

Aggregation of Qualitative Simulations for Explanation

Anders Bouwer & Bert Bredeweg

Department of Social Science Informatics, University of Amsterdam
Roetersstraat 15, 1018 WB, Amsterdam, The Netherlands

E-mail: {anders, bert}@swi.psy.uva.nl

Abstract
Qualitative simulations can be seen as knowledge models
that capture insights about system behaviour that should be
acquired by learners. A problem that learners encounter
when interacting with qualitative simulations is the
overwhelming amount of knowledge detail represented in
such models. As a result, the discovery space grows too
large, which hampers the knowledge construction process
of the learner. In this paper we present an approach to
restructure the output of a qualitative reasoning engine in
order to make it better suited for use in interactive learning
environments. The approach combines techniques for
simplifying state-graphs with techniques for aggregating
causal models within states. The result is an approach that
automatically highlights the main behavioural facts in
terms of simulation events and simplified causal accounts,
while leaving the option for the learner to explore the
aggregated constructs in more detail.

1. Introduction
This paper addresses the problem of making qualitative
simulations of complex systems easier to understand for
learners. The simulations generated by qualitative
reasoning engines are often difficult to understand,
because these models capture a lot of detail about the
structure and behaviour of a system.

Previously proposed solutions to this problem can be
grouped into two classes. One group tries to generate less
complex simulations to begin with, while the other group
tries to summarize the results of complex simulations
afterwards. In the case of the former, the idea is to use
information needs (such as user questions) as guidance.
For instance, given a particular question about the
behaviour of some system, a parsimonious simulation can
be generated that does not necessarily account for all
possible behaviours of that system, but that is sufficiently
detailed to address that particular question (e.g.
Falkenhainer & Forbus, 1991; Rickel & Porter, 1997).
Mallory et al. (1996) present ideas within the second
group of approaches. By analysing the behaviour paths in
a state-graph for certain features, multiple states can be
grouped into a ‘single’ state, simplifying the graph as a
whole. De Koning et al. (2000), also within the second

group, take a rather different approach when they
aggregate the causal model within a state. Although this
approach significantly reduces the complexity of the
causal model, the link with important state-graph features
(as discussed by Mallory) is missing, because the
aggregation is always applied within a single state of
behaviour.

We view a qualitative simulation as a knowledge model
that captures certain insights that a learner should acquire.
This model, made by a teacher or with the help of a
teacher, must therefore be treated as a given, it cannot be
reduced beforehand. This implies that we need an
approach from the second class, namely one that takes the
output of a reasoning engine and makes it easier to
understand for a learner. Specifically, we combine the
ideas from Mallory et al. (1998) and De Koning et al.
(2000), and use them not only to construct a simplified
state-graph, but also to create a simplified account of that
graph in terms of the underlying causal relationships. In
addition, we provide the learner with the possibility to
open up the aggregated constructs, so that the learner can
also explore the simulation results in more detail. Our
approach can be regarded as a hierarchically structured
simulation model that simplifies the discovery process for
learners by highlighting the important behavioural facts.

The content of this paper is as follows. Section 2
introduces a taxonomy of events, describing how the
behaviour of a simulated system can be analyzed
hierarchically in terms of events. Section 3 explains how
the notion of events on different levels of aggregation can
be used to select interesting information while abstracting
from the rest. Section 4 discusses the differences with
respect to previous work, as well as directions for further
research.

