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Abstract

Solution sets of larger qualitative models tend to explode in
the number of possible qualitative states. Moreover, their rep-
resentation as a tree obscures important properties of the QDE
from the modeller. To improve the use of qualitative mod-
elling techniques in sustainability science, a simplified repre-
sentation, the state transition graph, is introduced. It enables
a “gestalt view” of the result and an automated search for
general properties and associated structures of the model that
are relevant for sustainability issues. Some of these properties
are defined and illustrated by an exemplary model on land-use
changes in developing countries. Their relationships among
each other as well as the connection to management and con-
trol is outlined.

I ntroduction

To an increasing extent qualitative modelling techniques are
used in ecology and the emerging domain of sustainability
science (Heller & Struss 1996; Struss 1998; Petschel-Held et
al. 1999; Guerrin & Dumas 2001; Petschel-Held & Liideke
2001; Salles & Bredeweg 2001; Eisenack & Kropp 2001;
Eisenack, Kropp, & Welsch 2002). The latter field of re-
search aims at understanding the interactions between na-
ture and society to support a global sustainable development
(Kates et al. 2001). Qualitative modelling addresses at least
two typical problems in this context: (i) Knowledge about
important interactions is very limited in many cases, and (ii)
the broad variety of regional problems is difficult to integrate
into typical patterns of global change. Since qualitative dif-
ferential equations (Kuipers 1994) consider whole classes
of models, they provide a formal framework for typifying
the variety of mechanisms on the one hand, and to regard
knowledge limits on the other.

However, since the number of qualitative solutions tends
to increase dramatically when additional variables or am-
biguities are intruduced, strong efforts were made in the
last decade to reduce large solutions, e.g., by the devel-
opment of chatter box abstraction, global filtering by tem-
poral logic expressions or by the integration of numerical
knowledge (Tokuda 1996; Brajnik & Clancy 1996; Clancy
1997; Shults & Kuipers 1997; Berleant & Kuipers 1998;
Kay 1998). The paper stands in this line of thought, but
complements it with typical questions from sustainability
science. These are particularly related to the management

or control of a system. Thus, it is an additional objective of
this paper to improve methods for development and assess-
ment of management options by using qualitative models.

One of the limits of the current QSIM implementation is
the representation of the solution set as a tree. The shape of
the tree does not only depend on the model, but also on the
order in which the qualitative states of the model are pro-
cessed by the algorithm. In particular, this is the case for an
envisionment, where the solution is not a tree in the graph
theoretic sense. Consequently, important properties of the
result of the model can not be seen directly from the simu-
lation output, but have to be discovered by chance or labori-
ous investigation. To improve this situation, Mallory (1996)
made an explicit step towards a graph theoretical represe-
nation to display projections of the solution set onto user-
defined variables of interest. Recently Bernard & Gouze
(2002) investigate the phase space of a class of models under
uncertainty by means of a transition graph. We go further
in this direction by introducing a simplified state transition
graph of a QDE to enable a “gestalt view” on model results.

However, efficient computation of qualitative solutions is
a prerequite for a better representation, visualizition and in-
terpretation of model results. To tackle models of greater
size, we have improved and supplemented an existing C-
language implementation of QSIM (Dvorak 1998). Chatter
box abstraction is re-implemented and we provide facilites
to exclude marginal cases from model results.

Once the state transition graph is computed, it can not
only be used for a better visualization, but also well-known
concepts and algorithms from graph theory can be applied to
detect important properties of the solution, e.g., reachability,
connected components or cycles (e.g., Behzad, Chartrand,
& Lesniak-Foster 1979). In general, we can test in which
regions of the state space the model respects certain speci-
fications, even if the solution graph is to large to be visual-
ized effectively. There is a close relation to model assess-
ment by branching-time temporal logic expressions (Shults
& Kuipers 1997), but complementary to this approach we
focus on the identification of subgraphs which exhibit cer-
tain structural properties.

