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Abstract 

The present work deals on the use of qualitative reasoning 
in order to carry out mobile robot path planning. A 
qualitative approach, based on potential field like methods 
has been developed. Qualitative variables, and operators 
have been established for manipulating, in a qualitative 
way, the information coming from sensors of mobile 
autonomous robots. The developed work is focused on a 
multiple mobile robot environment, and path planning is 
done in a decentralized way. Each mobile robot will carry 
out its own path planning without communicating among 
other robots or elements that are in the environment. The 
potential fields like schemes used in this paper are obtained 
from relative positions and velocities. 

Mobile robot path planning based on 
Potential Field Methods   

A great number of different techniques has been and are 
still developed in order to carry out efficient robot path 
planning. One of the most popular path planning method is 
based on the Potential Functions utilization where robot is 
modeled as a moving particle, inside an artificial potential 
field (U) that reflects free collision space structure into the 
robot workspace. Oussama Khatib initially developed 
artificial potential methods in 1980. Such Potential Fields 
are generated by superposing an attractive potential that 
attracts the robot to the goal configuration and a repulsive 
potential, which repulses robot far away from existing 
obstacles. The negative gradient of the generated global 
potential field is interpreted as an artificial force acting on 
the robot and causing variations on its movement. 
Nevertheless, as a main presented drawback, these 
methods can result to a trapped robot in local minimums 
generated by the same potential functions.  
There are a large set of studied potential functions that 
generates artificial potential fields depending only on the 
distance between robot position and each spatial point 
belonging to workspace [Khatib 85], [Volpe 87], [Zelinsky 
93], [Adams 90], [Warren 90]. Usual potential functions 
provide artificial potential fields with a symmetric circular 
or elliptical shape. Nevertheless, other potential functions 
                                                 
 

can be generated using not only a first moment (distance) 
but also a second moment (velocity), to moving obstacles 
(including also other robots moving in the same 
environment). The resulting, artificial potential fields take 
elongated shapes pointing to the relative moving direction 
[Fuertes 94], [Martinez 94], [Planas 96], [Planas 00]. 
Figure 1 shows the obtained geometry of these structures 
that we had named Dynamic Force Fields (DFFs), where 
the magnitude at each point can be interpreted as 
proportional to the probabili ty of collision at that point.  
 

  
 

Figure 1. DFF’s geometry 
 
Individual DFFs have their maximum value on the position 
of the detected objects and they decrease with object 
distance. In order to not associate DFFs in an unnecessary 
way, they have influence only if the relative distance 
between the detected object and the mobile robot is below 
the threshold.  
Two more features of our DFFs can be emphasized: they 
are not static, but they follow the dynamics of the object 
which they are associated, and they can be applied to static 
or dynamic objects as we are working with relative 
distances and velocities.  
Each robot associates a different DFF to a given object as 
there is a different relative position and velocity associated 
to them. If two or more objects are detected by one mobile 
robot, a resulting DFF is obtained by addition of individual 
force field values. So, each mobile robot obtains its own 
dynamic instantaneous environment model, which we 
could visualize like a rough landscape. In a multiple 
mobile robot system we can have very fast dynamics, with 
strong time requirements. Nevertheless, during robot 
navigation it could be more important to ensure the safety 



of the robots than their exact positioning at each time 
instant. So, Qualitative Reasoning can be a god approach 
to solve multiple mobile robots path planning, involving 
faster system operation but at the expense of precision loss. 

Qualitative approach to Potential Field 
Methods: Space Discretisation 

To have a qualitative robot workspace representation, and 
later to apply qualitative path planning, it will be necessary 
to define quali tative variables, qualitative partition’s limits, 
and quali tative operators associated to defined universe. 
Relative distance between robot position and any position 
in the workspace wil l be calculated using Euclidean 
distance, so we always obtain positive values. Based on 
this relative distance, we construct a quali tative variable 
Qdist with the associated limits: 
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Ordering these intervals on R+ , the obtained partition and 
the associated set of labels are shown in Figure 2. 
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Figure 2. Generated partition and Qdist associated set of labels 
over R+ 

