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Abstract

The ability to learn a model of a system from obser-
vations of the system and background knowledge is
central to intelligence, and the automation of the pro-
cess is a key research goal of Artificial Intelligence. We
present a model-learning system, developed for appli-
cation to scientific discovery problems, where the mod-
els are scientific hypotheses and the observations are
experiments. The learning system, QOPH learns the
structuralrelationships between the observed variables,
known to be a hard problem. QoPH has been shown
capable of learning models with hidden (unmeasured)
variables, under different levels of noise, and from qual-
itative or quantitative input data.

Introduction

In the development of intelligent tools to aid in the
process of Scientific Discovery, particularly in the con-
struction of explanatory models, is an important goal
of AT (de Jong & Rip 1996); and qualitative modelling
provides an ideal representation.

Bioinformatics is an ideal domain for applying this
technology: the data are sparse (making it unsuitable
for numerical techniques), they are noisy and they re-
quire the construction of models which will inevitably
include unobserved variables. Work on constructing
models of systems in molecular biology is in the early
stages of development and so, given the above stated
challenges any useful results emerging will be of tremen-
dous practical value.

The ultimate goal in this scientific quest is the pro-
duction of quantitative models; however, the discov-
ery of suitable structural models (qualitative differential
equations) can be the means of directing the scientist
as to which experiments to carry out next in the [path]
towards this goal.

In this paper we present (QOPH a learning system
which combines Inductive Logic Programming (ILP)
with QSIM in order to construct qualitative models of
physical and biological systems containing unmeasured
variables.
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The paper is organised as follows: In the next sec-
tion we give an outline of ILP and QSIM as they are
utilised in QoPH; and a review of related work. QOPH
itself is presented in the following section, along with
a description of the experiments carried out to test it;
followed by a presentation of the results obtained. In
the final section the overall results are discussed.

Background

Qualitative Simulation
QSIM (Kuipers 1994; 1984; 1986) is a constraint based

qualitative simulation engine and utilises an equational
representation which is an abstraction of ordinary dif-
ferential equations. Tt is the most highly developed
constraint based Qualitative Reasoning (QR) system
available. In this section the main focus will be on the
pure QSIM algorithm, i.e. the algorithm as originally
described in (Kuipers 1986).

In QSIM, each model consists of a set of variables
linked together via a set of constraints, called a qual-
itative differential equation (QDE). Each variable con-
sists of a (gmay, ¢dir) pair. Here, ¢mayg is the qual-
itative magnitude of the variable. It has a quantity
space of varying resolution consisting of alternating
points (called landmark values) and intervals; typi-
cally the quantity space is divided into the regions
[—00...0),[0],(0...00], where infinity is treated as a
value. A gdir is the qualitative rate of change of the
variable, which has a fixed, three valued resolution (the
three quantities being inec, for increasing; dec, for de-
creasing; and std, for steady). Each constraint has only
one operation and is defined between two or three vari-
ables.

There are several kinds of constraint which can ap-
pear in a QSIM model. There are predicates, imple-
mented as relations, representing the usual algebraic
operations, of addition, multiplication, and sign inver-
sion; plus a derivative predicate stating that one vari-
able is the derivative of another.

One of the attractive features of QSIM is that it is
designed to handle incompleteness in the knowledge of
the model. The incompleteness here takes the form of
a lack of knowledge concerning functional relations in



the system. This situation is captured by the mono-
tonic function constraints M+ and M- between two vari-
ables, which declares that one variable monotonically
increases (4) or decreases (-) with respect to another
variable, covering families of relations.

The conjunction of qualitative relations models the
relationships between a set of measured variables, plus a
number of putative, unmeasured variables. There may
be zero, one or more unmeasured variables, known as
the model’s hidden variables. Where there are suffi-
cient hidden variables, the method described here can
discover hidden relations that relate only hidden vari-
ables; this appears to be a novel feature of the learning
system presented here.

