Abstracting Automotive System Models from Component-based
Simulation with Multi Level Behaviour

Neal Snooke, Jonathan Bell
Department of Computer Science, University of Wales
Aberystwyth, Ceredigion, SY23 3DB

email: nns@aber.ac.uk

Abstract

Recent work in Model Based Reasoning has resulted in
the development of automated tools to perform Fail-
ure Mode Effects Analysis (FMEA) and Sneak Circuit
Analysis (SCA). These tools work at the component
level for individual systems or subsystems. Analysis
of multiple systems is becoming necessary because of
the increase in system and subsystem interactions res-
ulting from Electronic Control Unit networked system
architectures.

This paper considers the automated construction of
black box system or subsystem models from envision-
ments produced by a mixture of qualitative electrical
and finite state machine simulations. These models
can then be used as part of a larger simulation to pro-
mote reuse of simulation results during the repetitive
automated FMEA task and hence improve simulation
efficiency when multiple systems are involved.

The approach also has the potential to allow Sneak Cir-
cuit Analysis (Price, Snooke, & Landry 1996; Price &
Snooke 1999) to be extended to include systems with
internal memory. It provides the basis of a useful visu-
alization tool for complex system behaviour.

Keywords: Qualitative simulation; FMEA; State based
model; System abstraction.

Introduction

FMEA is a repetitive design analysis task involving sim-
ulation for every potential component fault. The aim
of this work is to allow the successfully deployed Auto-
Steve FMEA tool (Price et al. 1997; FirstEarth 2001)
to work with larger groups of systems typically linked
by networks such as the CAN! bus. The qualitative
electrical representation used in the Autosteve tool al-
lows analysis to be performed early in the design pro-
cess for the majority of automotive systems and faults.
Other work is currently in progress to provide targeted
quantitative analysis for situations where the qualitat-
ive approach does not provide enough detail, and also
late in the design process when numerical values are
known.

Copyright © 2002, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.
!Controller Area Network

Automotive industry practice generally requires only
single fault scenarios to be considered, allowing an ab-
stracted system model to replace the component level
simulation for the systems of a multi-system analysis
that do not include a fault. This can provide big sav-
ings in simulation effort during an entire whole vehicle
FMEA without losing the effects of a fault on other
systems. The abstracted system models must adhere
to the ‘no function in structure’ principle since faults in
neighbouring systems often cause abnormal external en-
vironments to an non-faulty system. Abstracted models
computed automatically from an attainable envision-
ment (Kuipers 1994) of each system have the advantage
that they will be an accurate description of system be-
haviour in all circumstances and do not involve engineer
time to construct.

This paper describes a technique for deriving a simple
unambiguous system level model faithful to the beha-
viour at the system boundary. The resulting model
is far simpler than the envisionment because the en-
visionment includes the state of every component of
a system and represents also the component interac-
tion produced by the electrical simulator. The major-
ity of the model variables (envisionment states repres-
enting variable value combinations) are not significant
to the overall system level behaviour, and in general,
single component model variables do not efficiently rep-
resent system level states. The envisionment process
usually produces a large, deterministic, but reducible
FSM. Work on FSM abstraction generally assumes no
exact smaller equivalent exists and then proceeds to
lump the inputs, outputs, and states to produce a non-
deterministic or probabilistic FSM (Oikonomou 1996;
2001). We only lump the states in this work, to gener-
ate a FSM that is equivalent at the system interface to
the envisionment.

The simpler model has several potential benefits. It
can provide an engineer with a more comprehensible
model of the system behaviour. Anomalous behaviour
is observed as unexpected system states, event trans-
itions with unexpected conditions, or an asymmetric
set of events (closing the switch causes a state change
but opening it again does not return the system to
the same state for example). In the future the sys-

tem level internal state information will be required to
perform SCA, fault signature analysis (Spangler 1999),
and automated scenario generation for FMEA. An im-
portant pragmatic consideration is that no additional
model building effort is required from the engineer.

System Modelling Overview

A detailed account of the models and simulation (Qual-
itative Circuit Analysis Tool known as QCAT) are
provided in (Snooke 1999; Price et al. 1997; Lee &
Ormsby 1993). In this section we provide an outline of
the salient features.

