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Abstract 

In this paper we present a qualitative representational model 
and the corresponding reasoning process for integrating 
qualitatively time and topological information. In the 
calculus presented topological information in function of 
the point of the time in which it is true is represented as an 
instance of the Constraint Satisfaction Problem. That 
representation together with the implementation of the 
reasoning process by means of Constraint Logic 
programming extended with Constraint Handling Rules 
allow us the integration of both aspects (time and topology) 
with other spatial aspects such as orientation, distances and 
cardinal directions, The resulting method can be applied to 
qualitative navigation of autonomous agents. The model 
presented in this paper will help during the path-planning 
task by describing the sequence of topological situations 
that the agent should find during its way to the target 
objective. 

Introduction  

An autonomous mobile robot should be able to understand 
and reason with spatial aspects such as orientation, named 
distances, compared distances, cardinal directions, 
topology and so on, in such a straightforward way as 
humans do. Spatial information that humans obtain 
through perception is coarse and imprecise, thus 
qualitative models which reason with distinguishing 
characteristics rather than with exact measures seems to be 
more appropriated to deal with this kind of knowledge. 
Several qualitative models have been developed for 
dealing with spatial concepts such as orientation 
[Guesguen 89], [Mukerje & Joe 90], [Freksa 91, Freksa & 
Zimmerman 92], [Hernández 94], named distances 
[Zimmermann 93], [Clementini et al. 95], [Escrig & 
Toledo 00], cardinal directions [Frank 92], and so on.  

Our aim is to formalize the intuitive notion of spatio-
temporal continuity for a qualitative theory of motion. As 
motion can be seen as a form of spatio-temporal change, 
the paper presents a qualitative representation model for 
integrating qualitative time and topological information for 
modeling motion and reasoning about dynamic worlds in 
which spatial relations between regions may change with 
time. 

Moreover, we want to integrate the concept of motion 
(topology and time), with other spatial aspects, such as 
orientation, distances and cardinal directions.  
The bases for the integration in the spatial reasoning field 
of different spatial aspects, have been inspired in the 
temporal reasoning field, where the integration of point 
algebra, interval algebra and metric information has been 
successfully accomplished [Meiri 1991]. In order to 
accomplish the task of integrating different spatial aspects 
in the same model, the next three steps are defined: 

• the representation of the spatial aspect to be integrated 

• the definition of the Basic Step of the Inference 
Process (BSIP). It is defined such as: given the spatial 
relationship between objects A and B, and the spatial 
relationship between objects B and C, the BSIP 
consists of obtaining the spatial relationship between 
A and C. 

• the definition of the Complete Inference Process 
(CIP), that consists of repeating the BSIP as many 
times as possible, with the initial information and the 
information provided by previous steps of the BSIP, 
until no more information can be inferred. 

The concepts of orientation, cardinal directions, and 
absolute and relative distances have been integrated in the 
same model thanks to consider the representation and the 
reasoning process of each aspect as an instance of the 
Constraint Satisfaction Problem [Escrig & Toledo 01].  

In this paper, topological together with time information 
will also be integrated in the previous mentioned model, 
following the same idea. 

Bases for the Integration of Several Temporal 
Aspects 

As we have mentioned in the introduction, the integration 
of several temporal aspects has been accomplished by 
considering them as instances of the CSP. The best-known 
solution to the CSP problem has not polinomic temporal 
complexity, however, there exist algorithms which 
approximate the solution. These algorithms approximate 
the complete propagation process by local constraint 



propagation, as path consistency. If the constraint graph is 
complete (that is, there is a pair of arcs, one in each 
direction, between every pair of nodes) it suffices to 
repeatedly compute paths of two steps in length at most. 
This means that for each group of three nodes (i,k,j) we 
repeatedly compute the following operation until a fix 
point is reached [Fruehwirth 1994]: 

kjikijij cccc ⊗⊕=:  (1)  

This operation computes the composition of constraints 
(⊗) between nodes ik and kj, and the intersection (⊕) of 
the result with constraints between nodes ij. The 
complexity of this algorithm is O(n3) , where n is the 
number of nodes in the constraint graph (that is, the 
number of objects involved in the reasoning process) 
[Kumar 92; Mackworth & Freuder 85]. 