2. A taxonomy of simulation events
Our goal is to make detailed descriptions of system
behaviour easier to understand for learners, by pointing
out patterns, and abstracting information using such
patterns. As the basis of our method, we decompose

 State Graph Events Value Events Inequality Events Structure Events Model Fragment Events Causal Events

Global Simulation Level Start and end states Different path
behaviours

Different path
behaviours

Different path
behaviours

Different path
behaviours

Input can lead to any
end state

 Reuniting of paths Common behaviour Common behaviour Common behaviour Common behaviour Different path
Behaviours

 Global max/minimum Common behaviour

Path Level Sequence of transitions Sequence of events
below

Sequence of events
below

Sequence of events
below

Sequence of events
below

Begin may lead to end
state

 Recognition of branches Repetition of events
below

Repetition of events
below

Repetition of events
below

Repetition of events
below

Sequence of events
below

 Path max/minimum Repetition of events
below

Path Segment Level Sequence of transitions Sequence of events
below

Sequence of events
below

Sequence of events
below

Sequence of events
below

Begin leads to end state

 Repetition of events
below

Repetition of events
below

Repetition of events
below

Repetition of events
below

Sequence of events
below

 Segment max/minimum Repetition of events
below

Local Level Outgoing branch Reach value and stay Become equal Entity (dis)appears Situation becomes
(in)active

Qx has pos./neg./no
effect on Qy

 Incoming branch Move from value Become greater Entity changes Situation changes dQx has pos./neg./no
effect on Qy

 Cross value Become smaller Attribute (relation)
(dis)appears

Process becomes
(in)active

 Reach extreme value Attribute (relation)
changes

Process changes

State & Transition Level Momentary states Value Equality Entity exists Process is (in)active Pos/neg. influence of
Qx on Qy

 Interval states Derivative Inequality Attribute exists Description view is
(in)active

Pos/neg. proportionality
from Qx to Qy

 Momentary transitions Value transition Inequality transition Attribute relation
exists

(De)composition view is
(in)active

 Interval transitions Qualitative state is
(in)active

Figure 1. Event types at different levels of aggregation.

behaviour into events, which can be causally and
temporally related. We distinguish different kinds of
events, both in terms of categories (the type of
information) and aggregation level (the degree of
abstraction). To this end, we have devised a taxonomy of
events, as shown in figure 1. The contents of the matrix
figure will be discussed in detail in the next two
subsections.

2.1. Levels of aggregation
The rows of figure 1 denote the different levels of
aggregation, which will be discussed from bottom to top,
because this is the order in which they are derived.

State and transition level: this level contains state
descriptions and transition specifications, the
representations used by the simulation program, in our
case GARP (Bredeweg, 1992). Each state specifies the
structural elements and relations which hold at that
moment or time interval, the quantities along with their
values and derivatives, the mathematical and causal
relationships between quantities, and the active model
fragments (representing situations, or processes).
Transitions specify essentially which quantity values or
inequality relationships change (in a qualitative sense),
but domain-specific rules may be added to introduce
structural changes as well (e.g., the lid of a container may
open when the pressure exceeds some threshold). Because
the information at this level is the output from the
simulator, it functions as the bottom level for the higher
levels of aggregation.1

Local level: this level comprises two (or three) states and
the transition(s) in between. It largely corresponds to
Mallory’s notion of trajectory (1996), although he
focuses mostly on value and derivative events, while we
include other types of events as well. Like the transitions
on the previous level, this level deals with the difference
between adjacent states, but it does this in a more
integrated way. A transition specifies the basic changes
from one state to the next, in terms of quantity values and
inequality relationships, but it does not fully specify the
successor state. Hence, not all the differences between
adjacent states (like the situation description changing, or
processes becoming active) are included in a transition.
On the local level, also these changes are explicitly
represented.

Path segment level: this level aggregates successive
events until multiple possibilities arise, i.e., a branch
occurs in the state-transition graph. This level contains the
same types of events as the path level (the next level), but

1 While calculating the simulation results, the program uses even
lower-level internal representations, but these are not interesting
for our purposes.

it is interesting as an intermediate level for explanation
purposes. When a simulation contains a path segment
(i.e., a state sequence without branches) from sm (possibly
via sm+1, sm+2, …) to sn, we can say that the situation at sm
has led to the situation at sn. When we consider a longer
path which includes a branching point, e.g., the path sm to
sn+1a, while there is another transition from sn to sn+1b, we
can no longer say that sm has led to sn+1a, because it could
have led alternatively to sn+1b (see figure 2).