The system models are comprised of a netlist gen-
erated from system schematics together with a library
of reusable component models. Each component model
contains an electrical structure defined by a network
of qualitative resistances and optionally, a behaviour
defined as a Finite State Machine (FSM) (Harel & Politi
1998). The FSM events (state changes) are triggered
by the results of electrical simulation or changes to the
environment (inputs/outputs) of the component. The
FSM also controls the values of the resistive circuit ele-
ments triggering further electrical simulation. Simu-
lation takes the form of a sequence of DC electrical
analysis steps using qualitative signs driven by both
external events and higher level component FSM beha-
viours.

Components and systems simulated using QCAT
may have static or transient internal states (memory)
typically attributable to the following sources in auto-
motive systems:

Non electrical components An example is the
mechanical toggle switch. The toggle button contacts
change position for each complete press and release
cycle.

Electronic Control Units ECU components are mi-
croprocessor based modules that may contain signi-
ficant internal states. Software operation is modeled
at a high level by FSM descriptions.

Feedback Emergent state can be produced in systems
that include feedback circuits even though the indi-
vidual components have no internal state. An obvi-
ous example is a bistable constructed from 2 NAND
gates.

Time based transitions Component models can in-
clude order of magnitude time constraints applied
to events. This allows resolution of some of the
potential qualitative ambiguity caused by multiple
events. All events in each time period are run prior
to those in the next longest time period regardless
of how many there are. A typical automotive se-
quence of timeslots represents: instantaneous (elec-
trical propagation); uS (ECU operations); mS (relay
switching); S (user interaction); hour (battery dis-
charge). These delays are equivalent to short term
memory in the system.

The interactions with a system are provided by the
set of variables that define its environment. This system
environment is a subset of the component inputs for
example the position of a switch. It is a typical system
characteristic to have relatively few inputs and outputs
compared to the number of internal components thus
ensuring that abstraction is possible.

Envisionment

The attainable envisionment (Forbus 1990; Kuipers
1994) represents all states of the system reachable by
exercising any sequence of external interactions from
the default state. The envisionment is generated by
a depth first search, terminating each branch when a
previously encountered envisionment state is found.
Each state of the envisionment represents a specific
set of the possible values of the model variables. For
our models, envisionment state is a composition of:

e all component FSM model states;
o all resistive element values in the netlist;

e all input and output variables included in component
models.

The System Perspective

By definition the components of a system will work to-
gether concurrently or in sequence to produce functions
of the system that provide coherent effects in its envir-
onment (Chandrasekaran & Josephson 1996). This high
degree of dependency in the operation of the individual
components ensures that relatively few of the possible
component state combinations will ever be realized dur-
ing non-faulty operation of the system. The generated
model must include only internal state significant at the
system level. It is not generally possible to include this
state directly from the components because:

e system states comprise composite component state;

e component behaviours are partially used within the
system,;

e the connection topology introduces causal cycles
(feedback);

e component internal states are reflected at the system
interface.

An example will clarify the final point. Consider fig-
ure 1 (circuit A). It is possible to deduce that if the
lamp is off and the switch becomes closed then after
some time (mS) the lamp will change to the on state. If
the switch becomes open in the intervening period the
state does not change (mS event condition is no longer
satisfied). The system is therefore described by the 2
state diagram. Circuit B uses the same components
and system interface however its behaviour is different.
When the lamp is off and the switch becomes closed it
is not possible to determine when the lamp illuminates
(immediately or after a mS). This depends upon how
recently off state was achieved and hence the internal
state of the relay contacts. The relay contributes no net

Circuit A

Common System

Circuit B
Interface
E_sﬁwitch 4y Switch
v \L Switch position lamp illumination N
N {open, closed} {on, off} N
J relay(NO)
T relay(NO)
lamp
lamp
off
lamp off off after
3 = after relay coil mS[switch closed]
mS [switch position closed] after active on
switch closed
after MS >
mS [sv@tch position open] < switch open lamp on
on lamp off
lamp on
Figure 1: Reflecting component state at the system interface
envision Resolve Visualisation
Ambiguity

——® System [>

inputs outputs
»| schematic & »

components

$ simplify

Group envisionment
states by environment

system | input output envision
state | 1 | 2 [1 |2 states

S1 lo | hi|lo | hi 103,106,106
S2 hi | lo | hi | lo |98,45,156..
S3 hi | lo | hi | hi[99,31,157..

s | nilniliololsees |

New ambiguity ?

