Towards Interactive Tools for
Constructing Articulate Simulations

Vania Bessa Machado and Bert Bredeweg

Department of Social Science Informatics (SWI)
University of Amsterdam
Roetersstraat 15,

1018 WB Amsterdam,

The Netherlands
Email: {vania, bert}@swi.psy.uva.nl

Abstract

Having learners construct computer-based simulations is
becoming increasingly important as an approach to induce
learning. Qualitative simulations incorporate a rich
vocabulary for articulating insights about systems and their
behaviours, including notions such as structural
constituents, identifying qualitatively distinct behaviours,
and making explicit the causal dependencies that govern a
system’s behaviour. When building a qualitative model all
these details have to be made explicit (they have to be
represented in the model). As a result, building a qualitative
model induces a deep understanding of the system and its
behaviour. In our research we want to exploit this
phenomenon, i.e. have learners learn by building qualitative
simulations. However, building qualitative models is
generally seen as a difficult task, and no easy-to-use tools
exist to support a learner in performing such a task. In this
paper, we present MOBUM, a domain independent model
building environment aimed at supporting learners in
building qualitative simulations. MOBUM is a fully
implemented prototype in JAVA. The main goal of this
prototype is to generate and clarify ideas with respect to
how such a model building tool should be constructed.

Introduction

In our research, we work from the hypothesis that the
construction of models is an important aspect of learning.
Within the context of simulations this means, ‘having
learners learn by building simulation models’. By
constructing simulations learners can express their thoughts
and exercise forms of thinking in order to reach a deeper
understanding of systems and their behaviour (Forbus,
1996; Forbus et al., 1999; Soloway, et al., 1996).
Qualitative simulation models have characteristics that
make them suited to support specific learning needs. For
instance, when teaching to solve physics problems, teachers
emphasise the need for learners to first understand the
(problem) situation. Before trying to apply equations,
learners should build a conceptual model (e.g. Mettes &
Roossink, 1981) of the initial-state, the end-state, and the
possible transition trajectories between the two. In fact, it is
considered naive (beginners-behaviour) if learners jump to

‘applying formulae’ without making a proper analysis of
the problem situation (e.g. Elio & Sharf, 1990). Expert
problem solvers excel because they spend a significant
amount of time on making a conceptual model before using
equations. Analysing (problem) situations is close to the
idea of making an ‘envisionment’, that is, a mental
simulation of what happens, or may happen (e.g. Kleer,
1984).

Qualitative models are also relevant in specific domains
(often less formalised) where domain experts try to uncover
the causal dependencies that govern a system’s behaviour.
After understanding the causal dependencies the experts
may try to apply the mathematical formulae that are
appropriate for the system. In fact, the causal model helps
them to find the appropriate equations. Moreover,
developing a conceptual model is often a goal in itself, that
is: discovering the physical constituents of the system,
identifying the relevant quantities, and understanding how
these interact in determining the system’s behaviour.
Qualitative models are well suited to help domain experts
in articulating and formalising their insights (e.g. Salles,
1997). If we think of how this kind of knowledge can be
communicated to (new) trainees in the field, qualitative
models are again crucial.

Qualitative models are sometimes referred to as
‘articulate knowledge models’, because they capture
detailed insights with respect to how systems behave.
Particularly, the notion of a causal interpretation of a
system’s behaviour is in this respect important (e.g. Forbus,
1988; Winkels & Bredeweg, 1998). To aid learners in
acquiring these insights (i.e., by building simulation
models) requires the development of computer software
(i.e., tools) that support learners in constructing such
articulate simulations. In this paper, we investigate the
design and implementation of such a tool. The next section
elaborates on the idea of articulate simulations and how
those models are to be constructed. Section 3 and 4
describe the design of MOBUM, a fully implemented
prototype that allows learners to build qualitative
simulation models. Section 5 discusses related work.

Building Articulate Simulations

Qualitative models can be seen as knowledge models of
systems and their behaviour. For technical details of such
models see e.g. Weld & Kleer (1990)!. Qualitative
reasoning engines typically take as input a scenario and
generate a graph of qualitative distinct behaviours for the
situation described in that scenario. They use model
fragments and transition rules to construct this graph (see
figure 1). Scenarios are structural descriptions of the
systems to be reasoned about. The idea behind model
fragments is that each fragment represents a particular
concept relevant to the domain that is being modelled, for
instance: a population (ecology), a heat-flow
(thermodynamics), or a pressure-area (meteorology).
Transition rules are usually domain independent (e.g. a
quantity taking on a new, higher, value from its quantity-
space if it increases).