S
m+1m

n+1a

n

n+1b

S

S

S

S

Figure 2. Path segments vs. paths. The path from Sm to
Sn is also a path segment, but the path from Sm to Sn+1a
(or Sn+1b) is not, because it includes a branching point.

Path level: this is a generalization from the path segment
level, allowing branching points to be included. However,
like the path segment, a path is still a strict sequence of
states and transitions, so for every branching point, only
one of its successors is included. About a path, one can
say that the begin situation may lead to the end situation.
Also, for a path, one can talk about repetitive, or cyclic
behaviour, if present. When the begin and end of a path
are also global begin and end states in the simulation,
such a path represents a possible behaviour of the system
simulated.

Global simulation level: this level includes all alternative
paths, if there are any. If the simulation results in only one
path, there is only one possible behaviour of the system
modeled, given the input to the simulator. In many cases,
however, the input or the model does not fully specify the
behaviour in advance, and multiple possibilities will arise,
creating branches in the state-transition graph. At the
global simulation level, we can look at the differences
between such alternative paths. In some cases, alternative
paths only differ with respect to the order in which events
occur, but in other cases, alternative paths may contain
very different events altogether.

2.2. Event type categories
With these levels of aggregation in mind, we now focus
on the different event type categories that we distinguish
in the different columns of figure 1.

State graph events: on the state and transition level,
states and transitions can be momentary or take some
interval of time. On the local level, it’s also possible to

recognize branching points when there are multiple
transitions from, or to the same state. On the path segment
level, there are no branches. On the path level, there can
be branching points, and also cyclic behaviour is
recognized. On the global level, paths branching out and
reuniting again can be recognized, as well as global start
and end states.

Value events: at the state and transition level, every state
specifies the value and derivative of every quantity in that
state. On the local level, Mallory et al. (1996) has
introduced some event types in this category. The
information of two states is combined to form events,
such as reach value and stay, or move from value. For
some events, it’s necessary to consider three successive
states, because they form a more natural whole than any
combination of two, e.g., a maximum requires a state in
which a quantity value is increasing, a state in which it is
steady (this may be a momentary state, or a state lasting
for an interval of time), and a state in which it is
decreasing again (Mallory et al., 1996). At the path
(segment) level, these events can be further aggregated by
chunking continuous or repetitive developments,
abstracting where necessary from local maxima and
minima to path (segment) level extremes. At the global
simulation level, the differences and commonalities
between different behaviours can be determined, as well
as global extremes.

Inequality events: in the individual states, (in)equalities
are specified between pairs of quantities, if applicable. In
the state transitions, changes in these (in)equalities are
specified. On the local level, these are essentially
preserved, with an exception for the case of a continuous
change from Qx < Qy via Qx = Qy to Qx > Qy (or vice
versa): this is chunked to a change from Qx < Qy to Qx >
Qy. This kind of chunking may also occur on the path
(segment) level, if the changes are spread out over more
than three consecutive states.

Structure events: every state specifies the structural
constellation of the system modeled, in terms of entities
and relationships. Whenever an entity or relationship
(dis)appears, or changes, this constitutes an event on the
local level. Since our qualitative simulation engine is
geared towards representation of change in terms of
varying quantities rather than spatial information, not
much further aggregation is possible in this category.

Model fragment events: model fragments specify
situations and processes, although the state and transition
level contains a more fine-grained typology. When its
conditions are met (specifying structural, value or
(in)equality constraints), a model fragment becomes
active in a particular state, potentially introducing more
information. A process model fragment typically

introduces a flow quantity influencing other quantities
which are often involved in the triggering condition (e.g.,
T1 > T2 introduces a heat flow). On the local level,
processes can become active or inactive, and situations
may change. Since model fragments are organized in an
is-a hierarchy, subtle changes (e.g., a change in model
fragments localized low in the is-a hierarchy) can be
distinguished to some degree from more extensive
transformations (i.e., a change in model fragments higher
up in the is-a hierarchy). On the path (segment) level,
intermediate model fragments may be abstracted when
they are at the same level in the is-a hierarchy as the ones
occurring in the begin and end of the path (segment). On
the global simulation level, an overview is possible of all
situations and processes which can occur, highlighting the
commonalities and differences between alternative paths.