The paper is organized as follows. In the next section we
define the notion of a state transition graph, present how it
can be generated from QSIM output, and how it can be fur-
ther simplified. This is illustrated by results from the new
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Figure 1: Example for a behavior tree and the resulting behavior graph. Boxes denote time-interval and ellipses time-point
states. Generated from a model presented further below in the text.

QSIM implementation. The third section introduces an ex-
ample from sustainability science, defines important prop-
erties of a state transition graph and demonstrates how they
can be interpreted and applied. The last section concludes
with a discussion of the approach and perspectives for fur-
ther work using the concepts proposed.

Qualitative Solutions and State Transition
Graphs

In this section we introduce the concept of a state transition
graph of a QDE, and show how it can be further simplified
by eleminating edges which are of little relevance in most
applications. Another improvement is the speed-up of the
QSIM algorithm, which is achieved by a re-implementation
based on the ealier work of Dvorak (1998). Both pave the
road for an automated analysis of large qualitative models.

The State Transition Graph of a QDE

Suppose, we have completed an envisionment of a QDE
(Kuipers 1994). This gives us a set of qualitative states,
each of them having well-defined predecessors and succes-
sors. Thus, we already have the structure of a directed graph,
where the states are vertices and the non-symmetric suc-
cessor relation is represented by the edges (see fig.1 for
an example). To make a formal definition of this graph,
we introduce the notion of a qualitative state space by
¥ =% x...x X" where £!,..., %" is a system of fi-
nite sets, each representing the qualitative magnitude or the
qualitative direction of a variable in the QDE. Thus, each
possible qualitative state of the model is an element of the
qualitative state space and can be regarded as vertex of the
graph. Edges are pairs, constituted by states and their suc-
Cessors.

Definition 1 A behavior graph of a QDE with qualitative
state space X is a tuple (@, T, ¢) with vertices @ C X, edges
T C Q xQandamapping ¢ : Q — {true, false}. The
following properties have to hold: Each vertex s € @ is a

qualitative state that occurs in a behavior of the QDE, and
1(s) = true, iff s is a time-interval state. Moreover, for
each edge (s,s’) € T the state s’ is a qualitative successor
of state s in a behavior of the QDE.

The mapping ¢ is only introduced to discriminate between
time-point and time-interval states. It should be remarked
that (@, T) is a bipartite graph, since states of one type are
always connected to states of the other type. Qualitative
states that have no successor (and therefore never occur in
the second component of an edge), are called final states.
They are equilibria or states where the QDE leaves its re-
gion of applicability (e.g., divergent states).

In the next step, we transform the behavior graph to the
simpler state transition graph, which has less vertices. This
faciliates a better overview over the possible dynamics of the
system by omitting information that is usually less important
for applications.

Definition 2 The state transition graph (V, E) of a behav-
ior graph (Q, T, ) has vertices V with . ~!(true) C V C
@, edges E C V x V, and is obtained from the behavior
graph in the following way:

1. Let FF C X be the set of final states in (Q,T,:). Then
V=1 Y(true) U F.

2. There is an edge (s,s') € E iff s # s’ and there is a
vertex ¢ € @Q with (s,q) € Tand (¢,s') e T, orifs' € F
and (s,s’) € T.

According to this definition the state transition graph is con-
structed by eleminating all time-point states which have a
successor from the behavior graph. Edges are introduced
to preserve the reachability of the “surviving” states. Thus,
the behavior graph shown in fig.1 is simplified to the graph
in fig.3. It should be noted that this simplification can still
be regarded as complete when we infer the time point states
that are possible between adjacend vertices.

For further use we denote the set of successors of a state
s € V with succ(s) :== {s' € V | (s,s") € E}. We call



Figure 2: Examples for different types of composed events.
Arrows in the boxes symbolize qualitative values of two
variables (further explanation in the text).

a finite sequence of states in V, written s ... s,,, a path, if
Vi=1,...,m—1: s;41 € succ(s;), and no state occurs
more than once in the sequence. The only exception from
the last restriction is the case, where s, = s;. Then, the
path is called a cycle. The restriction on finite sequences
will be sufficient for the concepts introduced below. Once
we regard QSIM output as a state transition graph, we can
apply concepts and methods from graph theory for further
investigations.