Constraint Handling Rules (CHRs) are a tool which helps 
to write the above algorithm. They are an extension of the 
Constraint Logic Programming (CLP) which facilitate the 
definition of constraint theories and algorithms which 
solve them. They facilitate the prototyping, extensions, 
specialization and combination of CSs [Fruehwirth 94]. 
There exist mainly two types of CHRs: propagation and 
simplification. Propagation CHRs add new constraints 
which are logically redundant but may cause further 
simplification. A propagation CHR is of the from: 

kji BBGGHH ,,|,,,, 111 LLL ==>      (i>0, j≥0, k≥0) 
The propagation from user-defined constraints, H’, means 
the addition of the set of constraints B to the initial set of 
constraints if H’ matches the head (H) of a propagation 
rule and G is satisfied. This kind of rules are used to 
compute the part ‘⊗’ of formula (1). 

Simplification CHRs replace constraints by simpler 
constraints preserving logical equivalence. A simplification 
CHRs is of the form: 

kji BBGGHH ,,|,,,, 111 LLL <=>
    (i>0, j≥0, k≥0) 

The multi-head ( )iHH ,,1 L  is a conjunction of user-
defined constraints and the guard ( )iGG ,,1 L is a 
conjunction of literals. To simplify the user-defined 
constraints H’ means to replace them by B if H’ matches 
the head (H) of a simplification rule ant the guard G is 
satisfied. This kind of rules are used to compute the part 
‘⊕’ of formula (1). 

Overview of the Topological Calculus 

To make this paper self-contained we now give a concise 
summary of the topological calculus selected to get the 
integration of topology and time. A fuller explanation can 
be found in [Isli, Museros et al. 00]. We have developed 
this topological calculus because it is presented as an 
algebra alike to Allen’s [Allen 83] temporal interval 
algebra and it allows us to reason about point-like, linear 
and areal entities, which will allow us the use of different 
granularities of the same map. The calculus defines 9 

topological relations, which are described bellow, that are 
mutually exclusive, that is, given 2 entities, the relation 
between them must be one and only one of the 9 relations 
defined. 
A topological relation r between two entities h1 and h2, 
denoted by (h1,r,h2), is defined on the right hand side of the 
equivalence sign in the form of a point-set expression. The 
definitions of each topological relation are described 
bellow in table 1. 

Integrating Topology and Time 

The representational model 
Our aim is to propose a constraint-based approach to 
integrate the topological calculus developed in [Isli, 
Museros et al. 00] and time. The topological relations of 
the calculus in [Isli, Museros et al. 00] has been described 
in the previous section. But we still have to describe the 
time algebra that we have chosen for the integration. We 
are going to define a temporal algebra, in which variables 
represent time points and there are five primitive 
constraints: prev, next, <<, >>, ==, which are defined as 
follows: 

Definition1. Given two time points, t and t’, t == t’ iff 
has not occurred a change  between t and t’ (or between t’ 
and t) on any relation. 

Definition2. Given two time points, t an t’, t’ next t iff t’ 
> t and some relation or relations have changed to a 
neighbor relation between t and t’. 

Definition3. Given two time points, t and t’, t’ prev t iff 
t’ < t and some relation or relations have changed to a 
neighbor relation between t and t’. 

Definition4. Given two time points, t and t’, t’ >> t iff t’ 
> t and a relation  has changed strictly more than once to a 
neighbor relation. 

Definition5. Given two time points, t and t’, t’ >> t iff t’ 
< t and a relation has changed strictly more than once to a 
neighbor relation. 

According to this, time is represented by disjunctive 
binary constraints of the form X{r1, ..., rn}Y, where each ri 
is a relation that is applicable to X and Y. X{r1, ..., rn}Y is 
a disjunction of the way (Xr1Y) ∨ .... ∨ (XrnY) and ri is 
also called primitive constraints. 

We have chosen this type of qualitative time constraints 
because we are only interested in the point of the time in 
which one region is transformed into its topological 
neighborhood.  

