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Abstract

The aim of this paper is to analyse under which condi-
tions Absolute Order-of-Magnitude and Relative Order-
of-Magnitude models may be consistent and to deter-
mine the constraints which guarantee consistency. A
graphical interpretation of the constraints is provided,
bridging the absolute qualitative labels of two quantities
into their corresponding relative relation(s), and con-
versely. The ROM relations are then characterized in
the absolute order-of-magnitude world.

1. Introduction
Order-of-magnitude models are an essential piece among
the theoretical tools available for qualitative reasoning about
physical systems (Travé-Massuyès et al. 97), (Kalagnanam
et al. 91), (Struss 88). They aim at capturing order-of-
magnitude commonsense inferences, such as used in the en-
gineering world. Order-of-magnitude knowledge may be
of two types: absolute or relative. The absolute order-
of-magnitudes (AOM) are represented by a partition of R,
each element of the partition standing for a basic quali-
tative class. A general algebraic structure, called Qual-
itative Algebra or Q-algebra, was defined on this frame-
work (Travé&Piera 89)(Piera&Travé 89), providing a math-
ematical structure which unifies sign algebra and inter-
val algebra through a continuum of qualitative structures
built from the rougher to the finest partition of the real
line. The most referenced order-of-magnitude Q-algebra
partitions the real line into 7 classes, corresponding to
the labels: Negative Large(NL), Negative Medium(NM),
Negative Small(NS), Zero(0), Positive Small(PS), Positive
Medium(PM) and Positive Large(PL). Q-algebras and their
algebraic properties have been extensively studied (Missier
et al. 89),(Piera&Travé 90), (Missier 91), (Agell 98).

Order-of-magnitude knowledge may also be of relative
type (ROM), in the sense that a quantity is now qualified
with respect to another quantity by means of a set of bi-
nary order-of-magnitude relations. The seminal ROM model
was the formal system FOG (Raiman 91), based on three
basic relations, used to represent the intuitive concepts of
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”negligible with respect to” (Ne), ”close to” (Vo) and ”com-
parable to” (Co), and described by 32 intuition-based in-
ference rules. The ROM models that were proposed later
improved FOG not only in the necessary aspect of a rig-
orous formalisation, but also permitting the incorporation
of quantitative information when available and the control
of the inference process, in order to obtain valid results
in the real world (Mavrovouniotis&Stephanopoulos 87) and
(Dague 93a),(Dague 93b).

The formal model ROM(K) (Dague 93a) was devised
first, as an extension of FOG by adding a relation Di
standing for ”distant from”. This addition provided the
system with a nice symmetrical property and the ability
to express gradual changes from one order-of-magnitude
to another thanks to the existence of overlapping regions.
(Dague 93b) then showed with ROM(R) how to transpose
this system to R with a guarantee of soundness, solving
hence the two above mentioned problems: possible incor-
poration of quantitative information and control of the in-
ference process. ROM(R) subsumes the O(M) model by
(Mavrovouniotis&Stephanopoulos 87).

Although one type of reasoning, based on AOM or ROM,
might be better suited to a given application domain, it is
generally the case that both are necessary to capture all the
relevant information. This is why it would be most useful
to bridge AOM and ROM. Few attempts have been made
though. (Sánchez et al. 96) proposed a mixed model but
their ROM relations, defined with respect to the AOM la-
bels, do not provide a complete interpretation in R. (Gasca
98) presented an operational system including both AOM
and ROM relations based on interval constraint propagation.
However, it missed a rigorous formalisation assuring consis-
tency between AOM and ROM relations.

The aim of this paper is to analyse under which condi-
tions consistency between AOM and ROM models can hold
and to determine the constraints that it would imply. Conse-
quently, the ROM relations would then be characterizable in
the AOM world. Conversely, a pair of quantities described
by AOM labels could be related by the corresponding ROM
relation(s).

The paper is organised as follows. Section 2 presents the
AOM and ROM frameworks. Section 3 provides the formu-
lation of the problem approached in this paper. The con-
straints implied by and guaranteeing consistency are then



outlined in sections 4 and 5. Section 6 provides a graphi-
cal interpretation of the constraints and bridges the absolute
qualitative labels of two quantities into their corresponding
relative relation(s). The ROM relations are then character-
ized in the absolute world in section 7. Finally, section 8 dis-
cusses the work and outlines several conclusions and lines
for future work.