@/

?

Statel @

event2

e

§

Resolve ambiguity

eventl

le y

) t1
K

Figure 2: Simplification overview

N Group2 [

Generate System Transitions

E1[condition]
Group | Group
1 E2 'E|1
Group E2 Group
2 2

v

Present Concurrency if
applicable

S1/4 ‘ S2/4
7'y

4
A

S2/3

internal state to the first system, but adds a transient
state to the second.

The strategy used to generate the system model is
to produce an over simplified (ambiguous) black box
model based on the system environment and then de-
rive component based details until the model no longer
contains ambiguity. The major steps are depicted in
figure 2 as follows:

Simplify Combine attainable envisionment states us-
ing system boundary.

Resolve Ambiguity The introduction of new state in
this step may introduce new ambiguity resulting in
an iterative algorithm. This leads to the extraction
of system level internal state.

Visualise Extract system level events between detec-
ted system states and orthogonalize the representa-
tion.

Envisionment Abstraction

The initial set of system states are obtained by grouping
the envisionment states by the values at the system
interface.

In the subsequent description transitions between en-
visionment states are referred to as envisionment trans-
ittons and transitions between system states are system
transitions. System states are sets of related envision-
ment states and therefore system transitions represent
one or more envisionment transitions. The only trans-
itions that can be significant at the system level repres-
ent changes to the system environment. Each unique
set of changes to the system environment is a system
event. Several system transitions may represent the
same system event. Time is also considered as a feature
of the environment of the system since it is externally
imposed.

Identification of Insignificant System States

Envisionment transitions leading to new states that dif-
fer only by the environment change specified by the as-
sociated event are not interesting. Such states may be
combined since the environment of the system can be
used to distinguish multiple transitions of an event by
adding additional conditions. Figure 3 illustrates the
combination of states esl and es2 into S1. The res-
ultant system state S1 represents multiple values (or
component states) for some system variables. In the
figure ip can have the value A or B in the system state
S1.

Using a simple automotive example, it is clear that
closing the ignition switch in the system ‘off” state will
cause a different transition dependent upon the existing
position of the lighting switches. It is not desirable how-
ever for the system model to include these component
states (switch contact resistances etc) when the ignition
switch (and system) is off.

lumped resultant conditions

tifip=A]

ip=A ‘ ip=A

s1
t1[ip=8]

es2 ‘ 1 es4

ip=B ‘ ip=B

Figure 3: Insignificant states

Implicit Events

During the envisionment, transitions are not produced
for external events that cause no state change. This
provides a complete representation since all possible
events are simulated from every state. An implicit
transition loops back to its originating state for all inef-
fectual events. Time based events are the most common
example. They notionally occur for each possible qual-
itative timeslot but only those that cause a state change
will be made explicit by the envisionment.

Once envisionment states are combined, implicit
events are a source of ambiguity. Figure 4 illustrates
this point. The implicit event t1 from es3 must be
considered since otherwise it is not clear what happens
in S1 when t1 occurs.

envisionment lumped state

esl 1 es2

S1

ip=A

esl

ip=A es3

o

|
|
|
|
I
|
|
|
es3 }
|
|
|
|
|
|
I

ip=A

Figure 4: Implicit events

For this reason all envisionment transitions that rep-
resent system state changes must be differentiated from
all other envisionment states in the group by consider-
ing implicit events where necessary.

Transition Ambiguity

Ambiguous transitions are those that create alternative
behaviours in the model. In this work we have divided
into two categories; ambiguous and semi-ambiguous.
Ambiguous transition pairs represent the same event
from the same source leading to different destinations
(system states). Semi-ambiguous transitions can be dis-
tinguished by a difference in the system environment
Ambiguous transitions occur because of internal sys-
tem state that is missing from the representation and
will be considered in the next section.

It has been assumed that different system events can-
not be ambiguous. This assumption is true if system
events represent single (unique) input changes. Where
multiple simultaneous changes are used, an event (E1)

may represent a subset of the changes associated with
another event (E2). E1 is therefore ambiguous with E2.
The uniqueness properties of all events used in an envi-
sionment are determined at the outset of simplification
and are taken into account when subsequent transition
ambiguity is checked.

