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Abstract 
An approach for representing and reasoning with 3-D 
qualitative orientation of point objects is presented in 
this paper. The model in 3-D is an extension of the 
Zimmerman and Freksa’s orientation model in 2-D. 
The paper presents several attempts to represent 3-D 
spatial orientation, why those first attempts did not 
work and how problems which have been found are 
solved in a 3-D model. An iconical notation for 3-D 
spatial orientation relations is also presented with the 
aim of representing conceptual neighbourhood. The 
algebra of this model is also explained. 
Keywords: Spatial Reasoning, Qualitative 
Reasoning, Qualitative Orientation. 

Introduction 

One of the main aims of the Artificial Intelli gence 
field is to simulate human behaviour in general and 
build robots with a human-like performance in 
particular. The principal goal of the Qualitative 
Spatial Reasoning field is to represent our everyday 
common sense knowledge about the physical world, 
and the underlying abstractions used by engineers 
and scientists when they create quantitative models. 
Kak [10] points out that the behaviour of the 
intelli gent machine of the future might carry out 
temporal reasoning, spatial reasoning and also reason 
over interrelated entities occupying space and 
changing in time with respect to their attributes and 
spatial interrelationships. Spatial information that we 
obtain through perception is coarse and imprecise, 
thus qualitative models which reason with 
distinguishing characteristics rather than with exact 
measures seems to be more appropriate to deal with 
this kind of knowledge.  
Supposing that we want to know the qualitative 
orientation of the workmate' s off ice in our university 
building (which has more than one floor) with 
respect the position that we have. Or we know the 
relative orientation between some off ices (in that 
building) and we want to know the orientation of 
every off ice with respect the rest of the off icer. In 
that case, we need to know the height in which every 
off ice is situated, that is, we need to represent and 
reason with a 3-dimension orientational model. 

Among the approaches that deal with qualitative 
spatial orientation, it is important to distinguish 
between models based on projections and models not 
based on projections. In models based on 
projections, the relative orientation of objects is 
obtained by using (orthogonal or non-orthogonal) 
projections of objects into external axes, and then 
reasoning in one-dimension, by using Allen' s 
temporal logic. There exist mainly three qualitative 
approaches for orientation which are based on 
projections: Guesgen' s approach [8] is a 
straightforward extension of Allen' s temporal 
reasoning; Chang and Jungert approach [1], and 
Mukerjee and Joe' s approach [12]. Models based on 
projections might provide inconsistent representation 
of objects whose sides are not parallel to the axes. To 
overcome this problem, qualitative models not based 
on projections have been developed.  
There exist mainly three qualitative models for 
orientation which are not based on projections into 
external reference systems (RS): Freksa and 
Zimmermann' s model [3, 4, 5, 6]; Hernández' s 
approach [9]; and Frank' s approach [7]. In these 
models not based on projections, space is divided 
into qualitative regions by means of RSs, which are 
centered on the reference objects (i.e. the RS are 
local and egocentric). Spatial objects are always 
simpli fied to points, which are the representational 
primitives.  
From the three models not based on projections, the 
Zimmerman and Freksa' s model is considered more 
cognitive because no extrinsic reference system 
(such as magnetic poles) is necessary. This model 
has been chosen for its extension to 3-D. 
In order to deal with 3-D orientation, first of all we 
are going to represent this spatial aspect and 
secondly we are going to reason with it. In the 
reasoning process we are going to distinguish two 
parts: the Basic Step of the Inference Process (BSIP) 
and the Full Inference Process (FIP). For those 
models not based on projections, the BSIP can be 
defined in general terms such as: given a spatial 
relationship between point c with respect to a RS, 
and another spatial relationship between point d with 
respect to another RS, point c being part of that RS, 



the BSIP consists of obtaining the spatial relationship 
of point d with respect to the first RS. The RS will be 
different depending on the model. When more 
relationships among several spatial landmarks are 
provided, then the FIP is necessary. It consists of 
repeating the BSIP as many times as possible, with 
the initial information and the information provided 
by some BSIP, until no more information can be 
inferred. 
In order to accomplish the integration of orientation, 
distance and cardinal directions into the same spatial 
model we will use the following three steps:  
(1) the representation of the spatial aspect to be 
integrated;  
(2) the definition of the BSIP for each represented 
spatial aspect; and  
(3) the definition of the FIP for this spatial aspect.  
These three steps have been applied for integrating 
into the same model. 
In this paper, we are going to focus our attention on 
the representation part and on the BSIP. 
The structure of the rest of the paper is as follows: 
firstly, the original 2-D orientation model will be 
introduced. Secondly, the extended 3-D orientation 
model will be explained including the representation, 
the algebra of this model, the Basic Step of Inference 
and the Full Inference Process. 