2. AOM and ROM models
2.1. Absolute OM models
The AOM models rely on a partition of R which defines the
quantity space S1, each element of the partition standing for
a basic qualitative class to which a label is associated. The
partition is defined by a set of real landmarks including 0 and
generates the Universe of Description of the AOM model. It
is referred to as an absolute partition.

In the following, we restrict ourselves to symmetrical ab-
solute partitions. The symmetrical AOM model with n pos-
itive (negative) qualitative labels is denoted by OM(n) and
it is referred as the AOM model of granularity n. The set of
positive landmarks is denoted by L.

For instance, the OM(5) model is based on the following
set of landmarks:

{−δ,−β,−α,−γ, 0, γ, α, β, δ},
with corresponding labels: NVL =]∞,−δ] (Negative Very
Large); NL = ]− δ,−β] (Negative Large); NM = ]− β,−α]
(Negative Medium); NS = ] − α,−γ] (Negative Small);
NVS = ] − γ, 0[ (Negative Very Small); [0]={0}; PVS
=]0, γ[ (Positive Very Small); PS=[γ, α[ (Positive Small)
PM=[α, β[ (Positive Medium); PL=[β, δ[ (Positive Large);
PVL=[δ, +∞[ (Positive Very Large).

The resulting absolute partition is the following:

PVS PS PM PL PVLNVSNSNMNLNVL

−δ −β −α −γ 0 δβαγ

Figure 1: The OM(5) absolute partition

Q-algebras over these models and their algebraic properties
have been extensively studied (Travé & Piera 89), (Missier
et al. 89), (Dormoy 89), (Piera & Travé 90), (Missier 91),
(Agell 98) and summarized in (Travé-Massuyès et al. 97).

2.2 Relative OM models
ROM models are based on the definition of a set of binary
relations ri which are invariant by homothety, i.e. AriB
only depends on the quotient A/B, the axiomatics of which
are described by a set of rules. The first ROM model FOG
(Raiman 91) was based on three relations, ”negligible with
respect to” (Ne), ”close to” (Vo) and ”comparable to” (Co,
in the sense of ”the same sign and order of magnitude as”),
and included 32 inference rules.

The ROM models that were proposed later improved FOG
not only in the necessary aspect of a rigorous formalisation,
but also permitting the incorporation of quantitative infor-
mation when available and the control of the inference pro-
cess, in order to obtain valid results in the real world.

The formal model ROM(K) (Dague 93a) was proposed as
an extension of FOG by adding a relation Di standing for
”distant from”. The four binary relations Ne, Vo, Co, Di,
are defined by means of 15 axioms, which provide about 45
inference rules (Dague 93a). ROM(K) has a nice symmetri-
cal property and the ability to express gradual changes from
one order-of-magnitude to another thanks to the existence of
overlapping regions when interpreted in N.S.A. (Non Stan-
dard Analysis).

(Dague 93b) then showed how to transpose ROM(K) to
R with a guarantee of soundness, resulting in the system
ROM(R). ROM(R) permits the incorporation of quantita-
tive information and obtains sound results while maintain-
ing the semantics of the inference paths in terms of the four
symbolic relations of ROM(K).

The following ROM(R) relations are defined in R,
parametrized by a positive real k.

Definition 1 (Dague 93b).
Negligibility at order k: Given two real numbers x and y,
then x is negligible at order k or k-negligible with respect to
y, xNky, if |x| ≤ k|y|.
Proximity at order k: Given two real numbers x and y, then
x is close at order k to y, xPky, if |x−y| ≤ k·max{|x|, |y|}.
Distance at order k: Given two real numbers x and y,
then x is distant at order k from y, xDky, if |x − y| ≥
k · max{|x|, |y|}.