Internal State and Memory

System memory will lead to ambiguous events in the
model. There is guaranteed to be at least one distin-
guishing feature (ie component variable or state differ-
ence) between any two events in a deterministic system
since no two envisionment states can be identical, and
any given event applied to an envisionment state must
always cause the same effect.

The system internal state may represent a single fea-
ture or combination of features belonging to the com-
ponent models, and is represented using lumped state
groups for each state of the system environment.

Ambiguous transitions are resolved by finding a set of
distinguishing factors. System states with ambiguous
transitions are then split into state groups using the
values of these factors. Factor sets are found using a
best first truncated search as follows:

1. The minimum solution length is set to the number of
distinguishing factors found.

2. The (remaining) factors are ranked by the number of
ambiguous transition pairs they can distinguish.

3. If any factors exist that are the sole distinguishing
factor for a transition they are all selected.

4. else select each factor in turn by rank order.
5. For each selected factor(s)

Include factor in the possible solution. Re-
move transitions it can distinguish from list.

7. If the transition list is empty a solution has
been found - set the minimum solution length

8. elseif the partial solution is shorter than
the minimum solution length recurse
from 2 using the reduced transition list

The search strategy rapidly finds a solution using the
fewest number of factors allowing the majority of the
search tree to be discarded at an early stage. All of
the solutions using the minimum number of factors are
found.

The minimum number of factors on a system wide
basis are chosen by selecting one of the solutions for
each system state, new state groups are generated, and
the states forming the sources of ambiguous transitions
are allocated to the new state groups. Notice that en-
visionment states are allocated to groups only to re-
solve ambiguity, and not meerly because they contain
the factor values associated with the group. This en-
sures that groups represent ‘actual system memory use’
rather than ‘component memory capability’ i.e. the
memory must be significant to the future system be-
haviour.

For automotive circuits the same few factors are usu-
ally responsible for all ambiguity in a system. This is
unsurprising because the ambiguity is caused by system
memory and in the systems we consider this memory is
limited to special ECU or mechanical states.

The introduction of state subgroups might lead to ad-
ditional ambiguities between envisionment transitions.
Repeated application of the ambiguity solver is required
with each iteration relumping the envisionment states.
Consider the situation in figure 5. During the genera-
tion of system states the e2 events all have destinations
internal to S1 and hence are not ambiguous. The state
group is introduced to resolve the el ambiguity. Now
the e2 event from the state group is ambiguous with
the implicit e2 event.

The ambiguity resolution process is guaranteed to
terminate since additional ambiguous transitions are
considered at each iteration. In the worst case of an ir-
reducible envisionment, all the transitions would be se-
lected and the result would simply be the envisionment
itself. In the worst case the minimum number of factors
that could be included at each iteration is one (determ-
inistic envisionment) and therefore the maximum num-
ber of iterations possible is simply the number of factors
in the system. Empirically we note that a solution is
normally found in a very small number of iterations.

S1
state group 1
2
esl el es4
factor=A
es2
factor=A
e2
Y
es3 el es3
factor=B

Figure 5: Introduced ambiguity

Semi-ambiguous events

Appropriate environment conditions can be added to
remove semi-ambiguous transitions. These additional
conditions do not represent any additional changes to
the device (input) environment, they are merely checks
to determine behaviour based on the environment of the
state prior to the event occuring. Environment condi-
tions are shown in square brackets after events in the
final model. Notice that the distinguishing environment
value can be one that is responsible for the event. How-
ever, this is not a problem since the extra conditions
refer to the system environment before the event oc-
curred. Consider the Switch.dip_position:released

[Switch.dip_position:pressed] transitions in figure 9
for an example of this.

There can be several semi-ambiguous transitions
from a system state and a number of possible envir-
onment factors that might distinguish them. The prob-
lem is similar to the state grouping discussed before but
with the aim of selecting the minimum number of input
variables to use as conditions to distinguish otherwise
ambiguous events.

