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Abstract

In this paper we explore advantages of implementing
the QSIM qualitative simulation algorithm in CLP(FD)
(Constraint Logic Programming over Finite Domains).
In comparison with usual implementations of QSIM,
eg. in Lisp, CLP enables elegant treatment of par-
tially instantiated qualitative states and qualitative be-
haviors, and automatic separation of the variables of in-
terest from independent or loosely related components
of the model. This may lead to significant, sometimes
exponential improvements in efficiency.

Introduction
Qualitative simulation (Forbus 1984; Kuipers 1986) proved
useful for systems where accurate numerical information
about the system is unavailable, or when a precise, nu-
merical answer is not required or is overly elaborate.
Kuipers’ qualitative simulation algorithm QSIM (Kuipers
1986; 1994) predicts possible behaviors of a dynamic sys-
tem modelled by qualitative constraints in the form of Qual-
itative Differential Equations (QDEs). A QDE model of the
system and the smoothness assumption whereby the vari-
ables in the system may only change smoothly, constrain
possible behaviors of the model. Qualitative simulation is
naturally viewed as a set of Constraint Satisfaction Problems
(CSP). An approach to solving CS problems is Constraint
Logic Programming (CLP) (Jaffar & Maher 1994). CLP
merges two declarative paradigms: constraint solving and
logic programming. In this paper we investigate the benefits
of implementing QSIM-like qualitative simulation in CLP
as one approach to CSP.

Formulation of qualitative simulation as CSP has been ex-
plored by other authors. For example, Clancy and Kuipers
(Clancy & Kuipers 1998) studied the qualitative model de-
composition in the CS framework. Teleki (Teleki 1996) im-
plemented QSIM in ECLiPSe, a CLP system. Some advan-
tages of the CSP approach to qualitative simulation have
been reported in comparison with the traditional QSIM al-
gorithm and its Lisp implementation (Kuipers 1986; 1994).
Experiments with our CLP implementation of qualitative
simulation, called ASIM, show some considerable further
advantages of CLP. The advantages are of various kinds as
follows:

� computational efficiency, specially in cases when
the modelled system exhibits a structure with sub-
components

� flexibility in answering various types of questions about
the modelled system

� flexibility in the modelling language provided by CLP as
an extension of Prolog with a constraint solver

� ease of programming

These advantages come automatically from the CLP pro-
gramming platform at no extra programming cost. For ex-
ample, there is no need to explicitly formulate a decomposi-
tion structure of the system into sub-components.

In the rest of this paper we give a short introduction to
CLP as an extension of Prolog, outline the principles of qual-
itative simulation in CLP(FD) (CLP over finite domains),
experimentally compare ASIM and QSIM, and analyse the
results.

Constraint Logic Programming and
Qualitative Simulation

Constraint Logic Programming over Finite
Domains, CLP(FD)

CLP (Constraint Logic Programming) is an extension of
Logic Programming with constraints. One usual way of im-
plementing CLP is to add a constraint solver to the logic
programming language Prolog. Such a constraint solver
is specialized to solving types of constraints over partic-
ular domains, for example real numbers which is denoted
by CLP(R). For the purpose of qualitative simulation, con-
straints over finite domains are of particular interest, and
the corresponding programming paradigm is denoted by
CLP(FD). Constraints can then be used as goals in Prolog
programs that are processed by the corresponding built-in
constraint solver.

Satisfiability problems in finite domains are typically NP-
hard, so incremental constraint solving is required. Incre-
mental constraint solver operates over a set of constraints,
known as constraint store. The conjunction of constraints in
the store determines values of set of variables. This is also
known as projection of constraint store on set of variables.



When a new constraint is posted to the store, constraint prop-
agation is started. Constraint propagation adds new informa-
tion to the store by inferring new constraints from the con-
straints already in store. New constraints must be consistent
with the information already in the store. Propagation stops
once no such new constraints can be added. From the view-
point of the variables in constraint store, constraint propaga-
tion incrementally narrows the domains of the variables.

As an example, consider the finite domain of non-negative
integers, and the constraint store which contains only con-
straint
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Constraint propagation is not sufficient to fully solve an

arbitrary constraint satisfaction problem, since, in general, it
cannot prove global consistency of constraint store or gen-
erate all consistent values of variables. A simple example
of the first case is the conjunction of constraints
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[0,1]. Constraints in store are not consistent, but the CLP
solver cannot see this by constraint propagation. However,
once we assign a value for one of

�
,
�

or
�

, all the variables
become instantiated and the inconsistency of constraint store
is detected. Assigning concrete values to variables is called
labelling.