Note that Pk can be interpreted in term of Nk as follows:
xPky if |x − y| ≤ k · max{|x|, |y|} is equivalent to |x −
y|Nk max{|x|, |y|}, i.e. (x = y = 0) or (y 6= 0 and

|x−y|
max{|x|,|y|} ≤ k), or equivalently, (x = y = 0) or (y 6= 0

and 1 − k ≤ x
y

≤ 1
1−k

). This is in turn equivalent to

1 − z ≤ k, for any z ∈
{

x
y
, y

x

}

.

Dague (1993b) matches the above relations to ROM(K)
relations using two parameters k1 and k2 in the following
way:

Vo ↔ Pk1

Co ↔ P1−k2

Ne ↔ Nk1

Di ↔ Dk2

Note that x Di y is equivalent to (x = y = 0) or (x 6= y

and |x−y|
max{|x|,|y|} ≥ k2), i.e., (x/y ≤ 1 − k2) or (x/y ≥

1/(1 − k2)) or y = 0. Consequently, x Di y is equivalent to
[(x − y) Co x] or [(y − x) Co y].

A first group of ROM(K) axioms is satisfied for any k1

and k2. A second group requires the following constraint:
0 < k1 ≤ k2 ≤ 1/2.

The remaining axioms cannot be satisfied in R. For these,
(Dague 93b) proposes to calculate the order-of-magnitude
precision loss of the conclusion in the worst case.

ROM(R) has two degrees of freedom, in the form of two
parameters k1 and k2, which define a relative partitionof the
real line. This partition concerns the quotients of quantities,
for instance, x Ne y if and only if x/y belongs to [−k1, k1].

This partition is symmetrical with respect to 0: two quan-
tities of the same sign on the right side of 0 and of op-
posite signs on the left side of 0. Restricting ourselves to



the right side of 0, it is also symmetrical in a qualitative
sense with respect to 1ttt. Consequently, the whole par-
tition is fully characterized by the interval [0, 1], which is
in turn fully characterized by the set of relative landmarks
Q∗ = {k1, k2, 1− k2, 1 − k1}.

3. AOM and ROM models consistency
problem formulation

The aim of this paper is to analyse under which conditions
AOM and ROM models can be consistent and to determine
the constraints that it would imply on their degrees of free-
dom.

The AOM models that we consider are the ones presented
in section 2.1. Their degrees of freedom include the number
of landmarks defining the absolute partition and the land-
mark values themselves.

Concerning the ROM models, we do consider the
ROM(R) model presented in section 2.2, for several reasons.
The main reason is that it is fully interpretable in R, which is
a necessary condition to obtain a gateway with AOM mod-
els which are themselves fully interpretable in R. The sec-
ond reason is that it is the most general ROM model that
satisfies the previous condition. The degrees of freedom of
ROM(R) are the values of the parameters k1 and k2. Note
that the number of landmarks of the relative partition de-
pends on these two values.

Given two quantities, which are qualified in the abso-
lute world, we want to be able to provide the correspond-
ing ROM relations which link them. This problem will be
referred as the AOM → ROM problem. Conversely, given
two quantities known to be related by a given ROM relation,
we want to be able to give their possible qualifications in
terms of absolute qualitative labels. This latter problem will
be referred as the ROM → AOM problem.

Labels in OM(n) are represented by intervals of R and
ROM relations in ROM(R) are defined via quotients of real
numbers. Then, from the fact that:

x ∈ [l1, l2], y ∈ [l3, l4] =⇒ x
y
∈

[

l1
l4

, l2
l3

]

with l1, l2, l3, l4 > 0, it is necessary that the quotients of
the landmarks of the absolute model coincide with the land-
marks of the relative partition of ROM(R).
Definition 2: (Consistency Property) If the quotients be-
tween the landmarks of an absolute model OM(n) coincide
with the landmarks of a relative partition of ROM(R), then
the OM(n) and the ROM(R) models are said to be consis-
tent1.

We want to determine the constraints linking the land-
marks of the absolute and relative partitions which guaran-
tee the consistency property. Having obtained this result, it
will be possible to characterize the ROM(R) relations in the
AOM world, and conversely.

1The consistency property proposed in Definition 2 can be qual-
ified as ”strong” since it requires the identity on the atomic relation-
ships on both sides.