Causal events: on the state and transition level, causal
relationships are specified between quantities potentially
influencing each other, or when they are proportionally
related. However, since causal relationships may be
inactive, and they may have opposing effects, their
expected effect does not always occur. It’s necessary to
look at the local level to see which causal relationships
did actually have an effect, and which were submissive
(De Koning et al., 2000), i.e., did not have an effect. On
the path segment level, some of the local events can be
connected to form a causal chain of events taking place
over multiple states, e.g., a temperature difference
introduces a heat flow process, causing the temperature
and pressure to rise in statem, the pressure to reach its
maximum in staten, the container to explode in state and
the fluid to leak out in statep, the table to get wet in stateq,
etc. Since a path segment does not include branching, we
can say that the situation at the begin of the segment must
lead to the situation at the end. On the path level, a path
can include a branching point; in that case we can only
say that the begin may lead (instead of must lead) to the
end. On the global level, it’s important to realize that the
input to the simulator can lead to any of the end states via
any of the possible paths, so we can only make causal
statements about what all end states have in common.

3. Hierarchical abstraction of qualitative
simulations

Now that all event types have been introduced, this
section will describe their role in the abstraction process
to facilitate the communication of the simulation results
and underlying causal explanations. To relate our
discussion more clearly with previous work, we have
divided this section in two parts: aggregation of the state-
transition graph, and aggregation of causal models.

3.1. Aggregation of the state-transition graph
The number of states generated in a simulation depends
essentially on the scope and level of detail of the model:
the number of independently varying quantities
(responsible for branching), the number of qualitative
distinctions in the quantity space of these variables, and
the number of causal relationships included in the model.
While any of these distinctions may be considered
interesting for future users by the model builder, or may
be necessary to calculate results further along a causal
chain, not all of the distinctions matter at the time of
presenting the results. The original state-transition (or
behaviour) graph that results from a simulation can
contain many (tens, hundreds or even thousands)
behaviours, but as soon as the number is larger than a
handful, it becomes difficult to gain an overview of what
happens, especially when the state-transition graph
contains branching. Reduction of the state-transition
graph helps learners to gain an overview of the results,
while parts of the graph may be selected by the user for
further expansion, thereby giving access to the underlying
details.

We distinguish three main methods of graph reduction:
(1) abstracting from particular domain structures; (2)
abstracting from particular kinds of events; (3) abstracting
from temporal information. The first method, abstracting
from particular domain structures, is very powerful, as
shown by the following. Assume we’re only interested in
one of the three subsystems involved in the example
simulation; now we can abstract away everything from
our example simulation trace except the information
pertaining to that subsystem. Suddenly, of the 19 original
states, only 6 states remain, because the other states did
not differ from the remaining states with respect to the
subsystem of interest. Although we acknowledge the
importance of this method, it has been treated in some
detail by Mallory et al. (1996), and it requires (user)
specification of interests. In this paper, we therefore focus
largely on the second and third method of abstraction.

An overview of the top-level algorithm and the results of
the different steps is shown in figure 3. We use two main
principles behind each step in the algorithm: (1) we prefer
linear descriptions of what happens, and abstract from
alternative lines of events whenever possible; (2) we
focus on begin and end of event sequences, if the
intermediate stages are mostly continuous. In the
following subsections, the specific techniques illustrated
in figure 3 will be described in more detail. The example
simulation that is used throughout this section is based on
a re-implemented model of the Cerrado Succession

