Sound and Complete Qualitative Simulation Is Impossible

A. C. Cem Say and H. Levent Akin

Department of Computer Engineering
Bogazi¢i University
Bebek 80815, istanbul, Turkey
say@boun.edu.tr, akin@boun.edu.tr

Abstract

State-of-the-art qualitative simulators (for instance, QSIM)
are known to be sound; no trajectory which is the solution
of a concrete equation matching the input can be missing
from the output. A simulator which is seen to be incomplete,
that is, which produces a spurious prediction for a particular
input, can usually be augmented with an additional filter
which eliminates that particular class of spurious behaviors,
and the question of whether a simulator with purely
qualitative input which never predicts spurious behaviors
can ever be achieved by adding new filters in this way has
remained unanswered until now. We prove that such a
sound and complete qualitative simulation algorithm does
not exist.

Introduction

State-of-the-art qualitative simulators (Kuipers 1994) are
known to be sound; no trajectory which is the solution of a
concrete equation matching the input can be missing from
the output. A simulator which is seen to be incomplete, that
is, which produces a spurious prediction for a particular
input, can usually be augmented with an additional filter
which eliminates that particular class of spurious behaviors,
and the question of whether a simulator with purely
qualitative input which never predicts spurious behaviors
can ever be achieved by adding new filters in this way has
remained unanswered until now. (Kuipers 2001) In this
paper, we prove that such a sound and complete qualitative
simulation algorithm does not exist.

The Question

We start by clarifying the nature of the contribution of this
paper. The fact that the output set of a qualitative simulator
(QSIM) is guaranteed to include the solution of every ODE
matching its input (the soundness property) was proven in
(Kuipers 1986). In the same paper, Kuipers also showed
that the version of QSIM described there had the
incompleteness property, by demonstrating that the
qualitative simulation of a frictionless mass-spring
oscillator predicts unrealizable (spurious) behaviors, where
the amplitude decreases in some periods and increases in
others.

The latest formulation of the QSIM algorithm (Kuipers
1994) provides a possibility of plugging additional routines
(global filters) into the simulator in order to eliminate
system states which can not be deleted using the basic local
constraint filtering method, but which can still be shown to
be inconsistent with the mathematical model and the
behavior prefix that has been created up to that point. For
each different class of spurious predictions that has been
identified until now, it has been possible to specify a global
filter which would eliminate that behavior family from the
algorithm’s output when incorporated to the software. This
process of improvement has had the following structure: In
order to be able to say that a particular predicted behavior
is spurious, and therefore suitable for elimination from the
simulator output without forsaking the soundness property,
one first proves that that behavior is mathematically
inconsistent with the simulated model and starting state.
For instance, the aforementioned spurious oscillations of
the frictionless mass-spring system can be shown to violate
a conservation constraint that follows directly from the
structure of the input equations. But this proof can itself be
seen as the specification of a filter routine which would
eliminate exactly the set of behaviors that violate the “law”
that it establishes. The kinetic energy constraint (Fouché
and Kuipers 1992) is a global filter which has been
developed in this fashion to eliminate the class of spurious
predictions exemplified by the ones about the mass-spring
system. See (Struss 1988), (Struss 1990), (Say and Kuru
1993), (Kuipers 1994), (Say 1998), (Kénik and Say 1998),
and (Say 2001) for discussions on the causes of some
specific types of spurious solutions, and other examples of
spurious behavior classes being discovered simultaneously
with their “cures.”

Since there is no limit to the number of global filters that
can be added to the algorithm, and to the mathematical
sophistication that can be involved in their derivation, one
can legitimately ask the following questions:

¢ Is the present version of the algorithm (i.e. the one
obtained by the incorporation of all the global filters
specified until now) complete or incomplete?

« Is it possible to obtain a sound and complete version of
QSIM by adding a finite number of additional global
filters to the present version?

« Regardless of its internal details, does there exist a sound
and complete qualitative simulator whose input and

output vocabularies are identical to those of the “pure”
QSIM algorithm?

This paper provides a negative answer to these
questions.