4. Minimal granularity to match OM(n) and
ROM(R)

The first necessary condition for guaranteeing the consis-
tency property concerns the number of landmarks of the
AOM model OM(n).

In order to maintain the maximum power to ROM(R), let
us consider the case in which k1 < k2 < 1/2, resulting
in four landmarks in the interval [0,1] of the corresponding
relative partition: 0 < k1 < k2 < 1 − k2 < 1 − k1 < 1.
Let us call this case the full ROM(R), noted F-ROM(R).
Proposition 1. The minimum granularity to match
OM(n) and F-ROM(R) is n = 5.

The proof consists in checking that for n = 2, n = 3
and n = 4 there are not enough landmarks to obtain four
quotients in the interval [0, 1]. For OM(5), the set of positive
landmarks is L = {γ, α, β, δ}. Hence, there are twelve
quotients different from 0 and 1, and six of them are in the
interval ]0,1[. These are given by the set of non-ordered
quotients:

Q =

{

γ

α
,

γ

β
,

γ

δ
,

α

β
,

α

δ
,

β

δ

}

5. Matching between OM(5) and F-ROM(R)
This section is concerned with the determination of the con-
straints that must hold to turn OM(5) consistent with F-
ROM(R). The first issue is to guarantee the required number
of relative landmarks, i.e. card(Q)= card(Q∗); the second
is to obtain the formal matching between the relative land-
marks and their expression in terms of the absolute land-
marks, i.e. Q = Q∗.

5.1 Cardinality
This section outlines the conditions to guaranty
card(Q)=card(Q∗)=4.

Since card(Q) is potentially greater than 4, the following
condition is applied iteratively until card(Q)=4:

x

y
=

z

t
, for some x, y, z, t ∈ L = {γ, α, β, δ} (1)

Let us hence consider x
y

= z
t

= q, or equivalently x =

qy, z = qt, and, without loss of generality, q > 1.
Notation: By convention, the ordered 4-tuple
(a1, a2, a3, a4) is used for a1 < a2 < a3 < a4.

The only 4-tuples (γ, α, β, δ) that satisfy condition (1) are
given by the following 6 cases:

• Case 1) (γ, α, β, δ) =
(

γ, qγ, q2γ, δ
)

• Case 2) (γ, α, β, δ) =
(

γ, qγ, β, q2γ
)

• Case 3) (γ, α, β, δ) = (γ, qγ, β, qβ)

• Case 4) (γ, α, β, δ) =
(

γ, α, qγ, q2γ
)

• Case 5) (γ, α, β, δ) = (γ, α, qγ, qα)

• Case 6) (γ, α, β, δ) =
(

γ, α, qα, q2α
)



After some calculations, all these cases give five quotients
in Q, except for the cases 3) and 5) that give directly four.

Case 3)
The quotients in case 3) are Q =

{

1
q
, γ

β
, γ

qβ
, q γ

β

}

, or, in

terms of α, β and q: Q =
{

1
q
, α

qβ
, α

q2β
, α

β

}

.

The landmarks of L are, again in terms of α, β and q: L =
{

α
q
, α, β, qβ

}

. This can be interpreted as the situation in

which there exists q > 1 such that all the very small numbers
multiplied by q are, at the most, small, and all the very large
numbers divided by q are, at least, large.

There are two possible orderings of Q:

3.1)
(

α
q2β

, α
qβ

, α
β
, 1

q

)

3.2)
(

α
q2β

, α
qβ

, 1
q
, α

β

)

Case 5) The quotients in case 5) are Q =
{

γ
α
, 1

q
, γ

qα
, α

qγ

}

,

or, in terms of α, β and q: Q =
{

β
qα

, 1
q
, β

q2α
, α

β

}

. The

landmarks of L are, again in terms of α, β and q: L =
{

β
q
, α, β, qα

}

. This can be interpreted as the situation in

which there exists q > 1 such that all the very small numbers
multiplied by q are, at the most, medium, and, all the very
large numbers divided by q are, at least, medium.

There are two possible orderings of Q:

5.1)
(

β
q2α

, 1
q
, β

qα
, α

β

)

5.2)
(

β
q2α

, 1
q
, α

β
, β

qα

)

Let us study the cases 1), 2), 4) and 6) in which there are
still five quotients in Q. Condition (1) is applied again.

