal discriminatory
experiment will be the most informative experiment, that is,
the experiments for which ∆J(e) is maximal. Intuitively,
experiments which give rise to predictions as different as
possible will be favored. Figure 4(a)-(b) shows the predic-
tions of the four models given in Figures 1 and 3 for two
different experiments (see next section). In both cases, each
of the models predicts two possible qualitative behaviors for
the biomass x. The expected information increment for the
first experiment, however, is higher than the expected in-
formation increment for the second (∆J = 0.5927 versus
∆J = 0.3290), as the predicted intervals overlap less.

The expression for ∆J can be simplified in a number of
cases. For instance, if all models predict for a given exper-
iment e the same qualitative behavior, (8) can be reduced
to

∆J(e) =
∑

mi∈M

p(mi)

∫

y∈D

ge
i (y|b)ln

ge
i (y|b)

ge(y|b)
dy,

which is the criterion previously derived by (Vatcheva et al.
2000).

On the other hand, if for a given e, each model predicts a
different set of qualitative behaviors, we obtain:

∆J(e) = −
∑

mi∈M

p(mi)lnp(mi),

which is the maximum value ∆J(e) can take.
The criterion (8) is easily generalizable to the case when

each behavior b is characterized by more than one feature. In
this case we have to substitute the probability density func-
tions by joint probability density functions, and the integral
by a multiple integral of the k behavioral features. For com-
putational simplicity, we assume in this article that the be-
havioral features are independent. That is, joint probabil-
ity density functions will be estimated by the product of the
density functions of the involved behavioral features.

The algorithms for the simulation of SQDEs, outlined in
the previous section have been proven sound. That is, all
possible predictions are derived from a given SQDE model.
If the results obtained in the experiment are correct, this
guarantees that a model will never be falsely rejected. How-
ever, these algorithms do not exclude spurious predictions.
As a consequence, an experimental result may corroborate
a model while it should be ruled out. Spurious predictions,
therefore, may prolong the discrimination process.

Computation of behavior probabilities
In order to compute ∆J(e), the conditional behavior prob-
abilities p(bj |mi) must be estimated. We have adopted the
following approach. Let vl be a parameter or initial condi-
tion in model mi, and let range(vl, bj) be the interval value
of vl for which behavior bj is obtained. Define

r(bj |mi) =

∏

l | range(vl, bj) |
∏

l |
⋃

bk∈Be

i

range(vl, bk) |
.

r(bj |mi) estimates the fraction of the interval volume of the

model parameters which gives rise to bj . The conditional
probability of bj is now given by normalizing the r(bj |mi)s:
p(bj |mi) = r(bj |mi)/

∑

bk∈Be

i

r(bk|mi).
Consider, for instance, the three behaviors given in Fig-

ure 2. b1, b2 and b3 have been obtained for different subin-
tervals of the interval ranges for ks and y:

beh ks y
b1 [0.01, 0.158] [0.3, 0.6]
b2 [0.0236, 0.158] [0.3, 0.6]
b3 [0.01, 0.158] [0.15, 0.488]

By using these values, the procedure outlined above gives
r(b1) = 0.67, r(b2) = 0.61, r(b3) = 0.75. Consequently,
the behavior probabilities can be computed: p(b1) = 0.33,
p(b2) = 0.30, p(b3) = 0.37.

Alternative approaches for estimating the probabilities of
qualitative behaviors have been suggested by (Leitch and
Shen 1993; Berleant et al. 1992).

Application: phytoplankton growth
Phytoplankton play a crucial role in marine ecosystems. The
lives of almost all animals that live in the sea depend on
phytoplankton for food and life-sustaining oxygen, essential
to the metabolism of all aerobic organisms. Furthermore,
phytoplankton exert a global scale influence on our climate.
The global carbon cycle, which regulates the temperature of
our planet, is controlled by the actions of the phytoplank-
ton. Large populations of these organisms can significantly
lower atmospheric carbon dioxide levels and, in turn, lower
average temperatures.

Understanding the regulation of phytoplankton growth is
essential for predicting how life in the ocean may respond to
climate changes and for learning more about how these or-
ganisms are contributing to, and affected by environmental
changes. As these processes are difficult to study in the open
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Figure 3: Models for the growth of phytoplankton in a bioreactor. x is the amount of biomass per unit volume, s[µmol/l] the
nutrient concentration, q[µmol/l] the internal quota. The Monod and Contois models assume constant growth yield y[l/µmol].
µmax[day−1] is the maximum growth rate of cells, and µ̄[day−1] a theoretical maximum growth rate obtained for infinite
quota. ks, kx, and k0[µmol/l] are half-saturation constants, kq[µmol/l] is the minimum cell quota, ρmax[µmol/l/day] is the
maximum uptake rate of nutrients. For all models sin ∈ [80, 120][µmol/l] is the input nutrient concentration, and d[day−1] the
dilution rate to be controlled in the experiments. The initial conditions are x0 ∈ [36.0, 39.0], s0 ∈ [0.005, 0.01], q0 ∈ [2.4, 2.7]
which are the equilibrium values reached for the initial dilution rate d0 = 0.4.

sea, the growth conditions are recreated in the laboratory in
a type of bioreactor known as chemostat. The technique ba-
sically consists of growing a population of microorganisms
in a culture vessel. The nutrients and substrates required
for cell growth are supplied continuously at a fixed rate to
the culture vessel whose contents are continuously mixed.
A medium, cells, and by-products are continually removed
from the vessel, maintaining the culture in the chemostat
chamber at a constant volume. In the context of phytoplank-
ton, the chemostat is mainly used to study the growth of pop-
ulations under nutrient limitation.