Preliminaries

Our proof makes use of the previously established fact (Say
1997) that all members of a very rich set of numbers (the
radical extension of a superset of the rational numbers) can
be represented exactly using the input vocabulary of a pure
qualitative simulator.

QSIM-Representable Numbers

A real number r is said to be QSIM-representable if there
exists a set of QSIM variable quantity spaces and
constraints, from which r’s equality to a particular
landmark symbol p in that set can be unambiguously
deduced. 0 is QSIM-representable because of the existence
of the standard landmark 0. The first five rows of Table 1
demonstrate the facts that the numbers 1, -1, 2, and 1/2 are
QSIM-representable because we can deduce that the
landmarks b,, ¢;, e;, and g; respectively equal these
numbers by using the information in that table. (All user-
defined landmarks except ¢, are positive in this table.)

CONSTRAINTS CORRESPONDENCES
A() = a
A(f) * B(t) =A@ a*b =q
B(t) + C(t) = D(¥) b+c,=0
B(?) + B(t) = E(?) b, + b, =e¢e
E() * G(1) = B(1) e *gi=b
d _
he)=20)
d _
Tef)=L()
K0 =fH@), fOM* f0)=0, floo) =k
H(@) * H(t) = N(2)
B(f) = b,
N(@) + B(t) = P(®)
P(t) * L(t) = J(t)
E@) * K() = 0) e *k=q

TABLE 1. QSIM model with exact numerical information

It is easy to see that any rational number is QSIM-
representable. Say (1997) showed that infinitely many
irrationals, including some transcendentals, are also QSIM-
representable. Our proof of qualitative simulation
algorithms’ intrinsic incompleteness rests on the fact that T
can be represented exactly by QSIM landmarks, so we
demonstrate the QSIM-representability of Ttin the last eight
rows of Table 1: Rows 9-11 establish the equivalence

P=H+1.

The multiplication constraint between the derivatives,
when rearranged, simply means that
dK/dt _ 1
dH/dt H2+1°
Since, by the definition of the M * constraint, K is a
differentiable function of H, the chain rule for the
derivative of a composite function allows us to replace the

left hand side by dK/dH:
K__ 1
dH H2+1

Integrating, we get
K=f(H)=arctan H +r,
where r is a constant.
The correspondence f0) = 0 enables us to determine that
r is zero, so
K= f(H)= arctan H.
Using the correspondence f{) = k;, and the fact that
lim arctan x = /2, we conclude that g, (which is shown

X -

to equal 2* k; in the last row) is TU

Of course, the indirect way in which we claim to
“represent” QSIM-representable numbers is fundamentally
inadequate for many purposes. For instance, if one writes a
model in which the two landmarks » and s are respectively
shown to be equal to the numbers 3 and Tt and requires the
computation of the sign of the expression (r —s), the
present version of the algorithm would not be able to
eliminate the (clearly wrong) signs [0] and [+] from
consideration. Our certainty about the sign of this
expression comes from our numerical knowledge, which is
exactly the kind of information that qualitative simulation
programs are supposed to eschew. Unfortunately, the
power of their input vocabulary, demonstrated above,
means that qualitative simulators must “dirty their hands”
with quantitative details to avoid this type of spurious
computation.

Computation of Approximations to Irrationals

As part of the buildup for our demonstration of a global
state filter that would require unbounded memory for
correct execution in the next section, we now present a
brief review of elementary facts about the calculation of
approximations to irrational numbers by computers. (Press
et al. 1988) Since irrational numbers require infinite
precision for exact digital representation, even the best
numerical estimate for an irrational x produced by the best
possible computer in the maximum allowable time is
guaranteed to be not equal to x. It is important to see that
the output of a numerical method for computing an
irrational is actually an interval (g, ¢,) bounded by two
rational numbers, which are exactly representable by the
computer. (Even if the numerical algorithm outputs a single
floating-point number, the lack of information about the
values of the uncomputed digits means that there are
multiple numbers of higher precision that are “covered” by
the computed result.) This interval is guaranteed to contain
the irrational under consideration, but it is not possible to

determine the irrational’s “position” (e.g. whether it is in
the lower or higher half) within the interval without
performing further computation.