 a) b) c) d) 
Figure 1. a) The coarse 2-D orientational RS; b) the fine 
RS; c) the 15 qualitative regions and d) their names in 

iconical representation. 

  a) b) 
Figure 2. a) Three different regions are firstly considered 

in height: the plane where the 2-D orientation RS is 
studied, the region upper this plane and the region 
downer this plane; b) the corresponding iconical 

representation. 

The 2-D Zimmerman and Freksa’s 
or ientation representation 

In the [3,4,5,6] approach, the orientation RS is 
defined by a point and a director vector ab, which 

defines the left/right dichotomy. It can be interpreted 
as the direction of movement. The RS also includes 
the perpendicular line by the point b, which defines 
the first front/back dichotomy, and it can be seen as 
the straight line that joins our shoulders. This RS 
divides space into 9 qualitative regions (figure 1 a). 
A finer distinction could be made in the back regions 
by drawing the perpendicular line by the point a. In 
this case, the space is divided into 15 qualitative 
regions (figure 1 b). The point a defines the second 
front/back dichotomy of the RS. An iconical 
representation of the fine RS and the names of the 
regions are shown in figure 1 c) and d). 
The information represented in both coarse and fine 
RSs is where is the point c with respect to the RS ab, 
that is, c wrt ab. This information can also be 
expressed of four different ways as a result of 
applying the following four operations: Homing, 
Homing Inverse, Shortcut and Shortcut Inverse.  

The 3-D Or ientational Model 

Representation 
We can consider a plane which contains the two 
points which defines de 2-D RS, a and b. Another 
point c might be in the same plane, in an upper 
height or in a lower height (see the figure 2). 
Therefore we extend the 2-D grid to a 3-D grid 
where we consider the three planes where the point c 
could be. 
However, two points (a and b) define infinite planes 
(see figure 3). The plane chosen will tell us the 
qualitative height of a third point c. 

Figure 3. Depending on the plane we might say that the 
point c is up, in the same plane or down with respect to 

the line which defines ab. 

We are interested not only in representing orientation 
in 3-D, but also in reasoning with this concept in 3-
D. Three points define a plane perfectly. When a new 
point appears, it might be that the new point do not 
belong to the abc plane. It is impossible to reason 
changing completely the plane in every three 
different points. 
We do not need three points to construct our 
reference plane. We must decide on the plane before 
choosing the points [14, 17]. In that case, our 3-D 
orientation RS will be based on a point and a 
reference plane. The reference plane chosen will be a 
plane parallel to the floor (or to the base of the robot 
in a robotic application). In the case we do not have 
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any specific plane to make reference, we must decide 
it first. When we said a reference plane (as the point 
a could be in any height) we refer to all the family of 
planes parallel to the reference plane. 
Once the reference plane has been chosen, we 
consider two heights more that define the upper and 
downer height, respectively. Therefore, the 2-D 
orientation model has been extended to the third 
dimension, as it is shown in figure 4. 

 a) b) c) 
Figure 4.  a) left, straight and right; b) front, b-

orthogonal, neutral, a-orthogonal and back; c) up, same 
and down. 

 a) b) 
Figure 5. a) When a and b do not belong to the same 

reference plane, the point b is projected onto the plane 
which contains a in b'; b) Considering that the point b is 
downer the point a, the height of another point c is not 

determined. 

 

 a) b) 
Figure 6. If a point c is in the position given in figure a), 

it is iconicaly represented as in figure b). 

Considering these three heights we had extended the 
15 qualitative regions in to 45 qualitative regions 
(figure 5).  
Having these three heights (the up height, the same 
height and the down height with respect to the plane 
passes by the point a) implies that a and b have 
always to be in the same plane. In most of the cases 
this fact did not happen. When a and b are not in the 
same plane, it might happen that the point b is upper 
than the point a or that the point a is upper than the 
point b. If  the point b is upper than the point a, the 
reference plane passes by the point a and we work 

with the orthogonal projection of the point b onto the 
reference plane (in figure 6 the point c is upper the 
point a). When we considered the RS with the 
reference plane passing by the point b, we had only 
information about the point c with respect to the 
point a, but we did not have information about th 
eposistion of the popint c with respect to the point b; 
the third point could be in any height (see figure 6 
b). 
As the point a and the point b are not always in the 
same height, we can define a fine 3-D orientation RS 
by including five different heights: up, b-height, 
between, a-height and down. (figure 7 a). 