  
Qdist is a non-equispaced partition, as we seek to emulate 
the concept of qualitative distance used by humans. The 
concept of nearby, used by persons, covers a more reduced 
area than the set of spatial points classified as a far-off 
distance. In order to define limits of the intervals, we take 
as a more critical situation those that imply an immediate 
stop. So, taking in account accelerated movement 
formulas, using the maximum robot’s velocity, and 
knowing deceleration parameters, we can obtain the 
necessary time and space to stop the robot, shown in the 
expressions (1):  
 
t = vmax / a (1) 
Smax =  vmax* t – ½ * a *t2  (1) 
 
Spatial zones will be established using the above 
expressions, but they must fulfill some restrictions: 
Qualitative spatial zones should cover the robot size plus 
the required space to stop it (Smax). 
• Qualitative spatial zones related with different labels 

should be obtained using different deceleration values. 
As mre far away is the evaluated spatial point, more 
slowly the robot can brake. So, the far-off spatial zones 
offer a more wide covered area than the nearby ones. 

• Nearest qualitative zone must be calculated using robot 
maximum deceleration, that can be obtained from 
datasheets or by means of empirical experimentation.  

• If there are different mobile robots, interacting in the 
same workspace, and with different performances, the 
more restrictive one wil l be taken into account for 
defining space discretisation. 

• It will be necessary to obtain an empirical calibration 
of the calculated qualitative zones, so as to contemplate 
the inertial robot behavior. 

To completely define detected object‘s position it is 
necessary a second qualitative variable, since robot 
workspace is a two dimensional environment. Qdev is 
defined as a qualitative deviation between detected object 
position and robot position, and it is defined over real axes, 
taking positive and negative values. Figure 3 shows Qdev 
partition and Qdev associated limits and labels:  
 

 
Figure 3. Generated partition and Qdev associated set of 

labels over R. 
 
Simultaneous representation of Qdist and Qdev gives a 
discrete representation of the robot workspace. In addition, 
the reaching area presented by the used sensors will module 
the obtained workspace representation. Figure 4 displays a 
quali tative workspace representation with sensors' 
modulation. 

Figure 4. Qualitative workspace representation with 
different used sensors limitation.  

 
So, robot workspace (W) becomes configured by all pairs 
(x,y) with: 
 

( ){ }Qdevy;Qdistx/x,yW ∈∈∀=                                 (2) 
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Qualitative Dynamic Force Field (QDFF) 
generation. 

In order to obtain a Qualitative Dynamic Force Field 
model (QDFF), we propose to collapse the DFF models as 
a set of ell iptical cylinders with different radius and 
heights. Each one of these elliptical cylinders wil l 
represent the repulsive force exercised on all the points 
over which it projects. Due to its own topology, QDFF 
projection on the robot workspace (W) becomes a set of 
concentric ellipses. Figure 5 shows QDFF model and its 
projection on the workspace.  
 
 

 
 
 

Figure 5. QDFF model and its projection on the workspace. 
 
Each one of the elliptical cylinders or ell iptical projected 
zones will represent a different level of sensed repulsive 
force. Then, a third variable was defined: Qlevels, which 
has as many associated labels as repulsive force levels 
exist in the QDFFs. In a more formal way, QDFF can be 
described as a set of ellipsis that forms a chain in relation 
to the inclusion operator. QDFFs wil l be described as (3) 
 

{ } 1121 ...;,...,, EEEEEEE kkk ⊂⊂⊂= −   (3) 

 
where: E is the complete QDFF; Ej are the different ell ipses 
(quali tative elliptic zones) and k is the QDFF dimension 
(number of different levels or ell ipses that forms the entire 
QDFF). It is easy to deduce that k will determine the 
number of labels associated to the qualitative variable 
Qlevels. 
Previous QDFF definition allows us to create a partition 
over the real axes R taking in account the inclusion of the 
ellipses (4). Also, a set of labels is associated to the new 
quali tative variable (5). 
 