Constraint propagation is therefore combined with la-
belling, that is enumeration of values of variables. Labelling
enumerates values of yet uninstantiated variables from pos-
sible remaining values in their domains. If constraint store
becomes inconsistent after an instantiation of a variable,
backtracking to alternative instantiation occurs. The combi-
nation of constraint propagation and labelling yields a com-
plete solution method for constraint satisfaction problems.
As opposed to constraint propagation, labelling has to be
explicitly requested in a CLP(FD) program.

Labelling is much more computationally expensive than
propagation. Time complexity of labelling grows exponen-
tially with the number of variables and the sizes of their do-
mains. In contrast, constraint propagation can be performed
in polynomial or even linear time. In general, labelling on
a set of variables is required to determine all solutions to
this set of variables. However, if we only want to know if
the value of a given variable is consistent with all the con-
straints, labelling on all problem variables is not necessary,
as we only need to find a single solution. In this case, major
part of determining global consistency of the constraint store
is achieved by constraint propagation. Labelling is then only
performed on uninstantiated variables. The number of such
variables is typically small. By reducing labelling, we can
significantly reduce the computational complexity, and often
achieve exponential improvement. No labelling is necessary
when constraint propagation alone can detect inconsistency
of constraint store. In such cases, it is sufficient to request
labelling only on the variables we are interested in.

Application of this property of CLP(FD) to qualitative
reasoning follows from the common scenario of observing

a complex system with many variables, where most of the
variables are only indirectly relevant to the part of the system
or behavior we are interested in. For instance, some vari-
ables might be “auxiliary” or “internal” to the system. We
say a variable is auxiliary if it appears in model definition,
but it does not appear in a solution. For example¸ consider
the Prolog clause ��� ����� �"!$# � ���%�&�%�(' � �)���*� . Here vari-
able Z is auxiliary. Concrete values of auxiliary variables in
a solution are of no interest. Labelling over such auxiliary
variables may not be necessary.

In ASIM¸ however, we do not rely on constraint propa-
gation alone ensuring the existence of solution. Rather we
perform limited labelling on auxiliary variables to find a first
solution only. Thus the global consistency of solutions for
selected variables is guaranteed. We call this technique par-
tial labelling.

As shown in experiments with ASIM, savings in computa-
tional complexity due to careful labelling are considerable.
The reason for performance gain is that it is sufficient to
find a single solution of a CSP for all the auxiliary variables
to prove the consistency of labelled variables with the con-
straints.

Implementing Qualitative Simulation in CLP(FD)
To describe qualitative simulation as constraint satisfaction
problem in CLP(FD) scheme, we represent qualitative vari-
ables with FD variables and qualitative constraints with FD
constraints. In our implementation in ASIM, a finite do-
main is an ordered set of nonnegative integers. A qualitative
variable + is translated to a pair of FD variables, one for
its qualitative magnitude , =

#.-0/21 �3+ � and the other for
its direction of change 4 =

#65278' �3+ � . The range of , is
also known as quantity space (Kuipers 1986) and is a finite,
totally ordered set of landmarks. Value of , can be a land-
mark or an interval between two adjacent landmarks.

We map a quantity space to a finite domain of even in-
tegers {

�
,
�
, 9 , ...,

�6:
}, so that

�
represents minus infinity

(
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�

represents the first landmark after
-;78:=<

, and
�6:

the last landmark. If value of , is a landmark with zero-
based index

7
in quantity space, then , is represented with

even integer
�67

. If value of M is an interval between two ad-
jacent landmarks with indices

7
and

7?>@	
in quantity space¸

then , is represented by odd integer
�672>A	

. The range of 4
is ordered set of qualitative directions {

5CB.D
, EGF 5 , 78:?D }, which

are mapped to integers {
�
,
	
,
�
}. A similar representation of

qualitative variables is used in CQ (Dvorak 1992), a highly
optimized implementation of the QSIM algorithm in the C
language.

It can be seen that CS problems in QDE simulation typi-
cally have small domains of variables, due to small number
of landmarks and directions of change. Labelling is there-
fore efficient, but it is still much more costly than constraint
propagation.

State-based constraints (
5
/
5 F , ,IH ,

/J5C5
, ...) involve rea-

soning over relative order of qualitative magnitudes and di-
rections of change. Relative order can be defined with the# E 731J: function, which maps two qualitative magnitudes or
directions to their relative sign. Finite domain of signs is
{
�
,
	
,
�
}, where

�
stands for minus,

	
for zero and

�
for plus.



The
# E 731J: function in CLP is then implemented as the pred-

icate
# E 731J: �3, /21�� � , /21��6��� 731J:=� . A formal definition of# E 731J: can be found in (Kuipers 1994).