Inductive Logic Programming (ILP)

The general model learning problem can be represented
deductively as follows: if we term the observations (ev-
idence) F, the background knowledge B, and the hy-
pothesis to be learnt H, then given that:

B¥E (1)
find a hypothesis H so that
BAHEE (2)

Many possible solutions to this problem are possible,
e.g. the trivial solutions of E, or B — E. The problem is
therefore how to restrict solutions to suitable ones. In
abduction (Flach & Kakas 2000) solutions are restricted
to ground facts; in ILP more general solutions are al-
lowed (Muggleton & Feng 1990), although there are still
typically syntactic restrictions on what form solutions
can take (Yamamoto 1999). For most scientific discov-
ery problems it is clear that ILP is advantageous, as we
wish to learn general theories; and for similar reasons
ILP is a sensible choice for learning QSIM models.

ILP is distinguished from other machine learning
techniques in using first-order predicate logic (specif-
ically logic programs) to represent background knowl-
edge, observations, and hypotheses (Muggleton 1992).
For problems such as learning QSIM models, ILP can,
in some circumstances outperform all other forms of
learning. We have previously applied machine learn-
ing and ILP to many scientific problems with suc-
cess(e.g. (King & Srinivasan 1997; Srinivasan & King
1999)).

The learning of qualitative models from examples is
a great challenge for current machine learning methods
since the search space is very large. The problem is also
interesting because the data are positive only, 1.e. when
identifying a system, nature only provides positive ex-
amples of states of the system, not examples the system
can not be in. This hinders machine learning as there
are no negative examples to restrict over-generalisation.

Related Work

Automated model construction is an important and
growing area of research which has as a central aim the

provision of appropriate models for scientific and indus-
trial tasks. We restrict this review to methods directly
related to learning QSIM models.

The earliest work on inductive learning of qualita-
tive models was Coiera’s GENMODEL, the results of
which first appeared in 1989 (Coiera 1989a; 1989b).
GENMODEL has an effective strategy for using positive-
only data (identified by Hau & Coiera (Hau & Coiera
1993) as a form of relative least general generalisation
(RLGG)), though it can also make use of negative ex-
amples if they are available. However, GENMODEL can
not introduce or allow hidden variables, and the re-
sults produced are usually overconstrained, a feature
of many systems for learning qualitative models. Hau
updated GENMODEL (Hau & Coiera 1993) and showed
that QSIM models are efficiently PAC learnable from
the input data. The work was also notable for point-
ing out that dimensional analysis (Bhaskhar & Nigam
1990) can be considered as a form of directed nega-
tive example generation. Hau also demonstrated GEN-
MODEL working on qualitative data generated from real-
valued experimental data in an impressive manner, but
this was limited by the need for all the variables to be
known from the outset, which is unrealistic in many
domains.

Misc (Kraan, Richards, & Kuipers 1991), consisted
of three stages: quantitative to qualitative data conver-
sion; generating and testing all possible constraints (re-
lations), and building models from the constraints. Tt
made use of dimensional analysis to relieve the extent of
the search on the variables (Bhaskhar & Nigam 1990),
which meant that each variable needs to be associated
to a particular ‘type’. Thus, certain relations such as
a derivative relation between two variables both of the
same type, can be a priori regarded as impossible.

The main limitations of Misc were that the mod-
els produced tended to be overconstrained, particularly
when less than complete input information was given.
Ramachandran’s follow up to Misc, Mrisc-RT (Ra-
machandran, Mooney, & Kuipers 1994), addressed the
problem of model induction over multiple operating re-
gions.

Bratko et al. (Bratko & Muggleton 1992) used Mug-
gleton and Feng’s GoLEM (ILP) program (Muggleton
& Feng 1990) along with QSIM to produce a model of
the U-tube system. This work was important since it
was the first to show that hidden variables could be
introduced into the final model. The method also has
a number of awkward requirements that made its ap-
plication a rather limited solution: 1t required the use
of negative examples, the model found by their system
was shown to be logically equivalent to the standard U-
tube model, but it was not physically equivalent from a
systems theory point of view, and was overconstrained.