Generating the System Events

System transitions are those connecting system states
or state groups. The system transitions are generated
from envisionment transitions by:

e Removing those internal to a system state group.
e Removing duplicate transitions.

e Combining multiple transitions for the same event
between the same system states.

An Example

This section illustrates the result of applying the
method to (part of) an automotive lighting circuit.?
The schematic in figure 6 controls the sidelights and
main lights of a vehicle (ign_sw has been ignored to
keep the example analysis compact). There is also a
dip (hi/low) beam function. In operation the driver
changes the position of the switch causing a signal to
appear at the ECU input. The ECU then activates an
output connected to one or more of the relay coils. The
relay models include a qualitative delay of the order
millisecond, after switching the appropriate lamps will
illuminate. The ECU behaviour is not shown for reas-
ons of space. Its behaviour simply links inputs to out-
puts as expected except that for the main and dipped
light outputs the sidelights also remain activated. No-
tice that the switch model in figure 7 provides only one
of the sidelights, main lights or dip lights outputs at any
time. The reason for this is that in the future the link
between the console switch and ECU could be provided
by messages on a CAN bus.

Outline of the processing

The example circuit produces an envisionment contain-
ing 48 states. Figure 8 shows the result of the envision-
ment. Each state identifier represents a unique state
of the system, prefixed with the event that caused the
transition to that state. States in bold font are those
that have been encountered previously during the envi-
sionment. There are 7 possible external input events in
the system each is given a short identifier as follows:

side: Conditions: [SWITCH.selector_position:side] Timeslot: Time: inst
off: Conditions: [SWITCH.selector_position:off] Timeslot: Time: inst
head: Conditions: [SWITCH.selector_position:head] Timeslot: Time: inst
mS: Conditions: [] Timeslot: Time:mS

released: Conditions: [SWITCH.dip_position:released] Timeslot: Time: inst
pressed: Conditions: [SWITCH.dip_position:pressed] Timeslot: Time: inst

2The circuit is fictional and the behaviour of the switch
and ECU is not intended to be complete

events key

s= SWITCH.selector_position: side
h = SWITCH.selector_position: head
0 = SWITCH.selector_position: off

r = SWITCH.dip_position: released
p = SWITCH.dip_position: pressed
mS =ms

b61_mS29
058 5
h 54
p55 MS28
061
ms 20
ms 21
h 55
ms 23
mS 39
p48 62
L 062/ h63 o ms 26
r
Default 18 053
2000402-v28
ms 28 53
h27 p 47
031
532
h 46 047
RS7 /548
(54
p56 MS 47
h 65
h 45
28
a1
ms 21
41538
{36
mS 46
45 /030
p65 056

mS 57
049 MS29
h 27
\
\r 10
mS 21

\
\n 39
ris

Figure 8: Example system envisionment

The envisionment states are then combined into 4
aggregate states based on the environment, then further
combined to take account of insignificant system states
as described previously.

LEFT LEFT LEFT RIGHT RIGHT RIGHT
agg. _DIP _MAIN _SIDE _DIP _MAIN _SIDE SWITCH SWITCH

state .Light .Light .Light .Light .Light .Light .dip_pos .selector

1-plus TRUE FALSE TRUE TRUE FALSE TRUE presse off
releas head

side

10-plus FALSE FALSE FALSE FALSE FALSE FALSE presse off
releas head

side

11-plus FALSE TRUE TRUE FALSE TRUE TRUE presse side
releas head

off

14-plus FALSE FALSE TRUE FALSE FALSE TRUE presse side
releas head

off

Envisionment states for each aggregate state
1-plus 43 65 28 37 35 30 41 56 38 29 50 45 34 36
10-plus 18 44 39 27 24 49 23 40 26 19

11-plus 55 63 57 47 62 61 32 48 54 46 64 53 31 58
14-plus 21 51 22 33 59 20 42 60 52 25

The events from each of the aggregate states are
checked and any that lead to different aggregate states