More complex constraints like ,IH ,
/J5C5

or
-��	� F require

the determination of relative signs of magnitudes and cor-
responding values¸ where tuples of signs are further con-
strained according to relation table. Obviously,

# E 731J: is
a heavily used operation and efficient implementation is
highly desirable. An advantage of our representation in
FD is that

# E 731J: requires only comparison of two integers,
not list traversal as in the Lisp implementation of QSIM
(Kuipers 1986).

Implementation of qualitative constraints in Prolog is
quite straightforward, for example:

5CB '67�
 � _ � _ 
 � 	2� 4 � �8, � 
 _ � � �� B '�� _ < 5 � 4 � �%� B '�� �%� % Zero element of domain D2# E 731J: �3, � �%� B '��J��� �%� % Relative sign of M2 w.r.t. zero� 	
#=

���
% Signs S1 and S equal

The Prolog structure 4 �.-0/C78: � , /21J: 7 F � 5CB 
64 78'6B.D F 7��.:
denotes a qualitative state of a qualitative variable whose do-
main is 4 �.-0/C78: . The code above posts constraints that de-
fine the qualitative derivation relation between two qualita-
tive variables. First, we determine FD value

� B '��
of land-

mark zero inside the qualitative space 4 � . We constrain
�

to be the sign of qualitative magnitude , � of the second
qualitative variable. Finally, we constrain

�
to be equal to

the direction of change of the first qualitative variable.

Note that we do not have to implement constraint propa-
gation (as in QSIM), since this is already built-into the un-
derlying CLP(FD) system. From this point of view, exper-
imenting with new qualitative constraints in CLP is easier.
But it must also be noted that debugging of constraints in a
CLP system might be significantly harder.

Temporal constraints constrain a sequence of states ac-
cording to state transition table (Kuipers 1986), which speci-
fies valid value transitions of qualitative variables over time.
Our representation of qualitative variable in CLP(FD) also
enables efficient implementation of state transitions. For in-
stance, qualitative magnitude transition from landmark

�
to interval

�
and from interval

�
to landmark

�
is mod-

elled by simple FD constraint
�

#=
��>�	

. Determination
whether qualitative magnitude is a landmark or an interval
also consists of simple FD constraint. State transition table
is then modelled with reified constraints over these simple
constraints, so that each possible state transition is reified
into its own FD variable. A reified constraint projects the
consistency of a constraint � into a FD variable + , so that+ is bound to

	
if � is found to be consistent and

�
if not.

A QDE model is represented in Prolog in a manner similar
to that in (Bratko 2001). Prolog is used for specification,
setting up constraint network and gathering and interpreting
results. The algorithm of qualitative simulation in ASIM
is actually a constraint satisfaction algorithm exploiting the
underlying CLP(FD) solver.

Amount1
Outflow1

M+

Netflow1
D/DT

Inflow1ADD

Tank 2

M+

AmountN
OutflowN

M+

NetflowN
D/DT

InflowNADD

... Tank N-1

Figure 1: QDE model of Cascade model with N connected
tanks.

Experiments
Here we empirically compare the performance of ASIM
and traditional QSIM simulation. ASIM is implemented
in Prolog with CLP(FD), specifically GNU Prolog (Diaz &
Codognet 2000) and SICStus Prolog environments. Tests
were run on GNU Prolog version 1.2.3, which is known as
one of the fastest CLP(FD) solvers. The version of QSIM
used for comparison was the latest published version 4.0 al-
pha 4 (Farquhar et al. 1994). It was running on CMUCL
Lisp compiler version 18c (MacLachlan 1992), which is
known as one of the fastest Lisp implementations. The PC
used to run the experiments had 333 Mhz Celeron processor.

Experimental evaluation on a set of qualitative models in
(Platzner 1996) shows that checking whether a qualitative
state satisfies state-based constraints consumes majority of
time during simulation. This bottleneck of qualitative simu-
lation with QSIM is most clearly pronounced in generation
of all consistent states from partially specified state, so we
have chosen this stage of QSIM for performance compar-
ison. We call this stage generation of all QDE-consistent
completions of a qualitative state. This stage first generates
all possible completions of a qualitative state and then elim-
inates the qualitative states that do not respect the QDE con-
straints.

There is another reason for comparing the efficiency in
generation of QDE-consistent completions of a qualitative
state. In complex systems often only a part of a qualitative
state is specified. Moreover, we are often interested in the
qualitative behavior of some state variables only.