 a) 

 b) 
Figure 7. a) The 3-D orientation RS b)the names inside 

of the iconic representation. 

 a) b) 
Figure 8. a) The division of the 3-D space into 75 

regions; b) and the corresponding 3-D iconic 
representation. 
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In this case, the 3-D orientational RS divides space 
into 75 qualitative regions (figure 8 a), which arise 
from the three width parts, the five length parts and 
the five high parts (3 x 5 x 5 = 75). An 3-D iconical 
representation of the RS is shown in figure 8 b). 
The names of every region are defined according to 
the position they are. We will use acronyms as ulf if 
it position is in up-left-front; usf for up-straight-
front; urf for up-right-front, and so on (figure 7 b). 
As a matter of clarity, the 3-D representation has 
been translated into 2-D iconical representation, as it 
is shown in figure 9. In this 2-D iconical 
representation it is easier to perceive conceptual 
neighbourhood. 

a) 

b) 
Figure 9. a) A single cell divided into five heights and the 
names of every part; b) the representation of the different 

heights.  

By agreement, in what follows we are going to 
reason with the point b above the point a. 
For the cases in which the second point of the 
front/back dichotomy is not in the same plane or 
above the first point of the front/back dichotomy, we 
rotate the RS 180 degrees by using the spin operation 
(figure 10). The algebra of this operation will be 
defined in the next section. 

 a) b) 
Figure 10. a) When the point b is not above the point a b) 

the spin operation is made (rotate 180º the RS). 

You can see some examples of the 3-D qualitative 
orientation represented in the 2-D iconical diagram 
drawing in figure 11. 

Figure 11: Some examples of object orientation in 3-D 
and their corresponding iconical representation 

The information to be represented with this 3-D 
orientation RS (c wrt ab) can also be expressed of 
four different ways (as well as the original 2-D 
orientation RS) as a result of applying the following 
operation whose algebra is defined in the next 
section: Homing, Homing Inverse, Shortcut and 
Shortcut Inverse. 

Algebra 

In our approach, the operations have been 
implemented as facts in a PROLOG database. In 
order to deal with the disjunction of relationships, the 
result of applying some operation to any orientation 
relationship is a list of relationships. Often this list 
contains only a relation (as in Identity, Inverse or 
Spin operations), but it allows us to deal with more 
than one relation if necessary (as in Homing, Homing 
Inverse, Shortcut and Shortcut Inverse) [13, 15, 16]. 
Identity. We will represent the identity operation as 
ID. 
The algebraic notation is: ID(c wrt ab) = c wrt ab. 
The 2-D iconical representation of this operation is 
presented in figure 12 with the 75 different positions. 
The PROLOG facts of the Identity operation would 
be for instance (see figure 12): id(ulf,[ulf]); 
id(usf,[usf]); etc. 

Figure 12: The 2-D iconical representation of the 3-D 
qualitative spatial orientation ``c wrt ab'' . 

Inversion. The inversion operation (INV) 
corresponds to consider the point c with respect to 
the RS ba (see figure 13 a). 
The algebraic notation is: INV(c wrt ab) = c wrt ba. 
The iconical representation of this operation is 
shown in figure 13 b). 
The PROLOG facts of the Inversion operation would 
be for instance (figure 13 b): inv(ulf,[drb]); 
inv(usf,[dsb]); etc. 
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Spin. The spin operation (SP) is the result of rotating 
180 degrees the RS by the axis which passes by the 
two main points a and b of the RS (figure 10). This 
operation implies that anything which were up and 
right will be down and left, respectively, after 
applying the operation. 
The iconical representation of the spin operation is 
presented in figure 14. 
The PROLOG facts of the Spin operation would be 
for instance: sp(ulf,[drf]); 
sp(usf,[dsf]); etc. 

a) 

b) 
Figure 13: a) The inverse operation, and b) its 2-D 

iconical representation. 
Homing. In the homing (HM) operation we ask 
about the point a with respect to the RS formed by 
bc. (See the transformation in Figure 15 a) and the 
iconical representation in Figure 15 b). 
The algebraic notation is: HM(c wrt ab) = a wrt bc. 
The PROLOG facts of the Homing operation would 
be for instance (see figure 15 b): hm(ulf,[dlb]); 
hm(usf,[dsb]); etc. Here disjunction appear, for 
example: hm(us,[dlf, dsf, drf, dl, ds, 
dr, dln, dsn, drn, dla, dsa, dra, 
dlb, dsb, drb]). 