A variety of models can be used to describe the growth
of phytoplankton in a chemostat. Which of these applies
best in a given situation cannot be determined on a priori
grounds. Therefore, experiments need to be performed to
discriminate between the alternative models. Unfortunately,
these experiments may take weeks to complete and are thus
quite costly to perform.

We have applied the method of the previous section in the
context of the microalgae Dunaliella tertiolecta, carried out
by population biologists in a marine laboratory. Four alter-
native models to describe the system have been considered,
which are shown in Figures 1 and 3. All models share the
same basic idea: (a) at low nutrient concentration the rate
of the nutrient consumption (uptake rate) ρ and the growth
rate µ are limited by, and proportional to, the nutrient con-
centration, whereas (b) at high concentration the uptake and
growth rates saturate and become constant, independent of
nutrient concentration. However, the models make different
assumptions about the nutrient consumption, the influence
of the biomass on the growth rate of the population, and the
relation between growth and uptake rates. The models are
labeled after their originators: M (Monod 1942), C (Con-

tois 1959), D (Droop 1968), and CM (Caperon and Meyer
1972).

Because of coarse and noisy data, and evolution of the
system in the time frame of the experiment, precise numer-
ical estimations for the values of the parameters cannot be
obtained. This motivates the use of semi-quantitative mod-
els. The interval values for the parameters required in the
SQDEs have been estimated by the biologists, based on the
outcome of preliminary experiments (see Figure 3).

In order to discriminate between the competing models,
the value of the dilution rate d can be varied by the exper-
imenter. Starting from an equilibrium, the dilution rate is
changed and the transient behavior of the system towards a
new equilibrium is observed. We have considered ten ex-
periments, corresponding to equispaced values in the range
[0, 1.2]: d = 0.1, d = 0.2, . . . . Taking into account 5%
measurement uncertainty, the values of d become intervals.

The only variable that can be reliably measured in the
course of the experiment is the biomass x. This determines
the behavioral features that we have considered: the mini-
mum and the maximum value of x (xmin and xmax), and the
equilibrium value of x (x∗). In order to obtain the predicted
values of the behavioral features required for the determi-
nation of the most informative experiment, the models have
been simulated using the techniques outlined in the second
section. For each experiment, all models predict multiple
qualitative behaviors as a consequence of the large intervals
for the parameter values. In total, four different behaviors
for x are predicted. None of these behaviors is spurious, as
we have been able to establish by comparing the predictions
with the qualitative analysis of (Bernard and Gouzé 1995).

Starting from the assumption that the models are
equiprobable in the beginning, we have calculated the ex-
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Figure 4: (a) Interval predictions of the four competing models (Figures 1 and 3) for the behavioral features x∗ (behavior b1), and
x∗, xmin (behavior b2) in the predicted optimal discriminatory experiment (d = 1.1). (b) Interval predictions for x∗ (behavior
b1), and x∗, xmin (behavior b2) in the experiment that has been carried out (d = 0.7). The values for x∗, xmin measured in the
experiment are also shown by a small rectangle. (c) Predictions for the features x∗ (behavior b1), and x∗, xmax (behavior b2)
in the next optimal experiment (d = 0.1). M, C, D, and CM stand for the Monod, Contois, Droop, and Caperon-Meyer models,
respectively.

d = 0.1 d = 0.2 d = 0.3 d = 0.5 d = 0.6
∆J 0.3204 0.3181 0.3519 0.3547 0.3323

d = 0.7 d = 0.8 d = 0.9 d = 1.0 d = 1.1
∆J 0.3290 0.3710 0.4668 0.5093 0.5927

Table 1: Values for the expected information increment ∆J
for each of the dilution rate experiments.

pected information increment (8) for each of the experi-
ments (Table 1). The optimal discriminatory experiment is
predicted to be d = 1.1. For this experiment, each of the
four models predicts two behaviors, b1 and b2, that differ
with respect to the observable variable x. In b1 the equi-
librium of the system is reached asymptotically, whereas in
b2, x reaches a minimum before the equilibrium is attained.
Figure 4(a) shows the interval predictions of the behavioral
features for all four models, and Table 2 lists the correspond-
ing conditional behavior probabilities. Notice that in b1 only
one behavioral feature applies (x∗), whereas in b2 predic-
tions for x∗ and xmin need to be taken into account.