Say and Kuru (Say & Kuru 1996) reviewed the work
in the field and presented an interesting new approach
(QST). This starts with correlations, and then itera-
tively introduces new variables, building a model and
comparing the output of that model with the known



states until a satisfactory model is found. QSI works
for positive-only data and can introduce hidden vari-
ables.

QSI searches the induction lattice, or model space
starting with no information about the types or dimen-
sions of the variables, nor with any background infor-
mation about the nature of those types. Say and Kuru
used redundancy checks and hanging variable tests,
however the final model presented in their paper was
again overconstrained.

Two other lines of investigation are relevant here.
Kay’s semi-quantitative SQUID program (Kay, Rinner,
& Kuipers 2000) uses quantitative data to form an
envelope around the functional relations of a system
— 1.e. it focuses particularly on parameter estimation
rather than model structure induction — and Todor-
ovski et al. (Todorovski et al. 2000) have induced qual-
itative models directly from the real-valued data. Their
approach models partial differential equations (PDEs)
following up on earlier work by Dzeroski (Dzeroski &
Todorovski 1995), called QMN which learns a QSIM
model directly from quantitative data and builds on
the LAGRANGE program (Dzeroski 1992). Neither ap-
proach discovers hidden variables.

Learning with QOPH

This section summarises the method used in our learn-
ing experiments; the use of clean and noisy data for
learning; the model learning methodology of the QorPH
program; various learning constraints used to increase
efficiency of operation and details of how experiments
were run and the use of high-level components to enable
scalable learning. Fig.1 shows the elements of QOPH.

simulation
Qualitative models—~| Qualitative data— 2P| Models

g2q conversion

Numeric models | Numeric data

simulation

Figure 1: An outline of the inputs and outputs of the
Qoph system

Note that this section only provides an overview of
the learning method; many of the details required to re-
produce the experiments are omitted here, due to space
constraints, but can be found in (Garrett et al. 2001)
along with details of, and results from, other benchmark
systems. Here we seek merely to present the principles
of the inductive method.

Model Learning Methodology - The QoprH
Method

The ALEPH ILP system (Srinivasan 2000) was used as a
wrapper for the QoPH implementation, which was writ-
ten separately. As with (Bratko & Muggleton 1992),
we used a subset of QSIM, implemented in Prolog, as

background knowledge for ILP. The task of the model
learning method is to induce a model given example
values for a known set of qualitative variables (a set of
qualitative states), and the model language of qualita-
tive relations that can be applied to those variables.

ILP, like much of learning, can be considered to
be a search through a space of possible solutions
(e.g. (Mitchell 1997), p.23 ff). In the case of learning
QSIM models, this space is the set of all possible QSIM
models, partially ordered by generality. The relation-
variable lattice is traversed by best-first search, and the
search of this space can be constrained by the use of var-
ious heuristics. These heuristics can be generated from
a number of sources: for example systems theory or the
domain knowledge of the areas under investigation. In
the former case the heuristics consist of general princi-
ples from systems theory such as: models must be par-
simonious, operate under integral causality, and contain
no algebraic loops (although these latter are preferences
rather than absolute rules - since for some systems it 1s
not always possible to acheive them). Also, for example
if one is working in the biological area some of the do-
main knowledge may consist of a set of rules regarding
legal chemical reactions that may take place.

The operation of the learning system, and how it
utilises the heuristics, is set out in Fig.2. Clauses of
relations are constructed until a clause can be shown to
be a model of the qualitative states under the required
conditions. A more detailed description of the compo-
nents of the algorithm is contained in (Garrett et al.