Spurious States Requiring Unbounded Working
Memory for Elimination

We now examine global filtering from a resource
requirement perspective. There can be two types of global
filters: (Kuipers 1994) State filters access only the
information in the current simulated state when attempting
to find a mathematical inconsistency, whereas behavior
filters need to have global information about the entire
behavior prefix starting from the initial state and
terminating at the current state. (We do not consider the
“No Change” filter, which requires to see the previous
simulation state as well as the current one, and which does
not eliminate any spurious predictions anyway, to be a filter
in this discussion.) All the global filters that we listed
earlier are behavior filters, and there are surprisingly few
state filters, in fact, the infinity and quiescence checks, and
the higher-order derivative constraint are the only ones that
we are aware of.

If one considers the realistic case where the memory that
a global filter is allowed to use is finite, it is easy to see that
behavior filters will run into practical trouble when the
lengths of the computed behaviors get large. We will now
demonstrate a novel type of spurious behavior, which can
theoretically be eliminated by a state filter, only if the filter
has access to unbounded amounts of memory. In the setup
to be described, it will be possible to detect that a member
of a particular set of system states computed by QSIM has
to be inconsistent, but it will not be possible to determine
which particular state is the culprit. To preserve the
soundness property, no individual state can be deleted until
specifically proven to be spurious, so the problematic state
(and the behavior postfixes emanating from it) will have to
remain in the simulation output.

One builds the qualitative constraint model which will
exhibit this type of spurious behavior in the following
manner: Pick a QSIM-representable irrational number x
and add the combination of variables and constraints that
would result in the deduction that landmark p, of variable P
is equal to x to the (initially empty) model. Proceed to
employ the highest-precision numerical method that would
be allowed by your qualitative simulator’s computation
budget to calculate the smallest possible interval (q;, ¢.)
containing x. Add the constraints and variables which
would lead to the deduction that landmark g, of variable O
is equal to (¢q;+ ¢,)/2 to the model. Finally, add the
constraint S(¢) + OQ(f) = P(f), where S is a variable which
does not appear in any other constraint, to the model.

The problem occurs when P(¢;) = p, and Q(¢;) = ¢,. The
simulator has the task of deleting all incorrect sign
assignments for the magnitude of S(#,). Since both P and QO
are at point values, it is clear that only one sign assignment
for S is supposed to survive. (The difference of two reals is
a single real, with an unambiguous sign.) It is also obvious

that S(z;) # 0, since py is an irrational and g, is a rational.
But there is no way for the algorithm to decide whether
S(#) > 0 or S(#;) < 0, as described in the previous section,
since we assume that (g,, ¢, is the narrowest interval within
which x can be sandwiched using the available resources.
Even if those resources are increased to come up with a
narrower interval, the mid-point of that interval would
again be a rational number, and a QSIM model exhibiting
the same problem could be built with the method described
above. Whenever P(t;) = p, and O(t;) = ¢, the behavior
tree would have to branch on the choice of sign ([+] or [-])
for S(¢;). One of these subtrees is sure to be spurious, but
both of them have to appear in the output, since it is
impossible to decide which one to prune.

Discussion

The fact that qualitative simulators usually give multiple
behavior predictions in their output is explained by the
incompleteness of the information they take as input. In a
certain sense, the “incurable” class of spurious behaviors
depicted here is also caused by lack of complete
information, this time about the full expansion of the
irrational under consideration. The difference between a
“legitimate” branching in the behavior tree (for instance,
the three alternative behaviors produced during the pure
qualitative simulation of an initially empty bathtub of finite
capacity with constant inflow) and a spurious one is that
each non-spurious behavior matches the solution of at least
one quantitative equation that matches the simulator input,
whereas a spurious behavior does not have this property. In
our construction of the previous section, it is evident that
the program’s input represents a single quantitative
equation which has a single solution, and so a simulator
with the completeness property would have to output a
single behavior.