Marginal Cases

For some models the number of edges in the state transi-
tion graph can be further reduced, since some transitions
which occur in many models are of little relevance for ap-
plication purposes. Moreover, it can be shown that for many
systems the set of (quantitative) trajectories featuring some
special types of transitions is of measure zero (Bernard &
Gouze 2002). On the other hand, the completeness of QSIM
guarantees that also the abstractions of such trajectories are
computed. By omitting them in the state transition graph we
trade off completeness for comprehensibility. The implied
loss of information is acceptable, since no features of rel-
evance for the modeler are left out. In this subsection the
notion of marginal cases is defined and we present two ways
to eliminate them.

Each edge in the state transition graph corresponds to at
least one event that shifts the system from one state to the
next, i.e., it changes the qualitative values of one or more
variables. Some events e in the state transition graph are
composed, i.e., there are two other events f and g which
change the state in the same way as e when occuring sub-
sequently. In other words, the edge of the composed event
e directly connects the predecessor of f with the successor
of g. Thus, the event e can be generated by concatenating
the events f and g. What happens in the resulting behavior?
Two cases for an event f, occuring at time-point ¢1, and g,
occuring at time-point ¢» can be distinguished (see fig. 2):

1. In f some variables change their qualitative value, while
in g other variables change. In the event e both sets of
variables change at the same time-point.

2. In the second event g some variables change back to the
qualitative value they had before ¢, while other variables
change to a new value. In the event e only variables that
do not change back in g are affected.

The first case is a marginal case, since the time-points ¢; and
to converge, but not the second one, since some variables
would have to change and change back at the same time.
Here, the event e exhibits — compared to f and g — a notable
new property, which should not be ignored. Only composed
events e of the first type, where events coincide which do
not neccessarily have to, can be omitted. Usually, they show
no special relevance to the modeler, because nothing basi-
cally new happens, and they are not likely to be observed in
empirical studies.

Definition 3 A marginal case in a state transition graph
(V,E) is an edge (s,s’) € E, for which a path sy ...,
with s; = s,s,, = s' and arbitrary m > 3 exists, where
Ch(s, s2),...,Ch(sp—1,s") are pairwise disjoined. Here
Ch(si,s;) € {1,...,n} denotes the set of components of
the state space ¥ which change along the edge (s;, s;).

Note, that it may be useful for applications to set an up-
per limit for m, because too much information can get lost.
However, for long paths the sets of changing components are
not very likely to be disjoined. Removing marginal cases re-
sults in so-called occurence debranching, in particular if the
events f and g can appear in any temporal order (Tokuda
1996; Clancy 1997).

We have implemented two strategies to avoid marginal
cases, one by pre- and one by postprocessing, which can
also be combined. The first strategy requires the modeler to
define the marginal cases explicitly by introducing so-called
correspondence-not constraints into the code of the model,
for example
((cornot x y) (0 0) (Ix ly)),
where x and y are variables, and O, | x and | y are land-
marks. Each constraint of this type contains two qualitative
variables and one or more pairs of landmarks of their quan-
tity spaces. It acts as a local filter that discards all qualitative
states where both variables are at a given pair of landmarks
at the same time. This requires to be careful not to ignore
important coincidences of events like the transition to equi-
librium (e.g., if two gdirs are prohibited to become std at
the same time). However, this strategy can substantially re-
duce computing costs, since less qualitative states have to be
generated during simulation.

The second strategy avoids the problem of the first and is
completely automatic, but requires the solution of the QDE
to be determined first. Taking this as input, all marginal
cases are determined and eliminated from the state transi-
tion graph. The algorithm assigns the changing gmags and
gdirs, i.e., Ch(s,s'), to every edge (s, s') in the graph. If
there is a path where the sets of changing variables are pair-
wise disjoint, and there is an edge connecting the first and
the last vertex of the path, this edge is removed.