[ [ [ [ [ [ [ [},,,,···,,,,0{ 112211 kkkke EEEEEEEQ −−−=        (4)  (4) 
Qlevels ={ 0, E1, E2 ··  Ek-2, Ek-1, Ek}       (5)
   (5) 
Two QDFFs performances must be quoted: 
1. They are dynamic models, so they change their 

representation in time. 
2. When the robot detects more than one object, a QDFF 

is associated to each one of them. Operating with these 

individual QDFFs, a composed QDFF is obtained. 
Composed QDFF will be used to realise robot path 
planning Generated Qualitative Algebra. 

Two performances mentioned in the previous paragraph 
forced us to create a new quali tative algebra that allows to 
operate with the qualitative variables related with QDFF 
model. With the purpose to be able to generate the 
composed QDFF when the robot detects two or more 
obstacles, a new qualitative operator has been defined: Let 
it be E and F two QDFFs associated to two detected 
obstacles, then (•) operator had been defined as (6): 
 

{ }kSSSFES ,...,, 21=•=  (6) 

 
Where S represents the composed QDFF. If E and F have 
the same number of qualitative labels, then composed 
QDFF has also the same dimension, that is S is represented 
by the same description universe (7). 
 

)dim()dim()dim( FES ==  (7) 
 
It could be interesting to note that composed QDFFs can 
present a differentiate performance: they can contain non-
connected zones, which are representatives of the same 
level of repulsive force. Individual QDFFs can’ t present 
this topology by its own construction geometry. Let it be S 
a composed QDFF, and Si the ellipses that forms S, then 
each new generated ellipse Si can be generated by means 
of next expression (8): 
 

jjjj FES ε
��

=  (8) 

 
Where εj is the polyhedron defined by the convex 
envelope, as it is shown in expression (9). 
   k-1         k-1 

εj = ( �  Ek �  Fi ) �   ( �  Ei �  Fk)   (9) 
   i=1         i=1 

(•) operator has some properties that could be interesting 
to note: 
If Sj is non-connected  ⇒  the convex envelope = 0 
If Sj is non-connected  ⇒  Sj = Ej �  Fj  
If Sj is non-connected  ⇒  Sl ; l ≥ j is non-connected 
Figure 6 shows composed QDFF generation process from 
two individual QDFFs. In the composed QDFF we can 
detect two non-connected zones with same associated 
label.  
 

             
Figure 6. Composed QDFF generation process from two 

individual QDFFs. 
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Ellipses Internal or External Points. 
From expressions (8) and (9) it can be seen that to generate 
new ellipses (Sj) that shapes composed QDFF, it is 
necessary to know which spatial points belong either to 
individual ellipses (Ej or Fj) or to a generated convex 
polyhedron (εj). In order to classify spatial points as 
internal to some ellipse or external ones, we propose the 
following method. Let R be a detected obstacle (as a 
mobile robot) with an associated elliptical QDFF. Let (xR, 
yR) be the estimated position of R, and Ej is one of the 
ellipses that forms the associated QDFF. Then, we can 
define the descriptive parameters of the ellipse that are 
shown in the Figure 7.  
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Ellipse descriptive parameters. 
 
As a first deduction we can ensure that any spatial point 
(x,y) referenced to (x0, y0) with relative distance p, defined 
as Euclidean distance: 
 

( ) ( )2
0

2
0 yyxxp −+−=  (10) 

 
will be external to the studied ell ipse if ((p > x_max)  or  
(p < x_min)). 
 
Otherwise, no asserts can be done. It is necessary to carry 
out a more detailed analysis. Figure 8 shows three defined 
points where it can be noted that if: 
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Figure 8. Internal or external point resolution. 

Convex Polyhedron’s inner or external points. 
In order to know if a spatial point belongs to or not 
belongs to the convex polyhedron generated from the 
intersection of two ellipses (ej), it will be necessary to be 
able to construct the mentioned polyhedron. So, it wil l be 
indispensable to find the intersection points between the 
ellipses belonging to two involved individual QDFFs. The 
problem of finding intersection points between ell ipses is a 
resoluble but complicated question. The problem 
complexity resolution increases if we want to use a method 
which takes into account all the possible situations, derived 
from placing two ellipses in the space. Dave Rusin 
(rusin@math.niu.edu), presents a method to solve the 
above-mentioned problem based on the use of quadratic 
polynomial to describe the ellipses.  
Once all the intersection points have been found, we can 
obtain the convex polyhedron. Nevertheless, the obtained 
intersection points must be ordered in order to join them in 
a correct way, otherwise the generated polyhedron can be a 
non convex polyhedron or a wrong one. In the developed 
work, we decide to proceed in the following way. 