Hypothesis model as originally presented in Salles &
Bredeweg (1997).2

Transitive Reduction
Transitive reduction (as expressed by the first condition
of algorithm 1) is a well-known technique in graph
theory; it reduces the number of edges, while preserving
all information, provided that the edge-relationship is
transitive (e.g., the hierarchical is-a relationship). In our
case, the edges represent transitions which can also be
considered transitive in some sense: the information that
state 7 can be reached directly from 3 can be abstracted,
because 7 can also be reached via some other path (e.g., 3
→ 4 → 7). There is an exception, however, when the
events in the direct transition don’t match the events in
the longer path. In that case, the shortcut involves less,
more, or different events than the longer path, and they
should be considered as alternative behaviours. Therefore,
the second condition is added to ensure that we only
abstract away transitions in which the same events occur
as in the longer path. The only information we lose after
transitive reduction is that events may occur
simultaneously.

Algorithm 1. Transitive reduction of the state-transition
graph:

Abstract from (i.e., remove) all transitions T (= X → Y)
for which holds:

There is a path P from X to Y which does not
contain transition T
AND
P contains the same events as T.

Since this technique involves looking at transitions, the
events that should be considered in the comparison of P
and T are at the local level. All events can be considered,
or a subset of interest. Some events (like local maxima)
may exist only in the longer path because they involve
two transitions; in such cases, the second condition does
not hold. Note: in this step, only transitions are abstracted,
not states.

Aggregation of alternative orderings
The previous technique abstracted away the occurrence of
events simultaneously, if they also occurred in sequence.
We can generalize this idea of abstraction from sequence,
by comparing the sets of events in different branches
which reunite again later, e.g., 15 → 16 → 18 and 15 →
19 → 18. If these different paths contain the same events

2 Due to lack of space, and because we prefer to stress the
generality of the approach, we do not go into more detail about
the domain model in this paper.

17

14
19

15
13

16

18

12

1011

5

67

4

9

8

2

3

1

input

The original state-transition graph as output from the
simulator, consisting of 19 states, 43 transitions, and
896 behaviour paths. The first step in the aggregation
process actually adds more information, namely the
differences between states. The second step is
performing transitive reduction (see text for details).

17

14
19

15
13

16

18

12

1011

5

67

4

9

8

2

3

1

input

The result after the first two steps, consisting of 19
states, 25 transitions, and only 24 distinct behaviours.
The next step reduces the number of paths by
abstracting from alternative orderings. This is done
by comparing the events in reuniting branches, and
creating higher level transitions when they match.

17

14

1513 18

12

5

61
input

The result after aggregation of alternative orderings,
consisting of 9 states, 7 transitions (of which 2 are
aggregated), and only 2 distinct behaviour paths. The
final step, aggregation of sequence, compresses the
events in a path until a branching point occurs,
thereby reducing the number of states.

14 181

input

17

The end result at the highest level of abstraction,
consisting of only 4 states, and 3 aggregated path
segments, which together summarize the two
behaviours. Further abstraction would only leave the
begin and end states.

Figure 3: Steps in the process of aggregating the state-transition graph

(in a different order), or when the events can be
aggregated to the same events, we can perform
aggregation of alternative orderings, and see them as one
aggregated alternatives transition, until the user is
interested in more detail and the order becomes important
again. The algorithm is presented here as algorithm 2.

Algorithm 2. Aggregation of alternative orderings in the
state-transition graph:

Find a group of paths P1 to Pn with the same begin-point
(X) and end-point (Y), for which holds:

P1 to Pn contain the same events, or events which
can be abstracted into the same higher level
events (following figure 1),

and do the following:

1. Add a shortcut edge from X to Y, to represent an
aggregated transition, containing all (aggregated)
events occurring in paths P1 to Pn.

2. Delete every edge from the original paths P1 to Pn,
unless:

a. the edge appears after an incoming
branching point, OR

b. the edge appears before an outgoing
branching point.

3. Delete states which have no incoming and outcoming
edges anymore.

Repeat this process (including step 1, 2 and 3) until no
more alternative paths can be found. We assume that the
procedure responsible for finding groups of equivalent
paths starts with the shortest paths, so that the abstraction
is done bottom-up.