Library of \
rndel Tenmination
fragrnents rles

= Task performed Jualitative Feasoning

Figure 1: Building articulate simulation models

Knowledge engineers, or domain experts, are normally
expected to construct libraries of model fragments. Once a
simulation model is finished (i.e., all the necessary model
fragments have been defined for a certain domain and the
simulator can, on the basis of that, generate graphs of
behaviour states for given scenarios) one can regard this
result as an ‘articulated knowledge model’. It captures the
model builder’s understanding of the domain, its systems
and their behaviours. As such, the simulation model can
then be used to communicate insights with other domain
experts or it can be given to students to learn from. Notice
that an important bottleneck with the construction of such
articulate simulation models is the absence of easy-to-use,
domain-independent, tools that support the model builder
with this task.

Constraints for the Design of Workspaces

Building a simulation model is a complex activity that
involves many tasks, subtasks and interdependencies

Y In our research we use GARP (Bredeweg, 1992), a simulator
written in SWI-Prolog.

between tasks (e.g. Schut and Bredeweg, 1996). An
important issue therefore concerns the decomposition of
this overall activity into smaller parts that can be performed
more or less independent from each other. These parts can
thus be supported by separate, and possibly dedicated,
interface constructs (referred to as workspaces). As a
starting point we used the simulation model ontology on
which GARP is based (Bredeweg, 1992) and remodelled it
using an object oriented approach. A summary of this
model is shown in figure 2. Without going into all the
details of the figure, notice that the system model (that is
the simulation model as a whole) consists of a hierarchy of
model fragments, a hierarchy of entities, a scenario,
quantity spaces and rules’. Both model fragments and
scenario use ‘descriptions’, which implies that the latter
have to exist (or have to be created) when creating a model
fragment or a scenario. Entities and quantity spaces, on the
other hand, do not use other model parts (but they are used
as inputs when creating other model parts).

Description is a model construct used to group sets of
model parts that are reused in other model parts. It turns
out that these description parts are highly interrelated
(partly shown in figure 2). For instance, a quantity always
belongs to an entity, an attribute always exists between two
instances, a proportionality always exists between two
quantities, etc. Moreover, the specific descriptions that a
learner may want to formulate always depend on the
specific model fragment s/he is constructing. For instance,
a liquid-flow process between two containers should only
become active when those two containers exist, are filled
with an amount of liquid, have unequal pressures and are
connected by a pipe that facilitates the flow (see e.g. figure
5). Putting these insights together and making them
available under the correct conditions is precisely what
constructing a model fragment is all about. It is therefore
necessary (i.e., logical) to have the interface facilities, for
creating the descriptions, available in the context of
creating a model fragment.

Constraints such as the ones discussed above have
resulted in defining four builders (main workspaces) and
sets of tools that are available within each workspace.
Below, we enumerate the builders that exist in MOBUM.

= Entity Builder

In this workspace the learner models the (physical) objects
that represent the domain. The hierarchical relationships
between these objects will be modelled here as well.

% In the current implementation of MOBUM a set of default rules
(domain independent) is provided. Rules are therefore not further
discussed in paper.

Systemilodd

is sub-type of

Scenario

Quartity Space

todel Fragrernt Ertity

4 isingance of

,—
Instance /__,,.

L . 4 assumes values of
iz paent of

Descrigfion ./

Condition

Rule=
QsValue
assumes k Quartity'value
Cluzritity
_
M
Derivative
Inequality
Atribute
Correspondence
|
Consequence Influsnce

Froportionality

Figure 2: Simulation model ontology of the GARP qualitative reasoning engine

= Quantity Space Builder

In this workspace the learner creates an ordered set of
quantity values that quantities may have. These values are a
sequence of alternating points and intervals

= Model Fragment Builder

In this workspace the learner constructs the knowledge
about the behaviour of entities. This includes the
specification of features of instances, such as quantities, the
values these have, and the dependencies that exist between
the quantities.

= Scenario Builder

In this workspace the learner defines the situations that can
be simulated. Notice that by definition this can only be a
‘selection” of the model parts defined elsewhere in the
model. For instance, there is no point in specifying an
entity in a scenario that is not used in any model fragment.