2001).

o qoph(Variables, Rel Predicates, QualStates) :

— extendClause (Variables, Rel Predicates,
QualStates, {})

e extendClause (Variables, Rel Predicates, QualStates,
Clause) :
— Variables = Variables + HV ar
— LRList = generatelegalRels(RelPredicates,
Variables)
SRIList = sortRelsByCost (LRList)
— foreach Rel in SRList
+ Clause = Clause + Rel
* if ( full(Clause) and legal(Clause) and
accurate (Clause,QualStates) ) then
- print Clause
* else
- extendClause (Variables,
RelPredicates, Qual States, Clause)
* end if

* remove Rel from Clause

— end foreach

Figure 2: The QoPH algorithm

As Fig. 2 indicates, models are built, via search, in an
incremental manner, beginning with an empty model,



and adding relations until a complete model is found.
For each new relation added, a number of variables are
selected from the list of previously seen variables. Ini-
tially, this list is the set of measured variables in the in-
put data. A new, hidden variable may be introduced at
this point. Once a hidden variable has been introduced
in a relation it becomes available for use in other rela-
tions, and these other relations may in turn introduce
other new hidden variables. In this way it is eventually
possible, where required, to posit relations that relate
only hidden variables. For reasons of parsimony how-
ever, relations are preferred that do not contain hidden
variables.

Testing the QOPH method

The QoPH system was developed as a tool to aid in the
construction of structural models of systems in molec-
ular biology. This is a domain in which data are sparse
and inherently noisy; therefore 1t was important that
QoPH be thoroughly tested under these conditions in
order to ascertain its potential as such a tool.

While it might be possible to generate a comprehen-
sive set of noise conditions from numerical data 1t would
be time consuming and tedious; whereas qualitative
reasoning can provide a global picture of the ways in
which a system may behave, contained within a finite
set of qualitative states. Any qualitative state not con-
tained within the envisionment for the system can be
considered as a noise state; therefore it is a straight-
forward task to test comprehensively the the ability of
QOPH to learn in the presence of noise by either replac-
ing systems states by noise states in the envisionment,
or by adding noise states to the envisionment.

It is important to make clear that in the experiments
to test the system, the term “noise” is used in different,
though related, senses: noise inherent in the numerical
data, noise introduced in the process of differentiation
(required to obtain the gdir for the qualitative value),
and ‘corruptions’ of the system states in the envision-
ment set. Each of these senses has relevance to the
testing of the QOPH approach, therefore a complete set
of experiments were developed to test all these aspects
of the learning environment as follows:

1. Starting with a complete envisionment (containing
N states) every combination of N — K states from
the envisionment (for K = 0...N) was created (giv-
ing an experiment space of 2 — 1 experiments) and
the ability of QOPH to learn the target model from
each set of states was tested. This set of experiments
measures the sensitivity of QOPH to sparcity of data
alone.

2. For the complete envisionment of N states, experi-
ments were run in which the total number of states
used to by QOPH to learn from was kept constant (at
N) with the number of real states being progressively
replaced by a number of qualitative noisy states; from
0 (no noise) to N (only noise). A noisy qualitative
state is defined as a state that is not part of the com-

plete envisionment but is of the same form, contain-
ing the same number and type of variables. This
tests the supposed effect of noise introduced in the
quantitative to qualitative conversion process.

3. For a selection of the experiments used in (1) a ran-

dom number of qualitative noisy states were added
to the real ones and the effect on learning measured.
This was done to simulate the effect of converting
noisy signals.

4. Finally experiments were run in which the whole

process (from data acquisition and interpretation to
model construction) for both clean and noisy data
were performed. The data conversion process for each
case 1s described in detail in the following subsections.

We created both quantitative and qualitative ver-
sions of a set of benchmark systems. The qualitative
form represents the system as a QDE, using elements
of QSIM; the quantitative form of the same system is
simply a parameterised numerical ODE version of the

QDE model.