The experiment d = 1.1 has not been performed, but data
for the suboptimal experiment d = 0.7 was available from
an earlier study. The predictions of the behavioral features
for this experiment are shown in Figure 4(b) and the behav-
ior probabilities are given in Table 2.

In the experiment d = 0.7, x was found to reach its equi-
librium after passing through a minimum. This rules out b1.
The measured values of the behavioral features, shown in
Figure 4(b), are xmin = [29.2, 32.2], and x∗ = [30.5, 33.5].
Using these results, the a posteriori probabilities of the mod-
els have been computed via Bayes’ rule: p(M) = 0.34,

d = 1.1 d = 0.7 d = 0.1
p(b1) p(b2) p(b1) p(b2) p(b1) p(b2)

M 0.47 0.53 0.47 0.53 0.50 0.50
C 0.47 0.53 0.47 0.53 0.51 0.49
D 0.57 0.43 0.57 0.43 0.54 0.46

CM 0.57 0.43 0.57 0.43 0.27 0.73

Table 2: Conditional probabilities of the behaviors b1 and b2

predicted by the four models for the experiments d = 1.1,
d = 0.7, and d = 0.1 (see Figure 4). p(b1) and p(b2) have
been estimated using the approach in the previous section.

p(C) = 0.33, p(D) = 0.21, and p(CM) = 0.12. In ad-
dition, the measurements have allowed the parameter values
to be refined by means of the constraint propagation algo-
rithm in Q2 (Berleant and Kuipers 1997).

The new model probabilities show that experiment d =
0.7 has not been very discriminating. Given the new model
probabilities and parameter values, what would be the opti-
mal experiment to perform next? The method advises that
d = 0.1 be tried, as it has the highest expected information
increment (∆J = 0.7129). For this experiment, each of the
models predicts two possible behaviors for the biomass x: in
b1, x increases asymptotically to its new equilibrium (giving
rise to the behavioral feature x∗), and in b2, x first reaches
a maximum before the equilibrium is attained (giving rise
to the features xmax and x∗). The predicted values for the
behavioral features of the two behaviors are shown in Fig-
ure 4(c). Table 2 gives the corresponding behavior probabil-
ities. The experiment d = 0.1 has not been performed yet
(we recall that each experiment takes weeks to complete).
Notice, however, that d = 0.1 is likely to rule out at least



two of the four models due to the lack of overlap between
M − C and D − CM.

Discussion
We have proposed a method for the discrimination of semi-
quantitative models of an experimental system. The method
is based on an entropy criterion for the selection of the most
informative experiment. The value of ∆J for a particular ex-
periment is calculated from the model predictions obtained
through semi-quantitative simulation. The method general-
izes upon a previous method (Vatcheva et al. 2000), in that it
can handle cases where the models predict multiple qualita-
tive behaviors. This occurs in the case of the phytoplankton
growth models, which predict the biomass to asymptotically
approach its equilibrium value or to pass through a maxi-
mum or a minimum first.

The applicability of the method has been demonstrated
by having it predict the most informative experiment to dis-
criminate between four models of the growth of Dunaliella
tertiolecta in a bioreactor. This has been achieved in the
presence of several complicating factors, in particular the
nonlinearity of the models, the crude estimations of the
parameter values, and the difficulty to observe the behav-
ior of the system. The discrimination of bioreactor mod-
els has been attempted before (Espie and Macchietto 1989;
Cooney and McDonald 1995), but unlike the method dis-
cussed in this paper, these approaches require precise nu-
merical data to be available, a requirement that usually can-
not be fulfilled in practice.

Within AI, methods for model discrimination have been
developed in the field of model-based diagnosis (e.g., (Struss
1994; de Kleer 1990)). Basically, these methods determine
which inputs need to be applied to a faulty device, and which
measurements need to be made, in order to optimally dis-
criminate between a number of diagnoses. In comparison
with the approach in this paper, these methods have been
adapted to qualitative models. By considering only qualita-
tive distinctions, however, one may fail to discriminate be-
tween alternative behaviors. Although two models may pre-
dict the same qualitative behavior, their (semi-)quantitative
predictions may be different, as clearly shown in Figure 4.

For the discrimination of the phytoplankton growth mod-
els, only one type of experiment was available, a change in
the dilution rate. It should be emphasized, though, that the
method is not restricted to parameter changes and may even
involve structural changes of the models. A limitation of the
method, however, is that the set of experiments needs to be
specified in advance. In the case of the dilution rate exper-
iments, for instance, ten possible values from a continuous
range have been selected. There is obviously no guarantee
that the optimal value is included in the list of prespecified
experiments. A subject for further research would therefore
be to handle continuous ranges of experiments, and more
generally, to move away from the selection of experiments
to the design of experiments. When the set of possible ex-
periments is not given in advance, the criterion ∆J can be
defined as a function of the unknown parameter values. In
this case, the determination of the optimal discriminatory ex-

periment will require the solution of a complex optimization
problem.
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