Tools exist for creating, modifying and organising the
model parts (mainly the descriptions in figure 2) within
each builder®. For instance, table 1 enumerates the tools

® Most tools are called ‘makers’ in the user interface of MOBUM.
E.g. the quantity tool is referred to as the ‘quantity maker’ (see
also figure 5).

that exist within the model-fragment (MF) builder (see also
figure 5, column on the right, read from top to bottom):

Pointer tool

move icons on the screen with the
workspace

Instance tool

add instances to the workspace

Modify tool

change a name

Delete tool

permanently remove something
from the workspace

Attribute tool

make structural relations between
instances, e.g. container contains
liquid

Quantity tool

add a quantity to an entity

Influence tool

define a influence constraint
between two quantities

Proportionality
tool

define a proportionality constraint
between two quantities

Correspondence
tool

define a correspondence constraint
between two quantities

Inequality tool

define a (in)equality constraint
between two quantities

Reuse MF tool

add an already defined MF as a
condition

Reuse instances
tool

reuse parts of a conditional MF in
order to further refine

Table 1: Tools available in the model fragment builder

Notice that, the Pointer, Delete and Modify tool are
default tools, which are present in all builders. The tools
that are used to compose a ‘description’, i.e. to place
instances, attributes, quantities and inequalities are also
present in the scenario builder.

To further constrain the design of MOBUM we used the
notion of task analysis (e.g. Preece et al., 1994, see also
figure 3). Mainly by detailing each of the subtasks within a
workspace in terms of inputs-outputs, and thus their
relative order, an additional set of requirements and
constraints emerges.

Case: Create Quantity, apply a Quantity Space and assign a
value to the quantity

User Systern

Diisplay quantities
alveady created and

option to create

Select create
newr uantity

Quantities chaice

Choice out

Display field ta

Quantity Mame

Select 05 from
the list

Display existing
Q5's

elect value to
the uantitsy
from its Q3

Store Instances
QuantiyQ Sivalue |

Figure 3: An example task analysis for making a new quantity.

Input-output dependencies determine whether a subtask
can be performed and thus can be used to govern the
availability of tools within a workspace. For instance, the
quantity tool cannot be used unless at least one instance has
been added to the workspace of the model fragment being
built (and before that the learner must have created the
entity as an element in the entity builder). Table 2
enumerates the basic requirements for using a tool within
the model fragment builder.

When the basic requirements are fulfilled, and a tool can
be used, the input-output dependencies within the subtask,
supported by that tool, can be used to determine whether
the learner has performed the task correctly or at least
sufficiently (i.e., syntactically speaking). For instance,
within the quantity tool the learner always has to select the
instance to which the new quantity must be applied. The
task is not sufficiently completed without that information
and thus closing the task should be made impossible (of

course, it can be cancelled). On the other hand, some
information may not be crucial yet. For instance, the
quantity space of a quantity may be added later. For each
tool, the minimum required steps have been identified.
They have been used in the design of the tools within
MOBUM to support the learner in always performing the
task to a sufficiently complete level.

Instance tool One entity must have been
created (in entity builder)
Two instances must exist (in
workspace)

One instance must exist (in
workspace)

Two quantities must exist (as
consequence in workspace)

Attribute tool

Quantity tool

Influence tool
Proportionality tool
Correspondence tool
Inequality tool

Two quantities must exist (in
workspace)

Other model fragment must be
created (with MF builder)

A reused model fragment must
exist (in workspace)

Reuse model
fragment tool
Reuse instances

Table 2: Minimum requirements for using a tool in the model
fragment builder.

User Interface Design

The overall user interface design for the MOBUM
environment starts with the notion of builders and tools.
Tools are displayed on the right side of the screen and
automatically change when the learner chooses to work
with a different builder (i.e., workspace). Opening a builder
can be done by clicking on the icons in the main toolbar, at
the top of the overall interface. Builders can also be opened
using the menu options. Multiple builders can be opened,
but only one tool can be active. Although from a technical
point of view multiple tools can be provided, the idea is
that it is better to support learners in performing focussed
model building steps. Allowing only one tool to be active
forces learners to first finish the current task, or cancel it,
before moving on to the next. Having multiple builders
open is essential, because next to supporting a model
building step, these builders also provide the learners with
overviews of what has been built so far (see also figure 4).

Figure 4 shows a screenshot of a model building session
in MOBUM. Two builders are open, the entity builder and
the quantity space builder. The learner is working within
the latter and uses the Point/Interval Maker. This is a tool
that allows the user to add values to a quantity space. On
the left side in figure 4 the model browser is shown
(System model View). This browser provides an overview
of the model building activities by showing the model parts
that have been created so far. The browser can also be used
for navigation and to open specific model parts and the
corresponding builders (by double clicking on the name
label).