In order to illustrate the approach used and the re-
sults obtained we will utilise the well known coupled-
tanks system. Details of the full set of tests and re-
sults for all benchmarks can be found in (Garrett et al.
2001). The input, inflow,, pours into the top of tank
A and the output, out flowg, pours out of the base of
tank B (see Fig.3).

The model of this system 1s:

DERIV (level 4, net flowa),
DERIV((levelg, netflowg),
ADD(levelg, level Dif f, level 4),

Mt (level Dif f, flowag),

M (levelg, out flowg),

ADD(net flowg, out flowg, flowap),
ADD(flowap, netflowy, inflowy).

level,  |evelDiff Ievel
netflow netflowh
mflovyA f|0 B outflow,
outflowg

Figure 3: The coupled tanks (a) physical; (b) QSIM

Here there are three hidden variables, ‘netflow,’,
‘net flowg’, and ‘levelDiff’. For the system to be
correctly learned these variables will have to be in-
duced. Variable ‘inflow,’ (the input) is exogenous to
the model and so appears only once.



Creating the Clean Data

A complete envisionment was generated for a chosen
input for each qualitative system. For clean data ex-
periments, where the data contain no noise, either the
entire complete envisionment or a subset of it formed
the input data from which the model was to be learned.

One complication encountered was the very large
number of experiments that needed to be performed to
exhaustively explore the results of each subset. With
systems such as the coupled tanks it is in general only
possible to perform the experiments on a complete,
physically meaningful partition of the state space, such
as the envisionment for a single qualitative value for
the exogenous variable(s). For this system it was possi-
ble to exhaustively examine one of the zero magnitude
inputs, zero and steady (0,std), which resulted in 10
unique states and therefore 219 experiments.

For each experiment, the approach was to give QOPH
the chosen set of states as its positive examples and
a logic program that implements the QSIM relations
described above as its background information.

To use our qualitative learning approach with numer-
ical data required conversion from real-valued data to
qualitative data. This is an important area of research
in itself (e.g. (DeCoste 1991; Cheung & Stephanopou-
los 1990a; 1990b; Bakshi & Stephanopoulos 1994)). We
employed a relatively simple but robust method. The
N real-valued time series steps for a variable x were nu-
merically differentiated by means of a central difference
approach (Shoup 1979) such that,

dz; _ (mi—wioa) 4 (wigi—xy) N1

dcét - 2 ,
Tq — . . . .

dt2 — (xz - xz—l) - (xz+1 - xz) i=2

then the first and second derivatives were smoothed by
applying a Blackman filter (Blackman & Tukey 1958)
to their Fast Fourier Transforms (FFT) and taking the
real part of the inverse FFT. Smoothing i1s required
because noise is introduced by the process of quasi-
differentiation and cannot be avoided. Furthermore,
temporal misalignments between two variables can oc-
cur during this process, introducing further errors.

In principle, having obtained values for z, Ccll—f and
% the values would just be converted to a qualitative
quantity space such that:

z; <0 = [2;] = —
z; =0 = [l‘Z =0
z; >0 = [2:] = +

(3)
in practice, however, a small margin of signal error,

(2 < 0) A (3%.min(x) <z <0),= 23 0
(z¢ > 0) A (0 < 2y < 3%.max(x)),= 2+ 0 (4)

allows us to assign near-zero real values to the qualita-
tive zero quantity. Again there are errors introduced by
this procedure since the signal may enter and leave the
zero envelope any number of times, apparently jumping
to and from zero. This may or may not be the desired
behaviour: if the signal remains close to the edge of the
envelope, small perturbations in the signal can cause
errors in assigning the qualitative value.

For the numerical simulation, a mixture of zero and
positive initial condition magnitudes were chosen for
the two state variables; in the case of the coupled tanks
with zero input, these were: (2,0), (0,3) and (2,3)!. The
numerical models produced data from these initial con-
ditions until a steady state was approached. The data
produced were then converted to qualitative states in
the manner just described, and attempts were made
to learn a model of the data. Experiments were also
performed to learn models from the union of the quali-
tative states produced from the various different initial
conditions.