Implementation of CQ

Models describing the real world in general become very
large. Most recent qualitative models on issues of sustain-
able development have some 30 variables with up to 50 con-
straints. Besides problems in representation, visualization
and interpretation of model results, which in part have been
touched upon in the previous subsection, models of this size



are difficult to be computed within the present implementa-
tion of QSIM in LISP. This can be the case even if the tree
remains manageable with a rather small number of possible
behaviors and states.

These limitations have led to a C-implementation of the
basic QSIM-algorithm by Dvorak (1998). We have extended
this implementation and included the following features in
CQz:

1. perform an envisionment,

2. enable some smaller simulation features like no- new
| andmar ks, unr eachabl e- val ues and stepwise
simulation,

3. a number of constraints missing so far, including S+ and
S-, as well as multivariate constraints like (M +. . . -).

4. perform a static chatter-box abstraction following the al-
gorithm of Clancy (1997).

Yet to be implemented are features like model transitions or
dynamic chatter abstraction. Due to the very fast compu-
tation time, however, the latter can also be performed in a
post-processing way.

CQ- has been extensively tested on UNIX AIX-4.3 and
LINUX 7.3 (SUSE). Within the range of models tested so
far it outpaced the LISP implementation by a factor 100,
especially for larger models where LISP becomes limited
due to memory allocation obstacles.

Application in Sustainability Science

In this section a (simple) exemplary model from sustainabil-
ity science is sketched and its state transition graph is shown.
We use it to illustrate typical questions that can be answered
with this representation. We formalize some of these ques-
tions to enable an algorithmic investigation of larger models
and draw the connection to the management perspective.

Land-Use Changesin Developing Countries

The model studies regional land-use changes due to small-
holders agriculture in developing countries (Petschel-Held
& Lideke 2001). Here the question arises, whether
the system develops along the so-called impoverishment-
degradation spiral, or recovers from such a situation. The
first alternative is characterized by the degradation of the
natural basis for production and reproduction and by in-
creasing social disparities, also called the “Sahel Syndrome”
(Ludeke, Moldenhauer, & Petschel-Held 1999).

The outcome depends on how the smallholders achieve
their daily income and how this is related to environmen-
tal conditions around them. The major functional difference
between sources of income relates to their potential impacts
on the environment, i.e., whether they have a direct impact
or not. Income sources without a direct impact on the envi-
ronment in particular include off-farm labor, which is con-
sidered in the model.

Existential rural poverty drives farmers to overuse their
lands, if not enough off-farm labor is available. This leads
to soil degradation, which reduces yield and thereby further
exacerbates rural poverty. The socio-economic dimension

describes the compulsion of the impoverished rural popula-
tion to further intensify or expand their agricultural activ-
ities, whereas the natural dimension assesses whether such
an increase in agricultural activity would damage the natural
production basis.

To model these processes we introduce variables for the
quality of the resource R, the yield from agricultural activ-
ities Y, and the total consumption C'T' available to small-
holders, which is the sum of yield and wage income from
off-farm labor. Agricultural activities are employed with the
landmark s (=maximal sustainable agriculture). Below s
the soil regenerates, above it degrades. The socioeconomic
dynamics of the model are mainly driven by labor allocation
which changes in the direction of the more labor efficient
activity. For example, if wages are low and agriculture pro-
duces sufficient output, labor is shifted from off-farm labor
to agricultural activity. Together with auxiliary variables,
the model has 13 quantity spaces and 11 constraints. It is
relatively small compared to recent models with several hun-
dreds or even thousands of qualitative states.

The state transition graph of the model is shown in fig.3.
It exhibits some features also typical for larger models in the
domain:

e A large cycle (here through states #0, #1, #4, #2, #7,
#5, #10, #0).

e From any state in the cycle any state in the graph (espe-
cially any final state) can be reached.

e There are sets of states, that can not be left once they are
entered (here: {#3,#8} and {#6, #11}).

e Some states are branching points in the sense, that they
have more than one succsessor, some of which lead to
such a set, and others do not.