Although the (clearly artificial) model constructed above
has no obvious dynamics, it can of course be “plugged
into” any other QDE and would cause the same spurious
branchings.

It is well known that certain algebraic or differential
equations have no closed form solution. The kind of
comparison problem at the heart of the argument of the
preceding section can also be posed by taking such an
equation known to possess no non-numerical solution,
writing it in the QSIM format, and asking for the difference
between a QSIM-representable actual root of this equation
and its best numerical estimate. (As exemplified in Table 1
and (Say 1997), it is possible to represent arbitrarily
complicated differential equations among the dependent
variables using the QSIM vocabulary.)

A model that represents rationals of such high precision
as the one in our argument is bound to contain huge
numbers of constraints and variables. Our argument
assumes that the memory required for storing the model
itself is unbounded, and the filters do not have write access
there. It is possible to “swamp” the higher-order derivative
constraint, which has to store lists of names and formulas
for variables that can chatter, to run out of memory by

providing a sufficiently large input model as well.
(However, it may be remarked that the HOD constraint
needs to access qualitative direction information of the
previous state, and therefore is not a “single-state” filter.)

The Answer

Of course, in order to claim that no algorithm for sound
and complete qualitative simulation exists, one should drop
the finite resource assumption used in the argument of the
previous section. We now proceed with a demonstration
which does not rest on this supposition. Our approach is
inspired by a remark of Kuipers (1993) to the effect that an
eventual qualitative simulation incompleteness theorem
might involve showing that the QSIM language is rich
enough to include the transcendental functions.

Hilbert’s Tenth Problem

In 1900, David Hilbert announced a list of 23 unsolved
problems as a challenge to the mathematicians of the 20"
century. The tenth problem can be stated as follows:

“Find an algorithm for deciding whether a given
multivariate polynomial with integer coefficients has
integer solutions.”
In 1970, Yuri Matiyasevich proved that no such algorithm
exists. (Matiyasevich 1993)

In the remainder of this paper, we show that a sound and
complete qualitative simulator, if it existed, could be used
to solve the unsolvable decision problem formulated above.
The idea is straightforward: Let P(x;, Xx», ... , X,) be the
given polynomial. As stated in (Moses 1971), P = 0 has
integer solutions if and only if

n

Zsin2 1 +P2(xy, %Xy,...,X,)=0

=
has real solutions. If we can show that the equation above
can be expressed in a collection of QSIM states for any P,
the task of determining whether all those states are spurious
or not turns out to be equivalent to the task of determining
whether P has integer solutions.

One goes about expressing the equation above in QSIM
in the following way: Start with an empty model. Each of
the variables x; of P will be represented by a corresponding
QSIM variable X;. Let ¢; be the integer coefficients of the
terms of P. As mentioned earlier, all integers are QSIM-
representable; add the finitely many variables and add
constraints that are required to equate each ¢; to a
corresponding landmark /;; of a QSIM variable L, Each
term term; of P is a product of integer powers of some of
the variables with the coefficient ¢, Use the necessary
number of mult constraints and intermediate QSIM
variables to equate each ferm; to a corresponding QSIM
variable 7,. P is just the sum of the ferm,’s; use the
necessary number of add constraints and intermediate
QSIM variables to equate it to a QSIM variable P,. Add

the single mult constraint necessary to equate the QSIM
variable P2 to P°.

The QSIM-representability of TU was demonstrated
earlier, and equating each TLx; to a corresponding QSIM
variable PX; is a trivial matter of adding » new mult
constraints, and the relevant rows of Table 1, to the model.

Clearly, we just need a way of representing the existence
of the sine function among two given variables in the
QSIM notation to accomplish the task of building the
required expression.

The Sine Function Is QSIM-Representable

A function f'is QSIM-representable if there exists a QSIM
model which includes both x and f{x) as variables, and the
exact relationship denoted by f can be deduced from the
information in the model. (Say 1996) We already saw
(Table 1) that the inverse tangent function is QSIM-
representable.