Creating the Noisy Data

In order to be useful, the inductive system described
here should be able to learn from noisy data. Noise
was added to qualitative data by taking the complete
envisionment, or a subset of it (as above) and a number
of noisy qualitative states.

Noise was added to the numerical data as follows.
The same sets of initial conditions were used and the
resulting signals were modulated with varying amounts
of Gaussian noise. The degree of noise was described
as a fraction of a noise vector: thus we applied 1/1000,
10/1000, 100/1000, and 1000/1000 of the noise to the
signal. Fig.4 shows examples of the degrees of noise
added to the coupled tanks signal given initial condi-
tions of levely = 2 and levelg = 3.

Experiments were performed for low magnitude noise
first, for each of the systems, under all four inputs con-
ditions. The noise was increased until learning was no
longer acheivable. The combined signal and noise were
denoised by again applying a Blackman filter to remove
the high frequencies from the FFT domain, performing
the inverse FFT and keeping the real part. This re-
maining signal was then converted to qualitative data
(as above), giving an errant subset of the complete en-
visionment (ideally one full behaviour) for each numer-
ical simulation, and experiments were run to learn the
model from these data.

Interestingly, in almost all cases some states were
missing from the full behaviour and errant states were
added due to the unavoidably suboptimal conversion
process and/or added noise; clearly learning under these
circumstances is very demanding. It is important to
clarify that we set out to demonstrate the possibility
of learning under these conditions using QOPH; in the
future it will be possible to improve on our basic qual-

was allowed around the zero value since real values are
highly unlikely to be exactly zero; this zero envelope, 7,

'These values are given with respect to our numerical
model, the parameterisation of which was arbitrary
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Figure 4: Graphs of levels of noisy (lhs) and smoothed
(rhs) numerical data for the coupled tanks numerical
model. Initial values: levelA=2 and levelB=3. The
sets of three values in the centre refer to each row; the
top figure is the noise scalar (0.001, 0.01, 0.1 and 1 of
the raw noise), the other two values are the signal to
noise ratio for the two levels

itative to quantitative approach, which in any case 1s
not the focus of this work.

Finally, whilst it is possible to smooth data by apply-
ing a suitable Blackman filter (or something similar) —
both for cleaning up the derivatives and removing noise
— 1t should be pointed out that this is only meaningful
where a large number of time steps are present, and in
many applications this is not possible. Here, however,
it suffices to demonstrate the principles being set out.

Experiments

The setup described above leads to the following sets of
experiments. A given experiment induces zero, one or
more models. A model was regarded as correct if it can
be shown to be logically equivalent to a known correct
gold standard clause. To simplify analysis, we restricted
the number of model clauses produced after the induc-
tion routine to the first ten produced. If an isomer?
of the appropriate gold standard were not among the
induced clauses for a particular system’s experiments,
the test was regarded as a failure. In many cases the
correct model would have been found if the search had
been allowed to proceed beyond ten clausal models, but
we wished to build a system that would generally find
only the correct model, and find it quickly.

If some of the < 10 clauses were found to be correct
models this was regarded as a partial success. The ratio
of the number of correct models to the total number of

2In this context an isomer is a model that does not con-
tain exactly the same set of constraints as the gold standard,
but is logically equivalent. For example, two models which
were identical except for the fact that one contained the con-
straint ADD(A, B, C) and the other the constraint SUB(C,

B, A), would be isomers.

models induced 1is the reliability of the experiment. This
measure of reliability were used in the results of both
the clean and noisy data experiments. If an experiment
produced only isomers of the gold standard then this is
said to reliably produce the correct model; another less
reliable experiment may successfully induce the model
as well as a number of non-equivalent models, or not
find the correct model at all.