The semantics of properties of this kind is important from
the perspective of sustainable development, since value
judgements can made about qualitative states. Some final
states clearly correspond to situations that are not desireable
(e.g., total degradation of the resource and loss of income
in #8), henceforth called negative states, while others are
more acceptable (e.g., no agricultural yield but higher in-
come and a regenerating resource in #9). Consequently,
we want to avoid negative states (or at least predict them as
early as possible) and shift the system to positive states. It
is a precondition for such an analysis to identify these types
of states and their reachability. Since we also want to deal
with larger models, there is a need for automatization of this
process. To achieve this, some properties of interest are for-
malized in the next subsection.

Properties of the State Transition Graph

Beside the classification of states as negative or positive, the
existence of paths between them is a basic property to elab-
orate further useful concepts for sustainability science. In
this subsection, .S, S’ are always subsets of V', where (V, E)
is a state transition graph. A state s is always an element of
S, and s’ an element of S’. A qualitative state s’ is called
possible for the state s, if either s = s’ or the state transition
graph (V, E) contains a path s; ... s, where s; = s and
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Figure 3: The state transition graph made from the graph in fig. 1, which is the result of the exemplary model on land-use
changes. Some of the qualitative variables are depicted and explained in the text. The abbreviation “isd” stands for “increasing,
steady or decreasing”, resulting from chatter box abstraction in CQ-. Dashed arrows are marginal cases.

sm = s'. This simply means, that a system which is in state
s possibly arrives at state s’ after some time. If s’ is positive
or negative, respectively, this can be interpreted as a chance
or arisk, that s’ happens after s has occured. Here, we see
the close relation to modal logic expressions as treated in the
model checking algorithm of Shults & Kuipers (1997), since
in the defintion of possibility we quantify over the set of all
behaviors consistent with a qualitative model, and not over
the states of a single path. Below, we also specify the notion
of necessity in state transition graphs.

In the example, every state is possible for the initial state
#0, but there are also the “dead ends” #3, #8, #6, #9 and
#11 for which not all states are possible. Thus, it is natu-
ral to ask from where a given state is possible, and what is
possible for a given set of states.

Definition 4 The possible set ps(S) is the set of states that
are possible for at least one s € S. A set S is called weak
attractor of S’ if for all s € S there exists a s’ € S’ which is
possible for s.

It follows directly, that for Sy, Ss C V the equality ps(S; U
S2) = ps(S1) Ups(Sz) holds, i.e., the union of possible sets
is again a possible set. Possible sets and weak attractors can
be computed on the basis of efficient algorithms from graph
theory to compute the transitive closure (e.g., Goralcikova
& Konbek, 1979).

For sustainability issues, we are especially interested in
domains where a system possibly sustains for infinite time.
We introduce two definitions to capture this property.

Definition 5 A set S is called viablity domain, if Vs € S :
suce(s) NS # @V suce(s) = @. Itis called connected
if for all states s, s’ € S there exists a path s ... s, with
s1=8,8p, =s,andVi=1,....m:s; € S.

The notion of a viablitiy domain of a state transtion graph
has a close analogy to the viablity domain of a differential
inclusion (Aubin 1991). It requires that all states in S which
are not final states have successors in S, and therefore the
system can be kept inside of S at each position. Connected-
ness implies, that the system can be shifted from any state in

S to any other state in S without leaving the set. However,
both concepts are not equivalent, but it can be shown that all
connected sets are viable.

In the example, {#0, #1, #4, #2, #7,#5, #10, #9} is
a viability domain. It should be noted, that the definition is
neutral with respect to positive or negative states, despite the
positive connotation of the term “viable”. In the example,
the viablity domain contains a state where no agricultural
acitivity appears (#7).

It can be shown that each viability domain contains at
least one final state or one cycle. While viablity can be
checked by testing all states, for a connected set all rele-
vant paths have to be traversed. However, once the transitive
closure of the state transition graph is computed, we have
a mapping ps : P(V) — P(V), assigning ps(S) to a set
S C V. Then, connectedness can also be characterized by
the conditionthat Vs € S : S C ps(s).