ASIM and QSIM were tested on a set of “extendible”
models similar to those in (Clancy & Kuipers 1998). An
“extendible” model is a model composed of a sequence of
identical components thus enabling the incremental exten-



Cascade QSIM ASIM no. of ASIM* no. of
N time time sol. time sol.
2 10 1 3 1 3
3 90 4 23 8 23
4 570 30 215 38 62
5 5020 254 2067 66 62
6 55030 2312 19919 97 62

Loop QSIM ASIM no. of ASIM* no. of
N time time sol. time sol.
2 1160 19 121 35 121
3 11370 110 933 134 363
4 108470 950 8257 348 562
5 nc 8910 77421 600 562
6 nc 86500 739417 854 562

Table 1: Execution times in milliseconds for N tanks in the
cascade (upper table) and the loop model (lower table). The
first column gives the number of tanks in the model. The
second and the third column give execution times of both
QSIM and ASIM in milliseconds. The fourth column gives
number of solutions, i.e. different QDE-consistent comple-
tions of the initial qualitative state found by both algorithms.
The fifth and the sixth column (ASIM*) give the time and the
number of solutions found by ASIM when the labelling is
limited. nc means that resource limitations prevented com-
pletion.

sion of the model to facilitate the complexity evaluation of
the asymptotic behavior of the algorithm. We used two ver-
sions of the cascaded tanks model consisting of � � � ���(� 9 �
etc. tanks where outflow of each tank is connected with in-
flow of the next tank with the ,IH constraint. In the first
version of the model, called cascade, the outflow of the last
tank and the inflow of the first tank are not connected. Figure
1 shows a QDE model of � tanks connected in the cascade.
In the second version, called loop the outflow of the last tank
is connected with inflow of the first tank with the , H con-
straint.

We measured the times of both algorithms required to
generate all QDE-consistent completions of the initial qual-
itative state. With the cascade model the initial qualitative
state has constant inflow in the first tank and constant zero
outflow of the first tank, no other qualitative values are spec-
ified. In the loop model,there were no constraints on the ini-
tial qualitative state. Accordingly, the loop model has more
solutions. Table 1 gives the results for � � � ���(� 9 ��� ��� tanks
in the cascade (upper table) and in the loop model (lower ta-
ble).

In Figures 2 and 3 and in Table 1, ASIM* denotes the sim-
ulation scenario when we are interested only in small part of
the system, in this case only the first and last tank. The vari-
ables belonging to the intermediate tanks are now auxiliary
variables¸ not included in a solution. The number of possi-
ble qualitative variables, states and behaviors that interest us
is now much smaller than the number of states and behav-
iors of the whole system. With ASIM, this leads to reduced
computation. ASIM only performs partial labelling (com-
plete labelling only on the variables of interest). QSIM, on
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Figure 2: Execution times for N tanks (on � -axis) in the
loop model. Both graphs give the results from Table 1, but
the right graph uses logarithmic scale.
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Figure 3: Execution times for N=10,20,..,100 tanks (on x-
axis) in the loop model with ASIM*.

the other hand, searches the space of possible values of all
variables in the system which would correspond to complete
labelling of the variables.

Execution times for ASIM* show linear growth with in-
creasing number of tanks once the number of possible solu-
tions for first and last tank reaches a fixed point. This shows
that global consistency can be determined in linear time by
finding a single consistent solution of remaining tanks by
partial labelling.

The results of ASIM indicate the advantage of using the
CLP technology in solving CS problems of qualitative sim-
ulation. ASIM’s results when observing only variables in-
volved in the first and last tank are particulary interesting,
as they show the ability of CLP to scale to models with
large numbers of variables and constraints. CLP’s constraint
solver was in this case automatically able to exploit the fact
that the modelled system’s structure contains loosely con-
nected sub-components.

Discussion and Related Work
Let us summarize the main results of this paper and the re-
sults of the experiments:

� CLP technology is appropriate for implementation of
qualitative reasoning and can compete very well with
state-of-the art implementations in terms of efficiency.



� In particular, QDE simulation in CLP is compared with
the one in QSIM. CLP allows for more flexible labelling
strategies that may lead to exponential improvements.

� The idea of complete labelling on a subset of qualitative
variables only is somewhat related to the idea of system
decomposition in DecSIM (Clancy & Kuipers 1998). Ef-
ficiency improvements in DecSIM compared to QSIM are
comparable to these due to partial labelling. Partial la-
belling in ASIM guarantees that ASIM’s results for se-
lected variables are globally consistent and thus equiva-
lent to QSIM’s whereas DecSIM implementation reported
in (Clancy & Kuipers 1998) does not offer this guarantee.

It should be noted that (Teleki 1996) also implemented
QSIM’s constraint filter in CLP(FD) solver ECLiPSe. He
compared his implementation with the Lisp implementation
of QSIM, but did not report any improvement in efficiency.
This difference in his findings compared to ours is possi-
bly due to different implementation of qualitative states and
constraints, and different labelling strategy.
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