1. Once the intersection points have been obtained, 
we calculate the center of gravity (xc, yc).  

2. Taking the center of gravity as the origin of co-
ordinates, we wil l proceed to represent 
intersection points in polar co-ordinates, and to 
arrange them according to the angles with respect 
to X axes. 

3. Once the points have been arranged, we will 
connect  each point with their neighbors through a 
rectilinear segment. 

4. In order to be able to classify spatial points as 
internal or external to the generated polyhedron, it 
will be necessary to maintain a data structure that 
stores the information related with the neighboring 
polyhedron’s straight lines. 

Figure 9 displays the generated polyhedron after the above 
mentioned steps. 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 9. Obtained polyhedron after joining intersection 
points. 
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 Qualitative Dynamic Force Field (QDFF) 
evolution. 

Working with relative distances and velocities implies that 
changes either on robot movements or changes on detected 
obstacles movement, cause variations on the associated 
QDFF. So, QDFF are variing with time, more over, QDFF 
can change their position and shape with time.  
Let a robot’s assigned trajectory be the following sequence 
of points (12): 
 

( ) ( ) ( ) ( ) ( ){ }goalnninit qtqtqtqtqtqq == − ,,···,,, 1210
  (12) 

 
Then, the mobile robot must be positioned at q(ti) at ti  
interval time, with 0 <= i <= n. QDFFs wil l follow the 
trajectory of the objects that they are associated so they are 
placed on the estimated position of their associated objects. 
So, we can write: 
 

( )( ) ( )( ) ( )( ) ( )( )k
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where Ei(q(ti)) is the QDFF structure assigned to the 
detected i-obstacle at its configuration q(ti) assigned during 
trajectory execution. It is important to note that QDFFs 
appears and disappears dynamically during trajectory 
execution, They are only generated in order to solve 
conflictive situations, and then they don’ t exist during 
complete trajectory execution. In this way, we can rewrite 
the expression (3) as: 
 

{ }
ii

k
i
k

i
k

iii

EtqEtqEwith

tqEtqEtqEtqE

11

21

))(())((

))((,)),(()),(())((

⊂⊂⊂

=

− �

�  (14) 

 
Composed QDFFs will become a dynamic and variable 
structure, as a result to compose dynamic forms. 
Composed QDFFs will evolve with time, in order to 
consider the dynamics of the environment. In this way, 
QDFFs can be used as a mobile robot dynamic path 
planning tool. Figures 10, 11 and 12 displays in a graphical 
way, temporal evolution of two individual QDFF as well 
as the composed QDFF generation process. It can be 
noticed that as it has been mentioned, composed QDFF 
modifies its position, its shape and the topology of the 
zones that form it. 
 
 
 
 
 

 
Figure 10. Initial sample time. Composed QDFF 

corresponding to the initial period of time. 
 

 
 
 
 
 
 
Figure 11. Temporal evolution. Composed QDFF adapting 

to describe the new situation. 
 

 
 
 
 

 
Figure 12. Temporal evolution. Composed QDFF adapting 

to describe the new situation. 
 

Labeling robot workspace. 

In previous sections robot-working space has been 
discretized in qualitative zones, and DFF has been 
approached by qualitative methods in order to obtain the 
QDFFs. Now, it is necessary to carry out a projection of 
the generated QDFF upon the defined qualitative zones of 
the workspace with the intention to label them as a safety 
or risky ones. Later, robot can use this information to 
realize a safe path planning in a decentralized way. 
Each qualitative zone in robot workspace will acquire the 
risk level inherited to project generated QDFF on it. In a 
first approach, and in order to simplify the process, each 
zone will be completely labeled even if QDFF projection 
covers only a part of the zone. Nevertheless, this approach 
causes a deformation on QDFF projections, so that results 
are similar to pixel effects on the original QDFF. Figure 13 
shows an original QDFF with three levels of risk, its 
projection on the qualitative workspace W, and finally the 
labeling process of the qualitative zones in the workspace 
W. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13 Risk levels of the QDFF, their projection over W 
and qualitative zones risk labeling process. 
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Differentiation between projection of the risk levels and 
labeled risk levels implies a new qualitative variable 
definition, which we have named Risk. This variable 
should have, as a universe of description, the set of labels 
that characterizes the zones of the workspace. In a first 
problem analysis we can notice that both variables, Risk 
and Q_levels should be equaled. So, the same labels 
describe both variables. In this case, it is possible to write 
(15): 
 