A stronger concept than viability domains are locked sets.
While the former correspond to regions in the state space,
where the system possibly sustains for infinite time, locked
sets can not be left under any circumstances (consistent with
the QDE), formally

Definition6 a set S C V is called locked, if Vs € S :
succ(s) C S.

In the example (fig. 3), once the system shifts (i) to the set
{#9}, (ii) to the set {#6, #11} or (iii) to the set {#3, #8},
this change is irreversible. These sets correspond to three
important types of case studies on land-use change: (i) In
the end, there is no agricultural yield, while the resource
regenerates and wage-oriented labor guarantees a steady in-
come. (ii) There is no agricultural yield, since the resource
is totally degraded, but there is still a steady income due to
wage-oriented labor. (iii) The resource is overused and there
is no income.

It is obvious, that every locked set is viable. For further
proofs and the detection of locked sets, the following equiv-
alences are helpful:

Proposition 1 The following statements for a set S C V



are equivalent:

1. S is locked.

2. Vs € SandVpaths sy ...s,, withs; = s: 51,...,8, €
S.

3. S =ps(9).

It is a corollary from (3), that the union of locked sets is also
locked. Moreover, the mapping ps is (with respect to C) a
closure operator on the set of the qualitative states, and the
locked sets form a closure system. It can be shown from this,
that the set of all locked sets of a model has the algebraic
structure of a lattice. Thus, locked sets can include other
locked sets (as well as, e.g., connected sets or cycles). They
demand special attention in sustainability science (Petschel-
Held et al. 1999).

We are also interested in the “entries” of locked sets. Here
it becomes obvious whether the system will be locked or not.
Their predecessors can be used as indicators and denote the
last chance to prevent or to bring about a locking. Hence, we
call a state branching point, if it has at least two edges, one
of which leading to a locked set and one to a set disjoined
from the locked set. The edges leading form a branching
point to a locked set can obviously be characterized as irre-
versiblities. In the example, the states #4, #2, #7 and #10
are branching points. They all belong to the large cycle in
the graph. Thus, the system can emerge along this cycle for a
long time, but sometimes it may leave this path, irreversibly
snapping into one of the locked sets. Since two of these sets
are clearly negative, this is more a ride along the edge of an
abyss rather than a safe strategy.

Up to now, we defined concepts resting on the existence
of paths, i.e., if certain states are possibly reached. Comple-
mentary to this is the notion of necessitiy. As a prerequisite
we define a terminating path to be a path s; ... s,,, where
81 = 8 OF succ(sy,) = @. It can not be extended to further
vertices or forms a cycle. A qualitative state s’ is necessary
for s, if for all terminating paths s; . . . s,, with s = s; there
existsans; = s',j € {1,...,m}.

Necessity is used to characterize situations which are un-
avoidable for all systems that abstract to the QDE and start
from a given qualitative state. If a state s’ can not be avoided
once the system enters s, the latter state can be used as a
“predictor”.

Now we can define an important subconcept of weak at-
tractors. A strong attractor consists of all states necessar-
ily forcing the system to a given situation. This is formally
defined as the set of states S, for which a given s’ € V
is necessary. If this is a negative state, we have a signif-
icant motivation to change the qualitative structure of the
system (cmp. next subsection). The most prominent cases
are strong attractors of final states. They are always locked
sets (e.g., {#3, #8} infig. 1).

The concepts given above can not only be used to describe
and find important properties of the underlying system, but
also to simplify the graphical representation of larger graphs.
Moreover, questions about the management of interacting
natural, social and economic systems can be precisely posed
and answered with algorithms from graph theory. Possible

consequences for and approaches to management for sus-
tainability are outlined in the next subsection.