Figure 14: The 2-D iconical representation of spin 
operation. 

When we complete the HM operation of the 3-D 
orientation relationship left-front-b-height (first row, 
second column), it happens that c and b are in the 
same plane. Therefore, we reduce the five heights to 
three (a-height, between and b-height are the same 
plane). In this case, the result of the HM operation is 
a disjunction because we have considered the two 
cases in which the spin operation is not applied and 
when the spin operation is applied. 

a) 

b) 
Figure 15: a) The homing operation and, b) its 2-D 

iconical representation.  

a) 

b) 
Figure 16: a) The homing inverse operation and, b) its 2-

D iconical representation.  
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Homing Inverse. The homing inverse (HMI) 
operation is the result of applying the INV operation 
after the HM operation. 
The algebraic notation is: HMI(c wrt ab) = INV( 
HM( c wrt ab)) = a wrt cb. 
The homing inverse operation is presented in figure 
16. 
The PROLOG facts of the Homing Inverse operation 
would be for instance: hmi(ulf,[ulf]); 
hmi(usf,[usf]); etc. Also disjunction appear 
here, for example: hmi(us,[ulf, usf, urf, 
ul, us, ur, uln, usn, urn, ula, 
usa, ura, ulb, usb, urb]). 

Shortcut. In the shortcut (SC) operation we ask 
about the point b with respect to the ac RS. 
The algebraic notation is: SC(c wrt ab) = b wrt ac.  
The shortcut operation and its 2-D iconical 
representation is presented in figure 17. 
The PROLOG facts of the Shortcut operation would 
be for instance: sc(ulf,[brn]); 
sc(usf,[bsn]); etc. 

Shortcut Inverse. The shortcut inverse (SCI) 
operation is the result of applying the INV operation 
after the SC operation to the original orientation 
representation. 
The algebraic notation is: SCI(c wrt ab) = INV( SC( 
c wrt ab)) = b wrt ca. 
The shortcut inverse operation is presented in figure 
18. 
The PROLOG facts of the Shortcut Inverse operation 
would be for instance: sci(ulf,[brn]); 
sci(usf,[bsn]); etc. 

a) 

b) 
Figure 17: a) The shortcut operation; and b) its iconical 

representation. 

a) 

b) 
Figure 18: a) The shortcut inverse operation and b) its 2-

D iconical representation. 

Algebraic Combinations of Operations 
There is a strong inner resemblance between the 
homing and the shortcut operations, for which only 
one table is necessary [14, 17], because all the results 
found in the homing 3-D iconical representation are 
found in the shortcut 3-D iconical representation. 
We notice that the resulting operation of combining 
two operations is other operation. For example in 
INV(SC(x)) SC is used first and INV after, and it 
results SCI(x); in SC(INV(x)) INV is used first and 
SC after, and HM(x) is the result. 
An important feature of these operations is their 
idempotent property [2]. An operation is idempotent 
of level two if it is necessary to apply the operation 
twice to the original relationship in order to get the 
original relationship again. The inverse, homing and 
shortcut operations are idempotent of level two. For 
instance, INV(INV(c wrt ab)) = c wrt ab. An 
operation is idempotent of level three if it is 
necessary to apply the operation three times to the 
original relationship to get the original relationship 
again. The homing and shortcut inverse operations 
are idempotent of level three. For instance, 
HM(HM(HM(c wrt ab)))= c wrt ab. 
The operations which are idempotent of level three 
have another property: the application of the homing 
operation twice is equivalent to the application of the 
shortcut inverse operation once (i.e. SCI(HM(c wrt 
ab))= c wrt ab), and the application of the shortcut 
inverse operation twice is equivalent to apply the 
homing operation once (i.e. HM(SCI(c wrt ab))= c 
wrt ab). 
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Figure 19: The inference process.  