In Table 2, the inverse sine function can be deduced to
exist between the variables G and H, using the method
demonstrated in conjunction with Table 1: When the
appropriate substitutions are made, the last row means that

dH _ 1
dG 1-G2 '
Integration, and the substitution of f0) = 0, leads one to

conclude that
H=f{G) = arcsin G.

CONSTRAINTS CORRESPONDENCES
A = a
A * B(H) = A(D) a*b=a
B(t) + C(¢) = D(¥) bi+c; =0
C(H)+E@®=G@® c+t0=g
B(1) + H(1) = G(2) b +0=g
d -
L66)=396)
d _
SHO=KE)
H(®) =AG@), fOM ™ A0)=0
G * G() = L)
B(1) = b,
L(f) + N(t) = B(?)
P(t) * P(f) = N(%) P20
P() * K(@®) =IO

TABLE 2. Constraint set of operating region SIN. ORIG

Unlike the inverse tangent, which is defined over the
entire real number set, the domain of inverse sine is
between the landmarks g, and g, (shown, respectively, to
equal —1 and 1,) of variable G.

When one considers the function from H to G in Table 2,
one sees that this is the small portion of G = sin H in the
domain [-TU2, TU2]. We want to construct a model that

represents this relationship over the entire real line, so we
build the constraint sets shown in Tables 3 and 4.

CONSTRAINTS CORRESPONDENCES
A(D) = a
A * B() =A@ a*bh=a
B(1) + C(1) = D(1) bi+¢=0
C@) + E(1) = G@) a+t0=g
B(0) + H(1) = G(1) b +0=g
d _
966)=)
d _
Ihp=x0
H@) =AG(@), fUM ™
G * G =L@
B(1) = b,
L(f) + N(¥) = B(?)
o) * 9 = NQ©) o) <0

Q(t) * K(t) = J(t)
TABLE 3. Constraint set of operating region SIN. MINUS

CONSTRAINTS CORRESPONDENCES
A = ay
A(1) * B(1) = A(1) a* b= a
B(1) + C(1) = D(1) bi+¢,=0
C@) + E(0) = G() ct+0=g
B(1) + H(1) = G(1) b +0=g
d _
+© t)=3()
d _
LHE=KE)
H() =AG(), fOM "
G() * G(1) = L(f)
B() = b,
L(f) + N(7) = B(1)
P@) * P() = N P()=0

P(t) * K(t) = J(t)
TABLE 4. Constraint set of operating region SIN. PLUS

Using the same method of “decoding” the constraint set,
one sees that the relationship between G and H in Table 3
can be described as

H=fG)=-arcsin G +r,
where r; is an arbitrary constant. Similarly, Table 4
expresses

H=fG) = arcsin G + 1y,
for an arbitrary constant r,. Figures 1-3 depict these
relationships on the H-G plane. The domain is exactly Tt
units long in all cases. The difference between the models
of Figure 1 and Figure 3 is that the latter one does not
require H to be zero when G = 0. (Although the
combination <G=0, H=0> would, of course, be accepted.)

-1.5708 1.5708

Figure 1. The relationship represented by Table 2

G

1]

Figure 2. The relationship represented by Table 3

G 4.

1
Figure 3. The relationship represented by Table 4

We will now “connect” these three constraint sets to
represent sine over the entire real line.

The QSIM input vocabulary enables the user to describe
models in terms of several different constraint sets
representing different operating regions of the system
under consideration. The user specifies the boundaries of
the applicability ranges of the operating regions in terms of
landmarks, which indicate that the simulator should effect a
transition to another operating region when they are
reached.

For each operating region from which such a transition
can occur, one has to specify the following for each
possible transition:
¢ The variable values which will trigger this transition,

* The name of the new operating region,

e The names of variables which will inherit their
qualitative magnitudes in the first state after the
transition from the last state before the transition,

e The names of variables which will inherit their
qualitative directions in the first state after the
transition from the last state before the transition,

* Value assignments for any variables which will have
explicitly specified values in the first state after the
transition.