File Edit Create Wiew Control Help

e

- il 6eym. .

l &, System Model View

tiz Quantity Space Builder - Zero-Plus

[P u-use
@ gh Hierarchy
@ &% Model Fragments
@ &% Description View @
& Liguid View Substance
£ Open Container view &

Quantity Space:

Zero =

plus

Remarks:

=Pointinterval Make

@ f Composition View
& Open Contained Liguid(|
@ & Process
&6 Liguid Flaw
Blg Scenatios
@ g Quantity Spaces =)
g Fero-Flus Fluid Path

& Agent Model / Heat Exch Object
@ @

& Decomposition Model
Physical Objel

Ertity

Path

I =

Heat Fath

Value: PointAnterval Hame:
) Zero
Add:
() To Left
() To Right

Add... Cancel

Figure 4: A MOBUM session, showing: browser, entity builder and quantity-space builder.

Next to the overall design, the internal design of the
different workspaces has to be determined. Some choices
are rather straightforward, such as using combo-boxes to
present the user with a list to select from (e.g. instance
selection in the Quantity Maker in figure 5). This is easier
and prohibits typing errors. When the learner has to
provide a new name, the words entered by the user are
always checked against the already existing labels in order
to prevent errors or undesired overlap. Less obvious design
choices concern the icons and the spatial layout of some
knowledge items on the screen. To start with the former,
we have tried to find insightful icons to refer to knowledge
items in a builder. For instance, an entity is visualised as a
cube, a quantity as a gauge, etc. These choices are
somewhat arbitrary. We do not yet know to what extent the
MOBUM icon-language will be interpreted correct by the
target users. However, most icons also have a label
identifying them.

With respect to the spatial layout, most knowledge items
(e.g. entities, instances, quantities, reused model fragments,
points and intervals) are represented as nodes of a
connected graph. They may be moved around freely by the
learner allowing him/her to organise the model to his/her
taste (using the pointer tool). An exception to this rule is
formed by the quantities, which are organised in a tabular
form, grouped together with the instance they have been
assigned to. Included in this table are the quantity space,
current value, and derivative for each of the quantities (see
also figure 5).

Binary relationships between knowledge items are
represented as lines connecting the two icons that visualise
the knowledge items. The type of relationship is shown by
an icon placed at the midpoint of the line (e.g., the > sign
for an inequality, or an 1+ sign for an influence, both shown
in figure 5). A problem with this approach is that

dependencies between quantities belonging to the same
instance are somewhat difficult to represent, because they
are lines ‘from’ and ‘to’ the same icon. Particularly in the
case of ‘many’ lines this will become messy. Another
approach would be to represent each of the quantities by a
unique icon and then connect it, using lines, to the instance
it belongs to. The problem with this approach is that it
becomes more difficult to see what icons belong together.
Also, in the case of ‘many’ quantities all the lines
connecting all the icons make the overall picture pretty
messy. More research is needed to find a good solution for
this problem.

Another discussion concerns the ‘conditions’ and
‘consequences’ part of a model fragment. How to visualize
this? In MOBUM we decided to have separate fields within
the builder for this (see figure 5). Obviously, it is
immediately clear whether an icon is in the conditions or in
the consequences part. But there is also a problem and that
is using the same knowledge item both as a condition and
as a consequence. In the MOBUM approach this leads to a
full copy of the instance (knowledge icon) into both the
conditions and the consequences part, and then add
guantities relevant to each part (in figure 5 pressure is
added in the conditions part and amount plays a role in the
consequences part). From the resulting visualization in
model fragment builder it is not obvious that both icons
refer to the same instance, the user really has to understand
the underlying details. Another approach would be not to
have separate fields, but to visualize the condition versus
consequence role by means of a color. Again, more
research is needed to resolve the issue.

& MF Builder - Liguid Flos

Super Type felstion

- - P P o
5~ Quantity Maker ::: rooess |
& Instance: -
gy — - - —
. e @ Dlass name - Aligned &b Open Contained Liquid_0|
A Quantity: | @ Instance name : Aligned
- | g% Open Contained Liquid_1

Ppply Existing 5
Hew Quantity: | unspecified - || @ Class name : Liquid

L P ! @ Instznce name - Liquid
— [e 5 [Svasla]

onditions | Sure Zar @ Clasz name : Liquid
|(_) Consequences @ Instancs name © Liquid
s | [e | S [P iy
Pressure Zero-Plus

Consequences

&% Open Cortained Liquid_0|

& Classname - Liquid
@ Instance name : Liquid
2 [8 [=vaue Oy |
Arnount ZEro-...