 

The Basic Step of the Inference Process 

The Basic Step of the Inference Process (BSIP) used in 
Freksa and Zimmermann's quali tative orientation approach 
is defined such as (figure 19): "given two relationships c 
wrt ab and d wrt bc, we want to obtain the relationship d 
wrt ab"  
The inference process among the coarse qualitative 
orientation relationships has been represented as an 
inference table of 75 x 75 entries using our approach. The 
first column of the table shows the relationship c wrt ab 
and the first row of the table depicts the relationship d wrt 
bc. The relationship obtained in the composition table is d 
wrt ab. This inference table is complete in the sense that it 
will be possible to find the composition of any of the 
seventy-five relationships defined in the coarse division of 
the space. The result of the inference is always one of the 
seventy-five relationships or a disjunction of them. 
Successive compositions of disjunction of relationships 
with another relationship can be accomplished by 
compositions of each single relationship belonging to the 
disjunction and then adding the results. 

Conceptual neighbourhood 
An important concept in the common-sense reasoning is 
the conceptual neighbourhood, which is not a concept 
exclusively related to qualitative reasoning. In all spatial 
perception representation, and identification situations are 
presented [3]. Moreover, the neighbourhood of objects and 
conceptual neighbourhood of relations between objects 
provide very useful information for spatial reasoning. 
Qualitative spatial reasoning (for instance the concept of 
orientation, distance, the treatment of extended objects, 
topology, and so on) divides space into qualitative regions. 
Conceptual neighbourhood may be explained in terms of 
two concepts: 
1) Persistence or continuity of the properties inside the 
same region; 

2) Discontinuity among regions that correspond to the 
quali tative change determined by important aspects. 
Intuitively, inside each qualitative region the same 
"feature" persists (for instance, in the qualitative region 
"front/close", which implies orientation and distance 
information, every point in the region shares the property 
of being in that region). Moreover, there exist boundaries 
among regions where the discontinuity presented 
corresponds to the changes in quality. 
In temporal reasoning, Freksa defines in [3] that: "Two 
relationships between pairs of events are conceptual 
neighbours if they can be directly transformed into one 
another by continuous deformation (i.e. shortening or 
lengthening) of the events". 
In spatial reasoning the conceptual neighbourhood may be 
defined such that [2]: 
"Two qualitative spatial regions, A and B, are conceptual 
neighbours if, and only if, in a continuous translation from 
a position of the quali tative region A to a position of the 
quali tative region B, there does not exist a position 
belonging to another qualitative region C". 
 

 a) b) 
Figure20: Linearization of the topological arrangement in 

order to built the inference table for a) Allen's temporal logic 
and b) Freksa and Zimmerman RS.  
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Figure 21: The conceptual neighbourhood in 3D. 

Lots of benefits are obtained from the use of the 
neighbourhood concept. Among others, the following ones 
expressed in [3]: 
The structure of knowledge according to the conceptual 
neighbourhood of temporal and spatial relations allows the 
integration of coarse and fine knowledge. Freksa organises 
the world hierarchically according to the level of detail that 
is available [3]. The prerequisite for employing this 
approach is monotonicity of the reasoning process 
involved, i.e., the inferences carried out on the basis of 
coarser knowledge must remain valid when additional 
knowledge becomes available. Due to monotonicity 
properties of temporal and spatial domains, neighbouring 
initial conditions result at worst in neighbouring 
consequences; thus small uncertainties in the initial 
conditions do not cause drastically wrong conclusions. 
It permits an extension of the representation scheme (or 
inference tables) in such a way that it is robust against 
variations or small errors in the input knowledge. 
The inference table achieved by using the linear 
neighbourhood ensures that: 
a) The relations within a disjunction always form a 
conceptual neighbourhood. 
b) In many cases, a transition to neighbouring initial 
conditions results in the identical conclusion or in a subset 
or superset of an inference neighbourhood. 
c) In no case, a transition among neighbouring initial 
conditions results in a jump between non-neighbouring 
conclusions. d) The inference table shows much symmetry 
that may be util ised in the inference process. 
d) The inference table shows much symmetry that may be 
utilised in the inference process. 

The inference table 
It is important to remark that the inference tables are 
arranged in such a way that neighbouring rows and 
columns always correspond to conceptually neighbouring 
relations. As it was pointed out in [4], the topological view 
of the icons provides an explicit reasoning about 
neighbourhood. Examples of this fact are the 13 Allen's 
temporal relationships and Freksa and Zimmermann's 

division of the space. However, in order to visualise the 
reasoning procedure by means of tables, this topological 
arrangement is linearized in such a way that only a subset 
of the actual neighbourhood relationships is reflected. 
Figure 20 a) and b) corresponds to linearization of those 
topological representations. The arrangement of 
relationships in rows and columns of the fine 75 x 75 table 
of figure 8 a) is obtained following this idea, as it is shown 
in figure 21. 
As it will be impossible to show the complete table in this 
paper, we show the first fifteen entries in the first column 
and the first fifteen entries in the first row (figure 22) with 
the aim to show how the table is built. 
The PROLOG facts of the Inference Table would be for 
instance (see figure 28): inf_table(ulf, ulf, 
[ulf, ul, uln, ula, ulb]); 
inf_table(usf, usf,[usf]); etc. 