BATTERY LEFT_MAI N RI GHT_MAI N
+v T
SPL?
LEFT_DI P RI GHT_DI P
SPl
[sPL? LEFT_SI DELI GHT RI GHT_SI DELI GHT [SPL?
1 aN_sw
LEFT_LAMP_GROUND
1 SPL?
[sPL? sPL? =
T RI GHT_LAVP_GROUND
H [SI DELI GHT_RELAY
1 SI_DE- ECU
[sPL? L‘="|
FPL? DI PPED_BEAM RELAY
M DI PPED- ECU
[sPL2 SPL? L='—I
IMAI N_BEAM RELAY
1 MAIL N- ECU
=1
av go
[sPL>
ECy_PWR o ECU_GROUND
I 5w ECU
|p Se! ectorg SW TcH_sI DE
o SW TCH_DI PPED
SW TCH VAl N
di p_tcygl €
Sw TCH CONTROL_ GROUND

Figure 6: Simple lighting system

Normal Operation (front_lamp_switch) — StateBuilder

] [=]n] [@Ja) [

Figure 7: Switch behaviour

are categorised ambiguous or semiambiguous. The ex-
ample turns out to have 16 ambiguous transitions for
each of states 1-plus and 11-plus, 4 for state 10-plus,
and 8 for state 14-plus. For each pair of ambigu-
ous transitions the factors that could be used to dis-
tinguish them are considered, and for efficiency, any
factors that have identical values for all of the trans-
itions under consideration are treated as a single entity.
The most abstract factor is chosen as the represent-
ative, ie states in preference to electrical values, and
parent states in preference to child states. In the fol-
lowing output for one of the lumped states each column
represents a factor. Factors that can distinguish each
ambiguous pair of transitions (row) are marked with
an X. Transitions marked with a single state identifier
represent implicit transitions a state.

AMBIGUOUS TRANSITIONS State: 1-plus
factors are: 1 MAIN_BEAM_RELAY.Power_off 2 SWITCH.off 3 ECU.main_beam

4 SIDELIGHT_RELAY.Power_on 5 SWITCH.held 6 DIPPED_BEAM_RELAY.Powering_ off
7 SWITCH.dipped_beam 8 SWITCH.released

12345678
{43_to_39 65_to_57} XXXXX

{43_to_39 28} X XXXX
{65_to_57 43_to_39} XXXXX
{65_to_57 28} XX XX
{37_to_18 35} X X XXX
{37_to_18 30_to_31} XXXX X
{30_to_31 37_to_18} XXXX X
{30_to_31 35} XX XX
{56_to_47 38_to_23} XXXXX
{56_to_47 29} XX XX
{38_t0_23 56_to_47} XXXXX
{38_to_23 29} X XXXX
{50_to_26 45_to_46} XXXX X
{50_to_26 34} X X XXX
{45_to_46 50_to_26} XXXX X
{45_to_46 34} XX XX

Each factor is ranked according to its ability to dis-
tinguish transition pairs. In this case 4 factors occur
12 times and MAIN_BEAM _RELAY .Power_off is
chosen first. This leaves only 4 ambiguous factors for
the second level of search. ECU.main_beam is re-
moved because it cannot distinguish any of the remain-
ing rows and SWITCH.off is chosen as the first of
the best 4 factors thus providing a 2 factor solution.
The search continues truncated at 2 factors. In all 24
two factor solutions are found with no single factor solu-
tions and in total only 9 factor combinations are checked
which fail to provide a solution.

The potential solutions for all 4 aggregate states are
considered together (using a variation on the above
search) to choose one of the sets of factors for each
aggregate state using the minimum number of factors
in total. 4 possible sets of factors are derived:

SWITCH.dipped_beam ECU.main_beam
SIDELIGHT_RELAY.Power_on SWITCH.dipped_beam
SWITCH.off ECU.main_beam
SWITCH.off SWITCH.dipped_beam

Each of these will remove the identified ambiguity
once the aggregate states are lumped according to these
factors. The last factor sets is chosen because it involves
the minimum number of different components (only the
switch). Choosing any set appears to produce an equi-
valent model of the same complexity. The aggregate
states are now subdivided according to the factor set
chosen:

Selected factors: [SWITCH.off, SWITCH.dipped_beam]

Grouping State: 1-plus

Using following factors for grouping: [SWITCH.dipped beam, SWITCH.off]
Factor set: SWITCH.off; 43 37 38 50

Factor set: SWITCH.dipped_beam; 28 35 29 34

Grouping State: 10-plus
Using following factors for grouping: [SWITCH.off]
Factor set: SWITCH.off; 18 39 23 26

Grouping State: 11-plus

Using following factors for grouping: [SWITCH.off, SWITCH.dipped_beam]
Factor set: SWITCH.dipped_beam; 55 61 54 58

Factor set: SWITCH.off; 63 62 64 53

Grouping State: 14-plus
Using following factors for grouping: [SWITCH.off]
Factor set: SWITCH.off; 22 59 60 25

The ambiguity check is now performed again and no
ambiguity is found. If new ambiguity had been intro-
duced the new set of ambiguous transitions are added
to the list of ambiguous transition list and the whole
process repeated.