& Clzssname : Fluid Path
@ Instanc,

ame : Path

&% Open Cortsined Liquid_1
& Clzss name : Liquid
@ Instance

name : Liguid

S [8 [=vae] 85 |
Zerm-Plus

‘E_
\

en .~ Amount
[&] = value | G \

Flow Rate

K Plug | Zero-Pl...

Figure 5: Model fragment builder: user starts adding a new quantity to the liquid-flow process.

Related Work

MODEL-IT (e.g. Soloway, 1996) is a tool for creating
simulations of dynamic systems, specifically ecosystems. In
MODEL-IT, the learners are given objects (or s/he can
make new ones) for the particular scenario at hand. The
learner has to assign quantities (factors) to these objects
and specify the behavioural relationships between the
quantities of the different objects. By running the
simulation, and maybe changing some objects/quantity
relationships, the student can quickly explore the situation.
MOBUM relates to the ideas underlying MODEL-IT, but
there are also great differences. One difference is that in
MOBUM the student has to work with full simulations, in
which quantities can take on different values, different
states will exist, model fragments may become inactive etc.
The generation of a behaviour graph, while simulating, is
not possible in MODEL-IT. Factors can only increase or
decrease and there are no state changes. Also in MOBUM
the idea is that learners construct model fragments that
capture general insights, e.g. population growth (ecology),
or heat-flows (physics), etc. In MODEL-IT the learner
always makes a simulation for a specific scenario.

Another model building environment that should be
mentioned is CYCLEPAD (Forbus et al., 1999), an
‘articulate virtual laboratory’ that supports engineering
students in designing and analysing and thermodynamic
cycles. The idea is that learners construct such systems by
assembling components from a predefined library, i.e., as a
set of icons on the screen, from which the learner has to
select the ones relevant to the situation (scenario) for which
a model has to be constructed. Selecting and connecting the
parts is not always enough to get a simulation running

adequately. Often learners have to provide additional
detail, such as initial values, value-range limits and
possibly modes of operation. Also remodelling the initially
selected set of partial models may be necessary when the
model does not produce the desired behaviour results.
CYCLEPAD differs from MOBUM in that the former is
domain specific, one cannot use it for ecology, for instance.
Also, CYCLEPAD supports an assembly task (reusing
predefined parts), which is different (and sometimes less
difficult) from building a full model. In fact, CYCLEPAD
does not simulate qualitative models, but rather quantitative
models. The qualitative aspects are used to support the
learner in assembling the system, i.e. for generating help.

Tools that support model building, but which are
somewhat far from the ideas underlying MOBUM are tools
such as MATLAB (Pratap, 1999) and STELLA (Grant,
1997). The main difference being the kind of models that
learners might be able to build with such tools: quantitative
simulation models. As such, these tools support the
articulation of knowledge in a different format, which
requires sophisticated foreknowledge of mathematics.
However, some quantitative simulation-based tools notably
THINKERTOOLS (White, 1993) and SIMQUEST (e.g.
Hulst, 1996; Kuyper, 1998) provide features that in future
research we may want to include in the design of MOBUM.
These features concern the ‘cognitive tools’ that these tools
have to support the learner in discovering the appropriate
things, e.g., assignments, model progression, hypothesis
scratchpad, etc.

Discussion

In this paper, we have presented MOBUM, a model
building environment for constructing qualitative

simulation models. MOBUM is a fully operational
prototype that has been implemented in JAVA. The main
purpose of the design, and implementation, of this first
prototype was to generate and test ideas with respect to
how such a model building tools should be constructed. In
the current implementation of MOBUM there is no direct
communication with the simulator. Instead, the learner has
to save the model into files and then run the simulator
(GARP) as a separate program. To be used in practice with
actual learners this will not be sufficient. For that purpose,
MOBUM and the simulator must be fully integrated, at
least from a user’s perspective.