 



Relation Definition Graphic Example 
touch (h1, touch, h2)   ↔   h°1 ∩ h°2 = ∅  ∧  h1 ∩ h2 ≠ ∅  

 
 

cross (h1,cross,h2)↔dim(h°1 ∩ h°2)= max(dim(h°1),dim(h°2)) – 1  ∧  
h1 ∩ h2≠h1   ∧   h1∩h2≠h2 

 
 
 

overlap (h1, overlap, h2)↔dim(h°1)= dim(h°2)= dim(h°1 ∩ h°2) ∧    
h1∩h2≠h1 ∧ h1∩h2≠h2 

 
 
 

disjoint (h1, disjoint, h2)   ↔   h1 ∩ h2 = ∅  
 
 

equal Given that (h1, in, h2) ↔  h1 ∩ h2 = h1  ∧  h°1 ∩ h°2 ≠ ∅: 

if (h2, in, h1) then (h1, equal, h2) 
 

 
 
 

completely-inside Given that (h1, in, h2) and not (h1, equal, h2): 
if h1 ∩ δh2 ≠ ∅ then (h1, touching-from-inside, h2) 

 
 
 
 

touching-from-inside If (h1, in, h2), not (h1, equal, h2) and not then (h1, touching-
from-inside, h2) then: (h1, completely-inside, h2) 

 

 

completely-insidei (h1, completely-insidei, h2) ↔ (h2, completely-inside, h1)  
 
 
 

touching-from-insidei (h1, touching-from-insidei, h2)   ↔   
                                         (h2, touching-from-inside, h1) 

 
 
 
 

Table 1. Topological relations of the calculus. 
 
 

The topological neighborhood of a region is that region 
to which the original region can be transformed to by a 
process of gradual, continuous change which does not 
involve passage through any third region.  

To reason about these temporal constraints we need to 
define the converse and composition operations and 
construct the converse and composition tables.  

First of all we need to define what we understand as a 
general relation of the calculus because we are going to 
define the converse and composition operation in terms of 
general relations.  

Definition6. A general relation R of the calculus is any 
subset of the set of all atomic relations. 

Definition7. The converse of a general relation R, 
called R∪ is defined as:  

∀(X,Y) ((X,R,Y) ⇔ (Y,R∪,X))    (2) 

Definition8. The composition R1 ⊗ R2 of two general 
relations R1 and R2 is the most specific relation R such 
that:  

∀ (h1, h2, h3) ((h1, R1, h2) ∧ (h2, R2, h3) ⇒ (h1, R, h3) (3) 

Below, we find table 2 and 3 which are the converse 
table and composition table respectively for the time 
algebra. 

r r∪ 

== == 

<< >> 

>> >>
 

next prev 

prev next 

Table 2. The converse table for the time algebra. 

    r1                
r2 

<< prev == Next >> 

<< {<<} {<<} {<<} {prev,<<} {<<,prev, 
==,next,>>} 

prev {<<} {<<,prev} {prev} {==,prev,next} {next,>>} 
== {<<} {prev} {==} {next} {>>} 

next {<<,prev} {prev,==,next} {next} {>>,next} {>>} 
>> {<<,prev, 

==,next,>>} 
{>>,next} {>>} {>>} {>>} 

Table 3. The composition table for the time algebra. 
The composition and converse tables for topological 
relations can be found in [Isli, Museros et al. 00]. 

A1, A2 

A 
L 

A1 A2 

L A 

A1 

A2 

A1 
A2 

A2 

A1 

A2 
A1 

A1 A2 



The first step to define the framework to reason with 
several spatial aspects including motion is to create the 
representational model of topology and qualitative time 
points. The representational model follows the formalism 
used by Allen for temporal interval algebra [Allen 83]. 
The Allen style formalism will provide to our approach the 
possibility of reasoning with topology in dynamic worlds 
by applying the Allen’s constraint propagations algorithm.  
As we have mentioned the representational model uses the 
topological calculus developed in [Isli, Museros et al. 00] 
and the time algebra described above. 
The binary relations between two objects, which can be 
points, lines or areas, h1 and h2 of the representation model 
in a point of time t are defined as tertiary constraints or 
propositions where the topological relation r between h1 
and h2 in the point of time t is denoted by (h1,r,h2)t. From 
this definition we define a general relation R of the 
algebra during time t as: 

∀(h1,h2) ((h1,R,h2)t ⇔ Ur∈R (h1,r,h2)t)  (4) 

Definition9. The converse of a general relation R in time t, 
denoted as R∪, in defined as follows: 

∀(h1,h2) ((h1,R,h2)t ⇔ (Y,R∪,X)t)    (5) 

From this definition we observe that the converse of he 
algebra defined including topology and time is the same as 
the converse defined only for topological relations because 
the converse is calculated in the same point of time, 
therefore time does not affect to the converse operation. 
The spatio-temporal converse table is depicted in table 4. 