Result

The model in figure 9 was generated automatically® for
the example system. The internal states of the sys-
tem are shown inside the four externally visible system
states. It is clear that the four main states of the sys-
tem (off, sidelight, main beam and dipped beam) are
represented based on the state of the lamps.

The delays introduced by the relays are also clear
as states with mS exit events (transition occurs after
a millisecond order time period). These delays also
lead to some less obvious event conditions because the
switch may have been moved several times during the
relay delay. For example the 10-plus and 14-plus
state groups include the pair of transitions off[side] and
Time:mS[head or off]. The timed transition based
on the off condition could only occur when when the
switch input changed to head and then directly to off.
This sequence prevents the system from going back into
the off state, a situation also illustrated by several other
transitions in states 1-plus and 11-plus. Here the
transitions containing conditions [off or head] seem
odd since it is not obvious why off should have been in-
cluded as a condition. Investigation of the switch shows
that it is impossible to go directly to head lights without
passing through side lights. This constraint does not ex-
ist in the environment, with the result that a change in
switch position from head to off will be ignored by the
switch model, with the system remaining in the head
lights state.

The toggle behaviour of the dipped/main beam
switch is illustrated by the released [pressed] events.
These ensure that the switch must be released prior to
another change in state and the guard conditions have
been generated as part of the process of resolving am-
biguous release events from the envisionment states
represented by the single state shown on the diagram.

An engineer considering the release event that in-
cludes the condition that the switch should be in the

3The layout and label placement was edited manually to
improve clarity

switch:off

offfside]

sidelights on

dipped beam on|
main beam off

10-plus 14-plus
Time:mS
side Time: i >
> ime:m$ [side] > offfside]
switch:off
A
. A
Time:msS [off or hedd]
sidelights off Time:mS sidelights on
dipped beam off [off or head] dipped beam off
main beam off main beam off
1-plus 11-plus
P Time:mS [side] P
Time:mS \/ TimexmS
switch:dipped | g Time:mS switch:dipped
switch:off beam beam switch:off
3 side [A
released[pregSed] released[pressed
and (head or off)] .
\d !) head[side] off[side]
Time:mS [side]
Time:mS [off or head] - sidelights on
dipped beam off
main beam on

Abbreviations

side SWITCH_.selector_position:side
off SWITCH.selector_position:off
head SWITCH.selector_position:head
released SWITCH.dip_position:released
pressed SWITCH.dip_position:pressed

Figure 9: Automatically generated system behaviour

head or off positions may well (rightly) question why
this state change should occur if the system has the off
input and hence the problem with the switch will be
located.

Discussion

The technique described in this paper has been imple-
mented (in Java) and several automotive system circuits
have been successfully analysed. The system state chart
produced so far is essentially a ‘flat’ set of states and
the system can be in only one of them at a given time.
Therefore for complex systems it is likely there will be
many states caused by all the combinations of internal
memory values. Many systems have several almost in-
dependent behaviours or sub behaviours and this ortho-
gonality can be used to simplify the description using a
statechart concurrency notation. The example presen-
ted does not contain independent functions and there-
fore cannot be simplified in this way. If we included the
switch and lamp required to implement the ‘stop lamp’
circuit the resultant system state chart includes twice
as many states and an economic representation could
be generated by separating the ‘stop lamp off’ and the
‘stop lamp on’ states into a totally independent beha-
viour. The automatic generation of such a representa-
tion is currently an area of investigation. In particular
it is sometimes the situation that a function is almost
but not quite independent and this requires special con-
ditions to be included in the concurrent representation.