MOBUM has not been evaluated with target users,
instead knowledge engineers have commented on the
usability of the current implementation (expert reviews).
Three points for improvements have been pointed out.
First, intermediate modelling support. Often when building
a model, the persons building the model define
intermediate models before they write down the final
model. MOBUM does not support this process, it only
supports the latter step. Improvements for MOBUM could
focus on supporting and maintaining intermediate models
for the learners. Second, horizontal views. When building a
model in MOBUM it is difficult to see how all the model
fragments that have been created will interact. There are no
tools/builders/views that provide the learner with a global
overview of certain model parts (except for the model
browser). For instance, it may turn out to be helpful to
provide the learner with a ‘causal model viewer’. This
would allow the learner to investigate if and how the causal
dependencies, that have been defined in the different model
fragments, are related (thus, without running the simulator
first). Third, model building support from a ‘content’ point
of view. MOBUM allows for building syntactically correct
models, but the current prototype has no knowledge of the
model construction process and the status of the model. In
order to coach learners in building models beyond the
syntactic level, MOBUM should be extended in this
respect.

Acknowledgments. Vania Bessa Machado wishes to
express her gratitude to the Catholic University Dom
Bosco, Campo Grande-MS, Brazil. She is currently on
leave from this University to pursue her PhD at the
University of Amsterdam.

References

Bredeweg, B. (1992). Expertise in qualitative prediction of
behaviour. Ph.D. thesis, University of Amsterdam,
Amsterdam, The Netherlands.

Elio, R., & Sharf, P.B. (1990). Modeling Novice-to-Expert
Shifts in Problem-Solving and Knowledge Organization.
Cognitive Science, 14:579-639.

Forbus, K.D. (1984). Qualitative process theory. Artificial
Intelligence, 24:85-168.

Forbus, K. (1996).Why computer modeling should become
a popular hobby. D-Lib magazine.

Forbus, K. (1988). Qualitative physics: Past, present, and
future. In Exploring Artificial Intelligence, pages 239-
296, Morgan-Kaufmann.

Forbus, K.D. & Falkenhainer, B. (1992). Self-explanatory
simulations: Scaling up to large models. In Proceedings
of AAAI-92, pages 685-690.

Forbus, K.D., & Whalley, P.B., & Everett, J.O., Ureel L.,
& Brokowski, M., & Baher, J., Sven E. Kuehne, S.E.
(1999). CyclePad: An articulate virtual laboratory for
engineering thermodynamics. Artificial Intelligence,114:
297-347.

Grant, W.E., & Pedersen, E.K., & Marin, S.L. (1997).
Ecology and Natural Resource Management: Systems
Analysis and Simulation. John Wiley, New York.

Hulst, A. van der (1996). Cognitive Tools. Two exercise in
non-directive support for exploratory learning. PhD
thesis, University of Amsterdam, Amsterdam, The
Netherlands.

Kleer, J. de & Brown, J.S. (1984) A Qualitative Physics
Based on Confluences. Artificial Intelligence,24: 7-83.
Kuyper. M. (1998). Knowledge Engineering of Usability:
Model-Mediated Interaction Design of Authoring
Instructional Simulations. Ph.D. thesis. University of

Amsterdam, The Netherlands.

Mettes, C.T.C.W., & and H. J. Roossink, H.J. (1981).
Linking Factual and Procedural Knowledge in Solving
Science Problems: {A} Case Study in a
Thermodynamics Course. Instructional Science,10:333-
361.

Pratap, P. (1999). Getting Started with MATLAB 5: A
Quick Introduction for Scientists and Engineers. Oxford
University Press, Oxford.

Salles, P.S.B.A. (1997). Qualitative models in ecology and
their use in learning environments. Ph.D. thesis,
University of Edinburgh, Edinburgh, Scotland, UK.

Schut, C. & Bredeweg, B. (1996). An overview of
Approaches to Qualitative Model Construction. The
Knowledge Engineering Review, 11(1): 1-25, 1996.

Soloway, E., Jackson, S. L., Klein, J., Quintana, C., Reed,
J., Spitulnik, J., Stratford, S. J., Studer, S., Eng, J., &
Scala, N. (1996) Learning Theory in Practice: Case
Studies of Learner-Centered Design. In ACM CHI ‘96
Human Factors in Computer Systems, Vancouver.

Weld, D., & Kleer, J. de (Eds.) (1990). Readings in
qualitative reasoning about physical systems. Palo Alto,
CA: Morgan Kaufmann Publishers.

White, B. (1993). "ThinkerTools: Causal Models,
Conceptual Change, and Science Education.” Cognition
and Instruction, 10(1): 1-100.

Winkels, R., & Bredeweg, B. (eds.) (1998). Qualitative
Models in Interactive Learning Environments.
Interactive Learning Environment, 5:1-134 (Special
issue).