The Management Per spective

When the properties of the state transition graph are iden-
tified, we want to use this information for the development
and assessment of management options under uncertainty.
General properties and typical patterns that have to hold
even under the weak knowledge specified in the underly-
ing QDE can serve as a guideline for this task. It can be
understood as finding means to, e.g., avoid locked sets or
strong attractors which contain negative states, or to stay in-
side a viability domain (Schellnhuber & Kropp 1998). We
can think of three possibilities to attain such objectives: (i)
Changing the actual state of the system, (ii) changing the
likelihood of certain transitions, or (iii) changing the struc-
ture of the graph. Under this perspective it has to be clarified
how interventions can be analyzed in the framework of (in
its roots deterministic) QDEs. The three possibilites already
sketched have different pros and cons.

External Interventions: The System is directly shifted to
another state by an external intervention, while the mecha-
nism of the QDE is postponed for a while (e.g., by combat-
ing impoverishment with short-term financial aid). This can
be very expensive and does not change the general patterns
of the system which may be inherently problematic. On the
other hand, an external intervention can be applied relatively
fast and can, e.g., be used to leave a strong attractor.

Micro-Management: To combat the causes of transitions
to negative states, the socioeconomic framework of the sys-
tem may be altered. If this does not change the model quali-
tatively, i.e., the same state transition graph is produced, we
speak of micro-management. Its effect is a change in the
“tendency” of the system to shift in one or another direction,
for example at branching points. Regrettably, the “tendency”
can not be estimated by purely qualitative methods, which
have to be complemented by, e.g., semi-quantitative meth-
ods or differential inclusions (Berleant & Kuipers 1998;
Kay 1998; Aubin 1991). But nevertheless, the qualitative
identification of branching points is an efficient guide for in-
vestigations in this direction.

Structural Management: If the framework of the system
is altered in a more profound way, its qualitative structure
changes. In the model some constraints and quantity spaces
are replaced or introduced. As a result entries to locked sets
may become impossible, new edges may transform strong
attractors of negative states to viability domains, etc. This
type of management produces fundamental change and can
guide to safe, sustainable strategies. Yet, it is the most com-
plex approach to apply, from the scientific as well as the po-
litical perspective. The search space for a better framework
can become very large, and structual changes are usually
difficult to implement in the real world.

Conclusion

In this paper we have introduced the state transition graph
of a QDE and simplified it by excluding marginal cases.
Motivied by an application from sustainability science, we



defined some important properties state transition graphs
may exhibit. Relations between these concepts are shown
and their semantics in the domain theory are given. These
base on the existence of paths in the graph, which is inter-
preted as the possibility that a state succeeds another state.
Complementary to former approaches using temporal and
modal logic, we only regard particular but important struc-
tural properties of the graph and do not refer to the quali-
tative values of states. On the other hand, well-known and
efficient algorithms from graph theory can be used to check
these properties in large models automatically. In addition,
we obtain regions in the qualitative phase space associated
with them, which is useful for visualization and further in-
vestigation of a model. However, since it is possible that a
qualitative model includes solutions that visit all qualitative
states in any prescribed order, we have a slight limitation to
this approach (Aubin 1996).

Prominent objects in the state transition graph like viabil-
ity domains, locked sets and branching points, are relevant
for the discussion of management measures: We want to find
areas in the state space which cannot be left, or where we can
keep the system in. Here, we have to take into account that
the QDE approach is basically deterministic. Thus, if the
model contains no open loop control, only structural change
can alter the dynamics of the system. On the other hand,
micro-management that does not influence the abstracted
form of the model is covered by the approach if there are
time intervals between such interventions. Therefore, we
can ask how interventions can keep a system in a viability
domain, and how the tendency of change can be influenced
at branching points.

Investigating tendencies of change could be a fruitful
objective for further research in the direction of semi-
qualitative simulation or hybrid systems. On the other hand,
the purely graph theoretic approach in this paper can be ex-
tended by analyzing additional relevant structures and iden-
tifying preconditions for their existence and for their entries
in the graph. Visualization can be improved by nesting, e.g.,
locked or connected sets. However, the next steps will be
to implement the projection of state transition graphs onto
qualitative subspaces of interest, and to examine the graphs
of coupled systems, especially how they inherit properties of
the graphs of their projections or components.
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