Risk = Q_levels = { 0,E1,E2 ··Ek-2,Ek-1,Ek}  (15) 
 
So, a new function of projection of the Risk levels upon 
quali tative zones from W, can be established. 
 

WRiskRisk →Λ :  (16) 

 
Nevertheless, it is possible that two (or more) different 
projected levels of risk (Q_levels) will cover the same 
quali tative zone. In this case, and in order to take into 
account the worst condition, this quali tative zone will be 
labeled with the higher risk level amongst all of them that 
projects on it. Previous function (16) will be re-written as, 
 

{ } { }nmiE iyxW ,max),( ∈=Λ  (17) 

 
where W(x,y) is the specific quali tative zone that has its 
spatial center placed on the co-ordinates (x,y) inside 
workspace W, and Ei are different levels of risk that 
projects over W(x,y). 
In a second approach we contemplated a different labeling 
process. So, qualitative zones were labeled taking into 
account the rate of projection of each QDFF level of risk, 
which takes place upon them. In this way, it can be 
established a second function of projection, as it shows the 
following expression (27) 
 

WRiskRisk →Γ :  (18) 

 
In order to carry out the weighing of different QDFF risk 
levels that project on the same zone, we can proceed as 
follows. 

1. It is established a correspondence between labels 
of Q_levels variable and N+, so that to each Ei has 
the associated numeric value i. 
   

+→Ψ Nrisk:  (19) 
 

2. Each studied zone W(x,y) will be divided in a 
more fine partition. This fact causes the apparition 
of m sub-zones for each studied zone. Now, the 
new function of projection will be defined as 







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m

zi
yxW

*
max),(

 (20) 

where i is the numeric value obtained from Ψ function 
(19),  

z is the number of sub-zones that are projected by the Q-
level equivalent to i value, and m is the number of 
generated sub-zones due to the new established partition 
upon W(x,y). 
Figures 14.a and 14.b shows in a graphic way, the 
weighting process described previously. In Figure 14.a and 
14.b, it is shown a qualitative zone (white rectangle) and a 
new partition over it that generates new four sub-zones. 
Figure shows two possible cases and the obtained labels. 
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Figure 14.a. W(x,y) zone will be labeled with a high risk 

level (E3). 
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Figure 14.b. W(x,y) zone could be labeled indistinctly as a 

medium (E2) or low (E1) risk level. 
 
Applying the described method, Risk and Q-levels 
variables have the same universe of description. In this 
way we save a new variable creation. 
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The obtained results from the Qualitative Dynamic Force 
Fields (QDFF) formalization and composition allows to 
extract the robot moving orders, in order to follow a 
selected global trajectory, conditioned to some cost 
requirements. 

Conclusions 

 
In this paper, a qualitative method for mobile robot path 
planning has been presented. To obtain the whole 
description of the qualitative structures, qualitative 
variables, and their operation in mobile robot workspace 
have been defined. 
In all cases, mobile robot reactive capacity has been 
pursuit, so methods and procedures with fast computation 
and easy representation have been hunted. In this way, 
geometric methods have been more used than analytical 
ones, although this fact can involve accuracy losses. 
The time and computational safety, using developed 
quali tative structures and path planning, could be more 
relevant in this qualitative field composed process. The 
reason of this fact is consequence of using a more reduced 
number of evaluation points to construct the composed 
field. The set of points to be evaluated will be dependent of 
the number of quali tative zones that are being used. 
The presented methodology can work as well 
independently of the number of labels associated to the 
quali tative variables. Nevertheless as more labels we have, 
more computation time will be required. 
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