The unless-conditions in step 2 of the algorithm are
necessary to prevent deletion of an edge when this would
also cut off other paths than the ones abstracted.
Using this technique, both states and transitions are
abstracted, thereby reducing the number of paths, or
apparent ambiguities.

Aggregation of sequence
In this step of the aggregation process, path segments
(sequences of states without branching points) are
chunked into one aggregated sequence transition (the
algorithm is straightforward, and omitted to save space).
This technique further reduces the number of states and
transitions, but not the number of paths.

3.2. Aggregation of causal models
With the term causal model, we mean essentially the set
of causal relationships between quantities occurring in the
simulation on the state level, but in a broader sense, also
the causal relationships between higher level events.
On the state level, we have influences and
proportionalities between pairs of quantities. Because the
network consisting of these dependencies may be
complex (involving tens to hundreds of relationships) it’s
useful to consider meaningful portions of it:

1. A quantity Qx (indirectly) influencing quantity
Qy. Special cases of this include feedback loops,
and/or mediating quantities;

2. A quantity Qx directly influencing all quantities
Qy1 to Qyn;

3. All quantities Qx1 to Qxn directly influencing
one quantity Qy.

These three cases enable highlighting of linear
propagation of an influence, an influence spreading in
multiple directions, and multiple influences combining,
respectively. In combination, they can be used to explain
why any quantity Qx is increasing, steady, or decreasing.
When besides the dependencies themselves, also the
quantities’ values and derivatives are considered, this
creates more potential for abstraction, as demonstrated by
the aggregation technique of De Koning et al. (2000).
First of all, the status of each dependency can be labeled
dominant, submissive, or balanced. This indicates
whether their effect is as expected, is dominated by other
effects, or balanced out, respectively. The distinction is
used to abstract from all submissive dependencies, and
focus only on the effects that lead to actual value events.
Second, causal chains are constructed in which non-
branching sequences are chunked, and fully
corresponding quantities (i.e., which behave in exactly the
same way) are grouped together as one. Third, the causal
chains which do not directly lead to a state transition from
the current state, are discarded.
The goal of De Koning’s abstraction method was to
facilitate hierarchical diagnosis of learners’ reasoning, but

we believe that this approach is also useful for
explanation purposes. However, we propose the following
changes to De Koning’s abstraction method, two minor,
and two more important points.
Leaving out submissive relationships simplifies things a
lot, but we think this should only be done when a learner
is already familiar with these relationships. Chunking
sequences of relationships and grouping of fully
corresponding quantities are both useful, too, but when
the aggregated quantities belong to different entities, this
may be a reason for keeping them separate. A more
important point, however, regards discarding the causal
chains which do not directly lead to a state transition. This
is not desirable for explanation purposes, because it may
disconnect an effect from its ultimate cause, as indicated
by the following example. When an influence is
introduced in staten, this causes some amount Q (whose
value currently lies in some interval, e.g., low) to
increase. This increase does not directly lead to a state
transition, however (e.g., because other quantities reach
another qualitative value first), but it does so three states
later, only then reaching the border of the interval low,
and changing to medium. De Koning’s mechanism would
only include the causal chain from influence to the
changing quantity in staten+3, although the trend was
already started in staten. Instead, we propose that a causal
chain is introduced as soon as the cause occurs, and that it
is discarded only when it does not lead to any transition
event later on in the simulation. As De Koning et al. note
(2000), humans often make inferences and claims about
events happening at some later point in time, not
necessarily the first next state. Our suggestion addresses
this concern.
The second significant change with respect to De
Koning’s mechanisms, is that we do not only include state
transitions as events, but also other types of events, most
notably derivative changes. This allows us to explain, on
the local level, why a quantity Qx starts to increase,
reaches a (local) maximum, or any other such type of
event. Although we include some extra information with
respect to De Koning’s mechanism, we also allow further
abstraction, by glossing over continuous developments.
For example, in our view, it does not make much sense to
explain why a quantity Qx keeps increasing, when the
cause for it to start increasing has been explained already,
as long as the same influences are applicable.