Results

The full results are too lengthy to be included
here but can be obtained on request from the au-
thors or from: http://users.aber.ac.uk/smg/BISI
/1E4/results.htm.

Since any given experiment will induce its models
from a finite number of states, it 1s possible to plot the
average reliability for all the experiments for a particu-
lar number of states, from one state up to the number
of states in the complete envisionment. This ‘Average
reliability’ is given in the range [0 1]. For the noise
experiments, the noise dimension is projected on the
comparative 2-D plot (this assumes an average noise
for each point on the state dimension) to allow com-
parison with clean data experiments, but a 3-D plot is
also presented for the noise experiments that includes
the noise dimension.

Models Learnt from Qualitative Data

The plots of the number of states against average reli-
ability for the coupled tanks are shown in Fig.5.

We analysed the performance of subsets of the
complete envisionment to test whether certain subsets
helped QoPH to learn the correct model more reliably
than others. If this were the case then there would be
a number of minimal subsets that contained the lowest
number of states that reliably lead to the correct model
being found; we label this set of minimal subsets S+.
Subset analysis of the clean data experiments for the
coupled tanks give the following states as the minimal
subsets. Note that there are five elements in St con-
taining 2 states and 12 ST elements containing 3 states.

8] (state 8 with 2, 6 and 7)

1,2,5] (states 1 and 2 with 3, 4 and 5)
1,5,7] (states 1 and 7 with 3, 4 and 5)
5,7,9] (states 2 and 9 with 3, 4 and 5)
2,5,9] (states 7 and 9 with 3, 4 and 5)

[ e R Y
— o — o

Fig. 6 shows the relationship of these states in the en-
visionment graph. A comparison with Table 1 reveals
two key features: a selection of states from different be-
haviours and the use of the critical points of the system
are the key to inducing the correct model reliably (see
Discussion section below).



State | levely levelp crossflowap out flowp

0 < 0, std > < 0, std > < 0, std > < 0, std >

1 < 0,inc > < (0,00),dec > | < (—00,0),inc > | < (0,00),dec >
2 < (0,00),dec > | <0,inc > < (0, 00), dec > < 0,inc >

3 < (0,00),dec> | < (0,00),dec > | < (0,00),dec> | < (0,00),dec>
4 < (0,00),dec > | < (0,00),dec > | < (0,00), std > < (0,00), dec >
5 < (0,0),dec > | < (0,00),dec > | < (0,00),inc > < (0, x0), dec >
6 < (0,00),dec > | < (0,00),std > | < (0,00), dec > < (0, x0), std >
7 < (0,00),dec > | < (0,00),inc> | < (0,00),dec > < (0, 0),inc >
8 < ),std> | < (0,00),dec> | <0,inc> < (0, x0), dec >
9 < ( ),inc> | < (0,00),dec > | < (—00,0),inc> | < (0,00),dec >

Table 1: The envisionment states for the coupled tanks.

Benchmark Models Learnt from Numerical
Data

The results from the numerical data experiments are
presented in Fig.7. The legend in the top right cor-
ner associates initial values of the state variables (given
as two concatenated digits) to a plot; ‘all’ is the case
where the union of states from all initial conditions were
used in learning. These results show that it is pos-
sible to learn models from clean and noisy numerical
data. As discussed above, the qualitative states gener-
ated from the clean numerical data contain a number of
unavoidable data transformation errors, and the result-
ing qualitative states form at most a single behaviour
of the system under investigation. The set of states
gleaned from quantitative to qualitative conversion did
not form a full behaviour for either the coupled tanks
or the spring, which makes the ability to learn a model
from them even more impressive.

Discussion and Conclusion

Research in the area of learning models from data has
established that models of different types of dynamic
system can be learned. We have sought to build on the
work reported by looking more closely at the classes
of model that can be learned, and under what circum-
stances. Specifically, we have explored the robustness
of the learning to two variations in the learning envi-
ronment: reduction of the number of states (from the
complete envisionment) used to learn the target model;
the the introduction of “noisy” states into the data from
which the models were to be learned. The results of per-
forming a comprehensive set of experiments on bench-
mark models were presented.