r r∪ 

touch touch 

cross cross 

overlap overlap 

disjoint disjoint 

equal equal 

completely-inside completely-insidei 

touching-from-inside touching-from-insidei 

completely-insidei completely-inside 

touching-from-insidei touching-from-inside 

Table 4. The converse table for the spatio-temporal algebra 

The Basic Step of the Inference Process 
The BSIP for topological information and time consists of: 
"given three objects A,B, C, if the topological relationships 
in time between A and B and B and C are known, it is 
possible to obtain the topological relationship in time 
between objects A and C”. To infer such topological 
relationship in time we are going to define the composition 
operation for two general relations R1 and R2. 
The composition for the model including topology and 
time has to be defined to include all the possibilities in 
three different ways as follows: 

Definition10. The resulting general relation R obtained 
from the composition (⊗) operation could be calculated 
as: 

a) (A,R1,B)t0 ⊗ (B,R2,C)t0 ⇒ (A,R,C)t0 
b) (A,R1,B)t0 ⊗ (t0, Reltime, t1) ⇒ (A,R,B)t1 
c) (A,R1,B)t0 ⊗ (B,R2,C)t1 / (t0, Reltime, t1) ⇒ 

((A,R1,B)t0 ⊗ (t0, Reltime, t1)) ⊗ (B,R2,C)t1 ⇒ 
(A,R’,B)t1 ⊗ (B,R2,C)t1 ⇒ (A,R,C)t1 

The first type of composition (Definition10.a) is the 
composition of the topological relations between three 
regions A, B and C, in the same point of time, where A, B, 
C belong to {point, line, area}. Then it is the usual 
topological composition, the time does not affect. To 
calculate this composition we will use the 18 composition 
tables and the converse table defined in [Isli, Museros et al. 
00]. The tables can be found in [Isli, Museros et al. 00]. 

The second type of composition (Definition10.b) is the 
composition which implements Freksa’s conceptual 
neighborhood notion. It looks for the possible topological 
relations which will appear between two regions as time 
changes. To reason about this we need to construct 6 
composition tables that will be referred to as XYt–table 
where the regions X and Y belong to {point (P), line (L), 
area (A)} and t represents the dimension of time of the 
algebra. We would need 9 composition tables (32) if we 
consider all possibilities with X and Y being a point-like, a 
linear or an areal entity. However, we construct only 6 
tables from which the other 3 tables can be obtained using 
the converse operation. We construct the AAt-table, LAt-
table, PAt-table, LLt-table, PLt-table and the PPt-table, 
which are depicted in tables 5 to 10 respectively. Note: due 
to limitation restrictions the topological relation are 
represented in the next way: touch is represented by T, 
cross by C, overlap by O, disjoint by D, completely-inside 
by CI, touching-from-inside by TFI, equal by E, touching-
from-insidei by TFIi and completely-insidei by CIi. And due 
to limitation space we have depicted in a common column 
the case for “next” and “prev” and a common column for 
the case of “<<” and “>>” because their entries are the 
same. 

From the tables we can also infer that the = time 
relation represents the identity. 

Reltime 
 

RelTop      

next or 
prev << or >> == 

T {D,O,T} {T,E,TFI, 
CI,TFI, 

CIi,TFIi} 

{T} 

O {T,TFI,O} {O,D,E, 
CI,TFIi,CIi} 

{O} 

D {T,D} {D,O,E, 
TFI,CI, 

TFIi,CIi, 
TFIi} 

{D} 

E {O,E,} {E,T,D, 
TFI,CI, 

TFIi,CIi} 

{E} 

TFI {O,CI,TFI} {TFI,T, {TFI} 



D,E,CI, TFIi, 
CIi} 

CI {TFI,CI} {CI,T,O, 
D,E, 

TFIi,CIi} 

{CI} 

TFIi {O,CIi,TFi} {TFIi,T,D,E, 
CI,TFI} 

{TFIi} 

CIi {TFIi,CIi} {CIi,T,O,D,E, 
TFI,CI} 

{CIi} 

Table 5. AAt-table 
Reltime 

 
Reltop 

next or prev << or >> == 

T {C,D,T} {T,TFI,CI} {T} 
C {D,TFI,C} {C,T,CI} {C} 
D {T,D} {D,C,TFI,CI} {D} 
TFI {C,CI,TFI} {TFI,T,D} {TFI} 
CI {TFI,CI} {CI,T,C,D} {CI} 