4. Discussion, Conclusion and Further Work
In our work we use qualitative simulations of system
behaviour as interactive knowledge models. Such
simulations are constructed by teachers, or with help of
teachers, and capture insights that should be acquired by
learners while interacting with these simulations.
However, qualitative simulations include so much detail

that learners may be overwhelmed by the amount of
information. To fulfil the educational potential of
qualitative reasoning in interactive learning environments,
they need to be equipped with abstraction techniques to
select the most interesting information from a qualitative
simulation. To this end, we have presented a taxonomy of
simulation events, and hierarchical aggregation methods
to determine the most interesting behaviour of the
simulated system. Our approach is more powerful than
the work by De Koning et al. and Mallory et al., because
it includes more types of events, and extends to
aggregation levels above the local level to include path
segments, paths and global views. It is less rigid than De
Koning’s STARlight

 system because, like Mallory’s work,
it transcends the low-level state-transition view to
determine which events are interesting. It is also more
flexible than Mallory’s method because (like De Koning’s
methods) it does not require specification of user interests
beforehand.

The algorithms described in this paper have all been
implemented in SWI-Prolog (Wielemaker &
Anjewierden, 1992). The visualisation of the aggregated
results is currently being implemented as part of the
model inspection tool VisiGarp (Bouwer & Bredeweg,
2001). Future work will focus on knowledge construction
dialogues (e.g. Aleven et al., 2001) during which the
learning environment takes the initiative and uses the
hierarchically structured simulation model to actively
support the learner in discovering the important behaviour
features captured in the simulation.

References
Aleven, V., Popescu, O. and Koedinger, K.R. (2001).

Towards Tutorial Dialog to Support Self-
Explanation: Adding natural Language
Understanding to a Cognitive Tutor. In: Artificial
Intelligence in Education (AIED): in the Wired and
Wireless Future. (eds) Moore, J.D., Luckhardt
Redfield, R., and Johnson, L.J. pages 246-255, IOS-
Press/Ohmsha, Japan, Osaka

Bouwer, A. and Bredeweg, B. (2001). VisiGarp:
Graphical Representation of Qualitative Simulation
Models. In J.D. Moore, G. Luckhardt Redfield, and
J.L. Johnson (eds.), Artificial Intelligence in
Education: AI-ED in the Wired and Wireless Future,
pp. 294-305, IOS-Press/Ohmsha, Osaka, Japan.

Bredeweg, B. (1992). Expertise in qualitative prediction

of behaviour. Ph.D. thesis, University of
Amsterdam, The Netherlands.

Falkenhainer, B.C. & Forbus, K.D. (1991). Compositional

Modeling: Finding the Right Model for the Job.
Artificial Intelligence, 51, pp. 95-143.

Koning, K. de, Bredeweg, B., Breuker, J., and Wielinga,

B. (2000), Model-based reasoning about learner
behaviour. Artificial Intelligence, 117: pp. 173-229.

Mallory, R. S., & Porter, B. W., & Kuipers, B. J. (1996).

Comprehending complex behavior graphs through
abstraction. In Iwasaki, Y., and Farquhar, A., eds.,
Proceedings of the Tenth International Workshop on
Qualitative Reasoning, 137–146. Menlo Park, CA,
USA: AAAI Press.

Rickel, J., & Porter, B.W. (1997). Automated modeling of

complex systems to answer prediction questions.
Artificial Intelligence, 93, pp. 201–260.

Salles, P., & Bredeweg, B. (1997). Building Qualitative

Models in Ecology. Proceedings of the International
workshop on Qualitative Reasoning, QR'97. Istituto
di Analisi Numerica C.N.R. Pavia, Italy, L. Ironi
(ed.). pp. 155-164.

Wielemaker, J. & Anjewierden, A. (1992). Programming

in PCE/Prolog. Dept. of Social Science Informatics,
University of Amsterdam, The Netherlands.