Consider the QSIM model in Figure 4. What can one say
about the relationship between H and G, based on the
information contained here? As discussed earlier, the
SIN _ORIG region states that G = sin H when
HO [—7T/ 2,m/ 2]. In this region, when we reach G = —1 or

G =1, (that is, when H becomes —TV2 or TV2,) the model
tells us to look at the SIN. MINUS region to see how the
variables will behave. (G and H are continuous at this
point, since they have been specified to inherit their old
values in the transition.) That region states that the function
H = f{G) behaves as seen in Figure 2 for a distance of Tt
units in the G-axis. At the other end of this G-domain, we
have a continuous transition to a new “segment” of the
function which behaves as in Figure 3 for another TT units,
followed by a segment of the type of Figure 2 again, and so
on forever. We deduce that G = sin H for all real H.

Operating Region: SIN ORIG
Constraint Set: (depicted in Table 2)
Possible Transition:
Trigger: (G=g) OR(G=g,)
New Operating Region: SIN. MINUS
Variables Inheriting Qmags: 4, B,C, D, E, G, H,J K, L, N
Variables Inheriting Qdirs: 4. B, C, D, E. G, H,J, K, L, N

Operating Region: SIN. MINUS
Constraint Set: (depicted in Table 3)
Possible Transition:
Trigger: (G=g,) OR (G = g))
New Operating Region: SIN_PLUS
Variables Inheriting Qmags: A, B, C.D. E, G, H, J, K, L. N
Variables Inheriting Qdirs: 4. B, C, D, E. G, H,J, K, L, N

Operating Region: SIN_PLUS
Constraint Set: (depicted in Table 4)
Possible Transition:
Trigger: (G=g,) OR (G = g)
New Operating Region: SIN. MINUS
Variables Inheriting Qmags: 4, B,C, D, E, G, H,J K, L, N

Variables Inheriting Qdirs: 4, B,C, D, E. G, H,J, K, L, N

Figure 4. QSIM model representing G = sin H

Note that a model that aims to represent » different sine
functions with this method will have to include at least 3"
operating regions. This is because at any time, the
arguments of these functions can be in any one of the three

types of segments of Figure 4. An “n-sine” model like this
should be constructed in the following way:

Let CS,.ommon be the set of constraints that do not take part
in the description of the sine functions in the model.
Impose an arbitrary ordering from 1 to » among the sines.
The 3" operating regions will have names of the form
OP_REGype-1. yype-2. . yype-n)» Where each type-i is one of the
symbols ORIG, MINUS, or PLUS, corresponding to the
three segment types for the /" sine. The constraint set of a
particular region with name OP_REG ./, yype-2. . type-ny Will
consist of the union of CS.,um.. and the appropriate
segment constraint sets (in which the variables necessary
for each sine are renamed so that the same name never
appears in two or more sets) for each of the sines. Each
region will contain descriptions of # possible transitions to
“neighboring” regions which can be obtained by changing
only one of the #ype-i values (to PLUS if it is originally
MINUS, or to MINUS otherwise) in its name.

(Note that the possibility of more than one sine being at
their maximums at the same time is handled by the fact that
the QSIM output vocabulary treats states before and after a
region transition as the same time point, and several such
transition-point states can appear as a sequence.)

Return to Hilbert’s Tenth Problem

Now that we have shown that it is possible to represent
arbitrarily many sine relationships in a QSIM model, it is
trivial to finish the construction of the model for the
equation

n

Zsin2 x; +P2(x, Xy,...,%,)=0,

=
which we started two subsections ago. One creates the 3"
operating regions described in the previous subsection to
express that a corresponding variable S; equals sin PX; for
each of the PX;. n mult constraints equate each variable S2;
to the square of the corresponding S;,, and » more add
constraints finish the job by expressing the equality of the
sum of P2 and all the S2, to the variable E, which stands for
the left hand side of our equation.