Figure 22: A part of the inference table (first fifteen rows and 
first fifteen columns).  



The Full Inference Process 

The Full Inference Process (FIP) is the other part in the 
reasoning process. It consists of repeating the BSIP as 
many times as possible, with the initial information and the 
information provided by some BSIP, until no more 
information can be inferred. 
When more relationships among several spatial landmarks 
are provided, then the FIP is necessary. 
In this section a Constraint Solver (CS) for qualitative 
orientation will be explained. This CS, which implements a 
path consistency algorithm, is based on Constraint Logic 
Programming (CLP) extended with Constraint Handling 
Rules (CHRs). 

Qualitative Orientation as a Constraint 
Satisfaction Problem 
Our qualitative orientation model implies three spatial 
objects (a, b and c), therefore the constraints which deal 
with this information are tertiary. The Constrain 
Satisfaction Problem (CSP) is reformulated for these 
tertiary constraints (c wrt ab) such that: given a set of 
variables {X1,...,Xn}, a discrete and finite domain for each 
variable {D1,...,Dn}, and a set of constraints {cc,ab 
(Xc,Xa,Xb)}, which define the relationship between every 
group of three variables (Xc,Xa,Xb), (1≤a<b<c≤n); the 
problem is to find an assignment of values (vc,va,vb), vi ∈ 
Di to variables such that all constraints are satisfied, i.e. 
cc,ab (Xc,Xa,Xb) is true for every a,b,c (1≤a<b<c≤n).  
We redefine a network of tertiary constraints as path 
consistent for triples of nodes (c,a,b) and all paths a-b-i1-...-
in-1-in between them, if the direct constraint cc,ab is tighter 
(has less disjunction) than the indirect constraint along the 
path, i.e. the composition of constraints ci1,ab ⊗ ... ⊗ cc,in-1in

 
along the path. In order to determine whether a graph is 
complete we repeatedly compute the following operation: 

cd,ab := cd,ab ⊕ cc,ab ⊗ cd,bc 
until a fixed point is reached.  

The Path Consistency Algorithm for Qualitative 
Orientation 
The following constraint satisfaction algorithm for 
complete disjunctive tertiary constraints networks is 
defined using PROLOG extended with CHRs. PROLOG 
provides backtracking and CHRs are used to implement 
path consistency at a high level of abstraction.  
The constraint cc,ab is represented in the algorithm by the 
predicate ctr_orient(C,A,B,Rel), where Rel is the 
list of primitive spatial orientation relationships forming 
the disjunctive constraint. The operation of a path 
consistency, is implemented by means of two kinds of 
CHRs. The part of the operation corresponding to the 
intersection cd,ab ⊕ ... is implemented by simplification 
CHRs: 

ctr_orient(C,A,B,R1), 
ctr_orient(C,A,B,R2) <=> 
intersection(R1,R2,R3) | 
ctr_orient(C,A,B,R3) 

The part corresponding to the cc,ab ⊗ cd,bc is implemented 
by propagation CHRs: 
ctr_orient(C,A,B,R1), 

ctr_orient(D,B,C,R2) ==> 
composition(R1,R2,R3) | 
newc(D,A,B,R3) 