Table 6. LAt-table 

      
Reltime 

 
Reltop 

next or prev << or >> == 

T {D,CI,T} {T} {T} 
D {T,D} {D,CI} {D} 
CI {T,CI} {CI,D} {CI} 

Table 7. PAt-table 

          Reltime 
Reltop  next or prev << or >> == 

T {D,O,C,T} {T,E,TFI,CI, 
TFi,CIi} 

{T} 

D {T,C,D} {D,O,E,TFI,CI, 
TFIi,CIi} 

{D} 

O {T,C,O} {O,D,E,TFI,CI, 
TFIi, CIi} 

{O} 

C {T,D,C} {C,O,E,TFI,CI, 
TFIi, CIi} 

{C} 

E {T,O,E} {E,D,C,TFI,CI, 
TFIi,CIi} 

{E} 

TFI {C,CI,T,TFI} {TFI,D,O,E, 
TFIi,CIi} 

{TFI} 

CI {TFI,C,CI} {CI,T,D,O,E, 
TFIi,CIi} 

{CI} 

TFIi {T,C,CIi,TFi} {TFIi,D,O,E, 
TFI,CI} 

{TFIi} 

CIi {C,TFIi,CIi} {CIi,T,D,O,E, 
TFI,CI} 

{CIi} 

Table 8. LLt-table 

            
Reltime 

Reltop  
next or prev << or >> == 

T {D,CI,T} {T} {T} 
D {T,CI,D} {D} {D} 
CI {T,D,CI} {CI} {CI} 

Table 9. PLt-table 

          Reltime 
Reltop next or prev << or >> == 

E {D,E} {E} {E} 
D {E,D} {D} {D} 

Table 10. PPt-table 

As a relation t prev t’ corresponds to a change of some 
topological relation to a neighbour relation, the tables 
always keep the possibility that a relation has not changed 

between time t and t’, this situation model the fact that the 
time changes from t to t’ because other topological 
relationship has changed and the relationship between X 
and Y (RelTop) has not changed.  

The 3 tables not constructed can be obtained by 
applying the converse operation. For example, the ALt-
table is not constructed but we can get any of its entries 
using the LAt-table. This means that we have to find the 
most specific relation R such that, if X and Y are an areal 
and a linear entity respectively: 

(X, Reltop, Y)t0 ⊗ (t0, Reltime, t1) ⇒ (X, R, Y)t1 (6) 

From the LAt-table and using the converse operation we 
will get the relation R as follows: 

(Y, Reltop∪, X)t0 ⊗ (t1, Reltime∪,t0) ⇒ (Y, R’, X) (7) 

Then the relation R that we are looking for is R=(R’)∪. 
For the third case of composition (Definition10.c) we 

want to infer the composition R in time t1 between 3 
regions, X, Y and Z having the topological relation in time 
t0 between X and Y, the topological relation in time t1 
between Y and Z and the qualitative time relation between 
times t0 and t1. To get the composition relation R, first we 
have to obtain the topological relations that can appear 
between X and Y in time t1 using the composition tables 
defined for the case of Definition10.b above described. 
Then we have the general relation R’ which appear 
between X and Y during t1, this together with the general 
relation R2 between Y and Z in t1 is a case suitable to 
apply the usual composition tables as explained for the 
case of Definition10.a and we will get the general 
composition relation R. 

The Full Inference Process 
For computing the Full inference process (FIP) of 
topological and time information we consider that:  
1) each topological relationship between two objects in 

time t is seen as a constraint; 
2) the set of topological relationships in time forms a 

constraint graph, where the nodes are spatial objects 
(points, lines and areas) and the arcs are the binary 
constraints between objects. This constraint graph is 
not complete at the beginning, that is, all the nodes are 
not bi-directional connected, because there is no initial 
topological relationship in time between all the objects 
in the space; 

3) the fact of propagating the constraints for making 
explicit the topological relationships between all the 
nodes in the graph is seen as an instance of the CSP. 

The formula (1), which approximated the solution for 
temporal objects, is rewritten for topological relations 
between spatial objects in a point of time in three formulas 
for each of the definition of composition given for the 
BSIP, as follows: 

Case 1: ca,c,t:= ca,c,t ⊕ ca,b,t ⊗ cb,c,t  (8) 
Case 2: ca,b,t1:= ca,b,t1 ⊕ ca,b,t0 ⊗ ct0,t1  (9)  



Case 3: ca,b,t1:= ca,c,t ⊕ ca,b,t0 ⊗ cb,c,t1  (10) 

In our approach, the constraint ca,b,t (which represents 
the topological relationship holding between objects a, b in 
time t) is represented by the PROLOG predicate 
ctr_comp_top(TB,TA,A,B,Rel,t), where A and B are the 
spatial objects which holds the set of atomic topological 
relationships included in the set Rel in the point of time t, 
TB and TA represents the types of the objects A and B, 
which can be point (p), line (l) or area (a). And the 
constraint cto,t1 represents the time constraint between 
points of time t0 and t1, (t0, Rtime,t1), and is represented by 
the PROLOG predicated ctr_comp_time(t0,t1,Rtime). 