It must be possible to produce an envisionment of

the system. For most automotive system the amount
of state is generally limited to mechanical positions,
transient state and simple ECU controller memory and
these systems respond well to the technique. Circuits
with lots of explicit memory, for example shift registers,
or counters (hardware or software), will not be amen-
able to this form of analysis without some form of ab-
straction of the component state.

We expect to be able to utilize these models in a more
efficient version of the AutoSteve FMEA tool aimed at
whole vehicle FMEA. This ability is significant because:

e The recent introduction of networks into many
vehicles allows groups of systems to exchange mes-
sages leading to wider effects for some failures.

e Many of the most dangerous faults are caused by un-
expected and subtle interactions between systems de-
signed by different engineering teams.

e The qualitative nature of the simulation allows the
above design flaws to be detected early.

The results of this work can be applied to tasks such
as SCA and fault signature analysis that require the
internal system ‘memory states’ to be known. The cur-
rent graphical presentation has scalability issues but we
expect that with further development the descriptions
should provide a valuable additional abstraction facility
to virtual yellow boarding and design verification tools
(Price, Snooke, & Ellis 1999; McManus et al. 1999).
The ability to interactively view specific event categor-
ies, conditions, or states, could be provided with such a

tool to enable an engineer to be able to gain an overview
of a system behaviour. Many system level behavioural
anomalies will present themselves as states or event con-
ditions that the engineer would not expect. Indeed we
have already found several examples of existing system
schematics where the system model illustrates anomal-
ous system level behaviour in this way.

Acknowledgements

This work has been supported by the UK Engineering
and Physical Sciences Research Council (GR/N06052 -
Whole Vehicle Whole Life-cycle Electrical Design Ana-
lysis), Ford Motor Company, and First Earth Ltd.

References

Chandrasekaran, B., and Josephson, R. 1996. Representing
function as effect: assigning functions to objects in context
and out. In AAAI Workshop on modelling and reasoning.

FirstEarth. 2001. AutoSteve. FirstEarth Limited,
http://www firstearth.co.uk/.

Forbus, K. 1990. The qualitative process engine. In Weld,
D., and DeKleer, J., eds., Readings in Qualitative Reason-
ing about Physical Systems, 220-235. Morgan Kaufmann.

Harel, D., and Politi, M. 1998. Modelling Reactive Systems
with Statecharts. McGraw-Hill, 1st edition.

Kuipers, B. 1994. Qualitative Reasoniong - modeling and
simulation with incomplete knowledge. ISBN 0-262-11190-
X: MIT Press.

Lee, M., and Ormsby, A. 1993. Qualitative modelling of
the effects of electrical circuit faults. Artificial Intelligence
in Engineering 8:293-300.

McManus, A. G.; Price, C. J.; Snooke, N.; and Joseph, R.
1999. Design verification of automotive electrical circuits.

In 18th International Workshop on Qualitative Reasoning.
Lock Awe.

Oikonomou, K. N. 1996. On a class of optimal abstrac-
tions of state machines. Formal Methods in System Design
8:195-220.

Oikonomou, K. N. 2001. Abstractions of random state
machines. Formal Methods in System Design 18:171-207.

Price, C. J., and Snooke, N. A. 1999. Identifying design
glitches through automated design analysis. In Annual Re-
liability and Maintainability Symposium, 277-282. IEEE.

Price, C. J.; Pugh, D. R.; Snooke, N. A.; Hunt, J. E.; and
Wilson, M. S. 1997. Combining functional and structural
reasoning for safety analysis of electrical designs. Know-
ledge Engineering Review 12(3):271-287.

Price, C. J.; Snooke, N. A_; and Ellis, D. J. 1999. Identify-
ing design glitches through automated design analysis. In
Invited paper in Innovative CAE track, Procs /4th Annual
Reliability and Maintainability Symposium. RAMS.

Price, C. J.; Snooke, N.; and Landry, J. 1996. Automated
sneak identification. Engineering Applications of Artificial
Intelligence 9(4):423-427.

Snooke, N. A. 1999. Simulating electrical devices with
complex behaviour. AI Communications special issue on
model based reasoning 12(1-2):44-59.

Spangler, C. S. 1999. Equivalence relations within the
failure mode and effects analysis. In RAMS 99. IEEE.