Termination is guaranteed because the simplification rule 
replaces R1 and R2 by the result R3 of intersecting R1 with 
R2 (and R3 is the same as R1 or R2 or smaller) and 
because propagation CHRs are never repeated for the same 
constraint goals as it will be shown. 
The algorithm is based on the algorithm developed in [2]. 
The optimisation introduced in the algorithm of [11] 
(named PC-2) has also been included. This optimisation is 
based on the idea that the constraint cc,ab can be computed 
as the converse cc,ab if it is needed (by applying the inverse 
operation to the corresponding relationship), which saves 
half of the computation. 
Here disjunction could also appear in first and second 
argument; in those cases operations of union, intersection 
and composition of disjunctive ternary constraints must be 
used. 
The operations of union, intersection and composition are 
formally redefined for disjunctive ternary constraints in 
this section. 
The union of disjunctive ternary constraints can be 
formulated as follows: 
cc,ab ∪ c’ c,ab := c{r1,..., rn}ab ∨ c{s1,..., sm}ab = 
  c{r1,..., rn} ∪ c{s1,..., sm}ab 
The intersection is defined as follows: 
cc,ab ∩ c’ c,ab := c{r1,..., rn}ab ∧ c{s1,..., sm}ab = 
  c{r1,..., rn} ∩ c{s1,..., sm}ab 
The composition of disjunctive ternary constraints is 
defined as follows: 
cc,ab ⊗ c’d,ab := c{r1,...,rn}ab ∧ d{s1,...,sm}bc = 
  d{r⊗s|r ∈ {r1,..., rn}, s ∈ {s1,..., sm}}ab 
Where ⊗ is the basic step of inference process. 
All these operations are associative. 
A disjunctive ternary constraint cc,ab  between the variables 
a,  b  and  c, also written  c {r1,..., rn  }  ab, is a disjunction 
(c r1 ab) ∨ ... ∨ (c rn ab) where each ri is a relation that is 
applicable to c and ab. 

The Algorithm. Here a part of the path consistency 
algorithm to propagate compositions of disjunctive 
qualitative orientation relationships appear. 
% Constraint declarations and definitions  
constraints (ctr_orient)/4, 

(ctr_orient)/6. 
label_with ctr_orient(N,C,A,B,Rel,I) 

if N>1. 
ctr_orient(N,C,A,B,Rel,I) :- 

member(R,Rel), 
ctr_orient(1,C,A,B,[R],I). 

% Initialise 



ctr_orient(C,A,B,Rel) <=> 
length(Rel,N) 
|ctr_orient(N,C,A,B,Rel,1). 

% Special cases 
ctr_orient(N,C,A,B,R,I) <=> empty(R) 

| false.  
ctr_orient(N,C,A,A,R,I) <=> true.  
ctr_orient(N,C,C,B,R,I) <=> 

contains_equality_a(R) | true. 
ctr_orient(N,C,A,C,R,I) <=> 

contains_equality_b(R) | true. 
ctr_orient(N,C,A,B,R,I) <=> N=75 | 

true. 

% Intersection 
ctr_orient(N1,C,A,B,R1,I), 

ctr_orient(N2,C,A,B,R2,J) <=> 
intersection(R1,R2,R3), 
length(R3,N3), K is min(I,J) | 
ctr_orient(N3,C,A,B,R3,K). 

ctr_orient(N1,B,C,A,R1,I), 
ctr_orient(N2,C,A,B,R2,J) <=> 
hm_op(R1,R11),intersection(R11,R2,R
3), length(R3,N3), K is min(I,J) | 
ctr_orient(N3,C,A,B,R3,K). 

ctr_orient(N1,C,A,B,R1,I), 
ctr_orient(N2,B,C,A,R2,J) <=> 
hm_op(R2,R22),intersection(R1,R22,R
3), length(R3,N3), K is min(I,J) | 
ctr_orient(N3,C,A,B,R3,K). 

... 

% Composition 
ctr_orient(N1,C,A,B,R1,I), 

ctr_orient(N2,D,B,C,R2,J) ==> I=1, 
composition_op(R1,R2,R3), 
length(R3,N3), K is I+J | 
ctr_orient(N3,D,A,B,R3,K). 

ctr_orient(N1,B,C,A,R1,I), 
ctr_orient(N2,D,B,C,R2,J) ==> I=1, 
singleton(R1), hm_op(R1,R11), 
composition_op(R11,R2,R3), 
length(R3,N3), K is I+J | 
ctr_orient(N3,D,A,B,R3,K). 

ctr_orient(N1,C,A,B,R1,I), 
ctr_orient(N2,C,D,B,R2,J) ==> I=1, 
singleton(R2), hm_op(R2,R22), 
composition_op(R1,R22,R3), 
length(R3,N3), K is I+J | 
ctr_orient(N3,D,A,B,R3,K). 

... 