We are now faced with the task of asking the question
“Is there a tuple of the X’s that makes £ =0 ?” in such a
way that the answer, if it could be computed, could be read
off a QSIM output. The easiest way of doing this is as
follows: Run QSIM 2" times, each time starting the
simulation from a different operating region that does not
include the segment type ORIG in its name, and making
sure that each of the QSIM variables representing
numerical constants are at their appropriate landmark
values at the initial state. All the X; variables are to be
specified to have the qualitative value <?, std>, meaning
that we do not even know their signs, let alone their
numerical values. When its input is specified incompletely,
as in this case, QSIM is supposed to create all consistent
completions and start simulation from there. If QSIM were
able to delete all inconsistent completions and leave all and
only the consistent ones in all cases, we would just need to

check whether any complete initial states were created in
our 2" runs to solve Hilbert’s tenth problem. All our inputs
would be rejected as being inconsistent if and only if P has
no solutions in integers. Furthermore, in cases where some
initial states survive, meaning that P does have integer
roots, we would also be able to see how many of the X; that
form a particular solution are even, and how many are odd,
by simply reading the name of the operating region of the
surviving state: A zero-crossing of S; = sin PX; indicates an
odd value of X; if and only if the segment is of type
MINUS.

One may ask why we do not take segments of type ORIG
into consideration as well in this procedure. The reason is
that the PLUS segment covers the possibility of crossing
the origin anyway. The inclusion of regions with the ORIG
segments in the overall system model is required for
declaring the knowledge that the sinusoidal relationships f;
being described necessarily pass through the origin, that is,
to rule out the possibility of f, (O);t Ofor any /. (Another
possible use of the ORIG segment could be for declaring
that a particular sine argument is in the interval [-TV2, TV2],
and not anywhere else, at the initial state of a simulation.)

“Non-Deletable” Spurious Behaviors

One may argue that a QSIM prediction B, starting with
initial state OS(¢,) can not be called spurious if QS() itself
is mathematically inconsistent. Let us show that the
construction of the previous subsection can be modified to
allow the solution to the polynomial P to be read off a
simulation state computed as a descendant of a consistent
initial state.

We change the model of the previous subsection in the
following way: Each of the individual terms of P are
multiplied by a variable V, resulting in the expression

NP =term V +term,V +...+term,V .

We then construct the model for

n
Z sin? 1. + NP2(x;, Xp,...,X,)=0
1=
using the techniques described earlier. We run QSIM for a
total of 5" times. The complete initial states for these runs
are prepared by the following procedure:

Let the set S equal {<MINUS, (—o0, 0)>, <PLUS, (-0, 0)>,
<MINUS, (0, ©)>, <PLUS, (0, ©)>, <PLUS, 0>}.
FOR all ways of assigning values from the set S to the
variables 4,, 4, ..., 4.,
BEGIN

Create an initial state as follows:

The ™ subscript of the name of the operating region of
this initial state has the value indicated in the first
component of 4;;

Variable X|(z,) has the value <qmag, std>, where qmag
is the magnitude indicated in the second component of
A;.

END

The remaining variables are initialized in the following way
in all the initial states: All qualitative directions, except that
of V, are std. V is increasing. All the variables that we
created for representing numerical constants are set to their
corresponding landmarks. All the S; variables and V' equal
zero. Unique assignments are possible for all other
variables.

All these initial states are consistent, since the
polynomial NP is equal to zero, and the sines being zero
just constrain the X; to be arbitrary integers with the given
signs. Consider the simulations starting from these
consistent states. In the state for time interval (,, 1), V" will
be positive, and the determination of whether candidate
states with E = 0 are spurious or not will have to involve
the solution of our unsolvable problem. Any claim that all
and only the spurious states will be eliminated by QSIM at
this step will be equivalent to saying that QSIM has the
capability mentioned in Hilbert’s tenth problem.

Since the argument above assumed nothing about the
internal workings of the simulator, we can conclude that no
qualitative simulator whose input/output vocabulary is
identical to that of “pure” QSIM can be both sound and
complete.

Conclusion

This paper resolved an open question about whether there
exists a qualitative simulation algorithm that predicts all
and only qualitative behaviors that correspond to real
solutions of ordinary differential equations described by its
input model. The answer turned out to be negative; sound
qualitative simulation is inherently incomplete. Perhaps
counterintuitively, the root cause of the problem is not the
perceived weakness, but the actual power of the qualitative
representation, which enables one to formulate exact
numerical equations as input to the simulator. The problem
is the inherent incompleteness of mathematics itself, and
there is not much that one can do about that.