We have implemented a PROLOG algorithm for the 
FIP, which is not included in this paper due to limitation 
restrictions, and in this algorithm the part of the 
intersection (ca,b⊕....) of (8,9 and 10) is implemented by a 
simplification CHR and the part of the composition (ca,b ⊗ 
), which corresponds to the BSIP defined in the previous 
section, is implemented by propagation CHRs. 
In the algorithm, which implements the FIP, no queue of 
modified constraints is needed because the new constraint 
goal itself will trigger new applications of the propagation 
CHRs.  

The complexity of this algorithm is O(n3) , where n is 
the number of nodes in the constraint graph (that is, the 
number of objects involved in the reasoning process). 

Conclusions and Future Work 

The major contribution of the work presented in this paper 
is the definition of an approach for integrating topological 
aspects together with time with other spatial aspects 
(orientation, cardinal directions and named distance) in the 
same model. To make possible the integration it is 
necessary to define (1) its representation; (2) the basic step 
of the inference process; and (3) the full inference process. 
A uniformity of implementation of these three parts for 
each spatial aspect allows us the integration. It is achieved 
by using constraint logic programming extended with 
constraint handling rules (CLP+CHR) as tool. The 
paradigm CLP+CHR is used to implement a constraint 
solver which solves in a straightforward way the complete 
inference process for each aspect of the space to be 
integrated. Therefore CLP+CHR provides a suitable tool 
for the integration.  

Although only the topological together with time model 
has been described in this paper, qualitative orientation, 
cardinal direction and named and compared distances have 
also been integrated into the same model following the 
same steps described here with the topological and time 
information ([Escrig & Toledo 01]). 

The framework presented here could help us to reason 
about the sequence of topological situations that an 
autonomous robot should find during its way from a 
starting region to a target objective. It can also help to 
detect situations in which the robot is loosing its direction 
of movement. This is our future work, that is the 
application of this representational model to the 

autonomous robot navigation problem. For instance, if we 
have a situation as the one depicted in figure 1 in time t0, 
and we want that the robot goes from region1 to region2, 
we know that the sequence of topological relations 
between the robot (interpreted as a mobile region) and the 
origin region, called region1, and the target region, called 
region2, is the next one:  

(Robot,CIi,Region1)t0 and (Robot,D,Region2)t0, 
(Robot,TFIi,Region1)t1 and (Robot,T,Region2)t1, 
(Robot,O,Region1)t2 and (Robot,O,Region2)t2, 
(Robot,T,Region1)t3 and (Robot,TFIi,Region2)t3, 
(Robot,D,Region1)t4 and (Robot,CIi,Region2)t4 
where t0 prev t1 prev t2 prev t3 prev t4. 

Note that we have used the same notation for the 
topological relations as the one used for the composition 
tables. 

 

 
 
 
 
 
 
 a. Initial situation 
 
 
 
 
 

b. Robot TFIi region1 and T region2. 
 
 
 
 
 

c. Robot overlapping both regions 
 
 
 
 
 

d. Robot TFIi region2 and T region1 
 
 
 
 

e. Final situation 

Figure 1. Graphical Sequence Situations  of the example given in 
conclusions. 

If during the robot’s way until the target objective we 
find a situation which does not follow the sequence, for 
instance we find (Robot,TFIi,Region1)t1 and 

Robot 

Region1 

Region2 



(Robot,D,Region2)t1, the robot is losing its direction of 
movement. Therefore we want to use this knowledge to the 
navigation of an autonomous robot integrating this 
knowledge to other qualitative spatial information such as 
orientation, distance and cardinal directions in the same 
way as it has been done in [Escrig & Toledo 01]. A 
preliminary result of that application has been obtained by 
using qualitative representation of such spatial aspects for 
the autonomous simulated navigation of a Nomad-200 
robot, on a structured environment of an easy corridor 
(with offices in only one side) in a building [Museros and 
Escrig 02]. 
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