Two predicates, ctr_orient of arity 4 and 6, are 
declared in % Constraint declarations and definitions. 
Predicates ctr_orient/4 are the kind of constraints 
introduced initially as qualitative orientation information. 
The predicates of type ctr_orient/4 are translated into 
the predicates ctr_orient/6 by rule in %Initialize 
where the length (N) of the relationship is added as well as 
the length of the shortest path from which the constraint is 
derived. A path length equal to 1 means that the constraint 
is direct, that is, it is user-defined, not obtained from 
derivation. In % Special cases the first one will avoid 

compositions between constraints which do not give more 
information (the last rule here) because all the qualitative 
orientation primitive relationships are included in the 
disjunction. The last argument is used to restrict the 
propagation CHRs to involve at least one direct constraint. 
The constraints will be treated by the CLP clause if the 
relation, Rel, represents a disjunction of primitive 
relationships. In member(R,Rel) non-deterministically 
chooses one primitive constraint, R, from the disjunctive 
constraint Rel which implements the backtrack search 
part of the algorithm.  
% Special cases are simplification CHRs. The first rule 
detects inconsistent constraints. When the constraint relates 
three spatial objects with an empty relationship, the 
constraint is substituted by the built-in predicate false and 
the full predicate fails. If it is not the expected behaviour 
when inconsistent information appears, substituting the 
inconsistent constraint can change this rule by true, that is, 
deleting this constraint. The second rule deletes constraints 
that contain only one point as base for the reference 
system. Third and fourth rules delete constraints that 
contain equality, that is, when the third point of the 
relationship is equal to the first or second points of the RS, 
respectively. And last rule deletes constraints that contain 
the full primitive qualitative orientation relationship set. 
Simplification CHRs (rules in % Intersection) perform 
intersections which permit the simplification of redundant 
information. The first rule in % Intersection implements 
intersection in the way such as it is originally defined in 
the first rule in point 5.2, that is, given two constraints 
which relate the same three spatial objects, the more 
restricted relationship between both constraints is 
calculated by the predicate 
intersection(R1,R2,R3) and these constraints are 
substituted by a new one which relates the same three 
objects with the new relationship R3 among them. 
By applying the five operations (HM, SC, INV, HMI and 
SCI) to the first constraint of the two which are in the head 
of the original intersection rule (point 5.2), it is possible to 
obtain the orientation information among the same three 
spatial objects. (Only hm_op rule is exposed in this 
algorithm) Therefore, it is possible to calculate intersection 
if the corresponding operations are applied to the 
relationship or disjunction of relationships in the guard part 
of the rules. As it was formalised in point 5.2, the 
application of the above operations to a disjunction of 
relationships is equivalent to the application of these 
operations to each relationship included in the disjunction 
of relations.  
It is important to notice that the operations that are 
idempotent of level three, namely HM and SCI, have a 
different treatment to the rest of operations. If the HM 
operation is applied to the usual definition of the 
orientation ternary constraint (c wrt ab), the order of the 
variables in the constraint becomes (a wrt bc). However, if 
the HM operation is applied again to the result (to a wrt 
bc), instead of obtaining the original result, (which is the 
one expected when the operations are idempotent of level 



two), the relationship (b wrt ca) is achieved. This 
relationship is the result of applying the SCI operation to 
the original relationship. Therefore, when the HM 
operation is applied to the first constraint to obtain the new 
order among the variables, the SCI operation is applied to 
the relationship of this constraint in the guard part of the 
rule, in order to achieve the correct result. With the SCI 
operation also happens. 
Second Simpli fication CHR corresponds to the above 
explanation third simpli fication CHR corresponds to the 
case in which the operations are applied to the second 
constraint of the two which appear in the head of the 
original intersection rule (the first rule in point 5.2). A total 
of 11 simplification CHRs to compute intersection would 
be defined.  
Propagation CHRs (rules in % Composition) perform 
compositions. The first rule implements the composition as 
originally is defined in (the second rule in point 5.2). In a 
similar way to what it happens to the simplification rule 
(the first rule in point 5.2), the application of the five 
operations to the first constraint of the two which define 
the head of the original composition rule define the next 
six CHRs rules. If they are applied to the second 
constraint, the other six more. Hence, a total of 11 
propagation CHRs are needed to cover all possible 
combinations of constraints. The problem of those 
operations that are idempotent of level three is repeated 
here and it is solved in the same way. 
In CHRs (rules in % Composition) another optimisation is 
introduced. It consists of restricting one of the two 
constraints involved in the propagation to be disjunction-
free by adding to the guard a check that guarantees that its 
corresponding relationship is singleton. This not only 
reduces the average size of the resulting constraint but also 
makes composition more eff icient. 

Conclusions and Future Works 

In this paper, we have reached a model for representing 3-
D qualitative orientation and we have defined some 
operations to work with it. 
We have left out of this paper some future work: 
(1)The integration of different levels of granularity 
(2)The application of the 3-D orientation model to mobile 
robots with an arm manipulator on it. 
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