Of course, the incompleteness results reported here do
not diminish the usefulness of qualitative simulators when
they are applied to the sort of incompletely specified
problems that they were originally designed to deal with.
When one already possesses information at the level of
precision that the models in this paper contain, one should
not employ a qualitative reasoner anyway. Together with
the hybrid schemes that smoothly integrate signs, reals,
(Williams 1991) and intervals of reals, (Berleant and
Kuipers 1997) the numerical and purely qualitative
methods continue to form the opposite ends of a spectrum
of useful tools for scientists and engineers dealing with
problems at differing levels of precision.

Acknowledgments

We thank Manuel Bronstein for his helpful answers to our
mathematical questions. We are grateful to the three
anonymous reviewers for their comments and suggestions.

This work was partially supported by the Bogazigi
University Research Fund. (Grant no: 01A103)

References

Berleant, D., and Kuipers, B. 1997. Qualitative and
Quantitative Simulation: Bridging the Gap. Artificial
Intelligence 95:215-255.

Fouché. P., and Kuipers, B. J. 1992. Reasoning About
Energy in Qualitative Simulation. /EEE Transactions on
Systems, Man, and Cybernetics 22(1):47-63.

Koénik, T., and Say, A. C. C. 1998. Extracting and Using
Relative Duration Information in Pure Qualitative
Simulation. In Qualitative Reasoning: The Twelfih
International Workshop, AAAI Technical Report WS-98-
01, AAAIT Press, Menlo Park, California. 155-160.

Kuipers, B. J. 1986. Qualitative Simulation. Artificial
Intelligence 29:289-338.

Kuipers, B. J. 1993. Qualitative Simulation: Then and
Now. Artificial Intelligence 59:133-140.

Kuipers, B. J. 1994. Qualitative Reasoning: Modeling and
Simulation with Incomplete Knowledge. Cambridge, Mass.:
The MIT Press.

Kuipers, B. 2001. Qualitative Simulation. In Meyers, R. E.
ed. Encyclopedia of Physical Science and Technology,
Third Edition. New York, NY: Academic Press. 287-300.

Matiyasevich, Y. 1993. Hilbert’s Tenth Problem.
Cambridge, Mass.: The MIT Press.

Moses, J. 1971. Algebraic Simplification: A Guide for the
Perplexed. Communications of the ACM 14:527-537.

Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and
Vetterling, W. T. 1988. Numerical Recipes in C. New
York, NY: Cambridge University Press.

Say, A. C. C. 1996. Functions Representable in Pure
QSIM. In Proc. Fifth Turkish Symposium on Artificial
Intelligence and Neural Networks, Istanbul, Turkey. 251-
255.

Say, A. C. C. 1997. Numbers Representable in Pure QSIM.
In Proc. Eleventh Int. Workshop on Qualitative Reasoning,
Cortona, Italy. 337-344.

Say, A. C. C. 1998. L’Hopital’s Filter for QSIM. /EEE
Transactions on Pattern Analysis and Machine
Intelligence 20(1):1-8.

Say, A. C. C. 2001. Improved Reasoning About Infinity
Using Qualitative Simulation. Computing and Informatics
20(5):487-507.

Say, A. C. C., and Kuru, S. 1993. Improved Filtering for
the QSIM Algorithm. [EEE Transactions on Pattern
Analysis and Machine Intelligence 15(9):967-971.

Struss, P. 1988. Global Filters for Qualitative Behaviors. In
Proc. AAAI-88, Saint Paul, Minn. 275-279.

Struss, P. 1990. Problems of Interval-Based Qualitative
Reasoning. In Weld, D. S., and de Kleer, J. eds. Readings

in Qualitative Reasoning About Physical Systems. San
Mateo, California: Morgan Kaufmann. 288-305.

Williams, B. C. 1991. A Theory of Interactions: Unifying
Qualitative and Quantitative Algebraic Reasoning,
Artificial Intelligence 51:39-94.