The first general point is that for all the experiments
the number of measured variables from which learning
took place remained constant and was less than the
total number of variables in the target model. Thus
in all circumstances the learning system had to find
the hidden variables and their relationsips to the other
variables of the model.

Analysis of the clean data experiments showed that
given the complete envisionment of a system the correct
model was always reliably found. As one would expect

there was a gradual deterioration in the reliability as
the number of states presented as data was reduced.
However, a closer analysis of the results in conjunction
with the envisionment graphs for the target models re-
veals that there is a strong relationship between the
reliability of the learning process and the number, and
type, of states used in an experiment.

The envisionment graph of the coupled tanks system
has two main branches, the extremae of which represent
the case where one tank is full and the other empty (and
vice versa). Looking now at the two element members
of 8t we see that in each member the states making
up the pair come from different branches of the envi-
sionment graph; so we can hypothesise first of all that
in order to reliably learn a system the data used should
come from experiments yielding qualitatively different
behaviours (that is behaviours which would appear as
distinct branches in an envisionment graph).

However, this hypothesis only provides a necessary,
but not a sufficient condition for learning. It was noted
in presenting the results that the key states in this result
were states ‘6’ and ‘8. These states represent critical
points of the first derivative of the state variables which
indicates the importance of these critical point states to
the definition of a system. What this means is that if an
experiment were set up in which all the state variables
were exactly at their critical points then the experiment
could be run for a very short time and the correct model
structure identified. Of course, it is impossible to set
up such an experiment, especially in the situation where
the structure of the system 1s completely unknown. An-
other alternative is to set up multiple experiments with
the state variables set to their extremae; from which
initial conditions all the states of the envisionment will
eventually be passed through. The downside of this
is that the experiments may be difficult to set up and
could take an very long time to complete. These two
scenarios form the ends of a spectrum within which the
optimal experimental setting will lie; the identification
of the the best strategies is an important area of re-
search arising from the results of the present work, but
it is beyond the scope of this paper.

These results are summarised as follows:
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Figure 5: Coupled tanks reliability graphs: comparative
2D plots (left); state vs. noise vs. reliability (right)

e The benchmark models could be induced from their
complete envisionments.

e As the number of states chosen from the complete
envisionment increases so does the frequency and re-
liability of finding the correct model.

e The correct model can always be reliably found given
a relatively small subset of the total envisionment.
There 1s a set of these subsets such that other state
subsets are either supersets of one member of this set,
or do not reliably give rise to the correct model.

e Even though subsets containing very few states can
reliably give rise to the correct model, it is possible
to select subsets containing almost all the states that
do not reliably lead to the correct model.

e Models can be learned from noisy simulated real data
for the benchmark systems.
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Figure 6: The envisionment graph for the coupled tanks
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Figure 7: Reliability of learning the correct model from
numerical data vs. 1000ths of full Gaussian noise for
coupled tanks

In addition to the results presented here we have also
used QOPH to learn a qualitative model representing
the complex biological process of glycolysis (Garrett et
al. 2001).

Future Work

Different search algorithms and heuristics could be ex-
plored for further speed benefits. For example, the
use of a GP to search the model space may be faster,
although there are other implementational difficulties
with this approach. If causal ordering is always to be
used, 1.e. variables are only introduced where they can
be fully constrained, then it would be more efficient to
make it part of the model construction process; since
causal ordering is not always possible our current ap-
proach is more flexible.

Having validated the model induction method on
noisy qualitative and numerical data and demonstrated
its ability to learn complex systems, the next step is to
explore how successful it can be at modelling real data.
To this end we are developing a method to learn mod-
els from metabolic and then transcriptomic microarray
data.
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