Let us hence consider x
y

= z
t

= p for some x, y, z, t ∈
L, or equivalently x = py, z = pt, and, without loss of
generality, p > 1.

Case 1) In the case 1), the absolute landmarks are
(γ, α, β, δ) = (γ, qγ, q2γ, δ) and five quotients less than 1
result:

Q =
{

1
q
, 1

q2 , γ
δ
, q γ

δ
, q2 γ

δ

}

By imposing condition (1) one more time, we obtain 6 cases:

• 1.1) (γ, α, β, δ) = (γ, pγ, p2γ, δ)

• 1.2) (γ, α, β, δ) = (γ, pγ, q2γ, p2γ)

• 1.3) (γ, α, β, δ) = (γ, pγ, q2γ, pq2γ)

• 1.4) (γ, α, β, δ) = (γ, qγ, pγ, p2γ)

• 1.5) (γ, α, β, δ) = (γ, qγ, pγ, pqγ)

• 1.6) (γ, α, β, δ) = (γ, qγ, pqγ, p2qγ)

The case 1.1) is a deadlock case, since (γ, pγ, p2γ, δ) is
structurally equal to the initial (γ, qγ, q2γ, δ). Case 1.2)
gives only two quotients and cases 1.3), 1.5) and 1.6) give
only three quotients, and all of them can be discarded.
Hence, the only remaining case is 1.4), that gives exactly
four quotients.

By making equal the expression of the absolute landmarks
in case 1) and case 1.4)

(

γ, qγ, q2γ, δ
)

= (γ, qγ, pγ, p2γ),

landmarks of OM(5) quotients less than 1
L = (γ, α, β, δ) Q = (k1, k2, 1 − k2, 1 − k1)

I.(3.1) (α
q
, α, β, qβ) ( α

q2β
, α

qβ
, α

β
, 1

q
)

II.(3.2) (α
q
, α, β, qβ) ( α

q2β
, α

qβ
, 1

q
, α

β
)

III.(5.1) (β
q
, α, β, qα) ( β

q2α
, 1

q
, β

qα
, α

β
)

IV.(5.2) (β
q
, α, β, qα) ( β

q2α
, 1

q
, α

β
, β

qα
)

V.(1) (α
q
, α, qα, q3α) ( 1

q4 , 1
q3 , 1

q2 , 1
q
)

VI.(2) (α
q
, α,

√
qα, qα) ( 1

q2 , 1
q
√

q
, 1

q
, 1√

q
)

VII.(4) ( α
√

q
, α,

√
qα, q

√
qα) ( 1

q2 , 1
q
√

q
, 1

q
, 1√

q
)

VIII.(6) ( α
q2 , α, qα, q2α) ( 1

q4 , 1
q3 , 1

q2 , 1
q
)

Table 1: Admissible cases for consistency

we obtain p = q2. Hence the case 1.4) corresponds to
the absolute landmarks (γ, qγ, q2γ, q4γ), or in terms of α,

L =
(

α
q
, α, qα, q3α

)

and the set of quotients is Q =
{

1
q
, 1

q2 , 1
q3 , 1

q4

}

.

The following results are obtained by studying the cases
2), 4) and 6) in an analogous way:

Case 2) L = (γ, α, β, δ) = (γ, qγ, q
√

qγ, q2γ) =
(

α
q
, α,

√
qα, qα

)

; Q =
{

1
q
, 1

q
√

q
, 1

q2 , 1√
q

}

.

Case 4) L = (γ, α, β, δ) = (γ,
√

qγ, qγ, q2γ) =
(

α√
q
, α,

√
qα, q

√
qα

)

; Q =
{

1√
q
, 1

q
, 1

q2 , 1
q
√

q

}

.

Case 6) L = (γ, α, β, δ) = (γ, q2γ, q3γ, q4γ) =
(

α
q2 , α, qα, q2α

)

; Q =
{

1
q2 , 1

q3 , 1
q4 , 1

q

}

.

In summary, there are eight cases that allow one to establish
a bijection between Q and Q∗. These are summarized in
Table 1.

5.2 Formal matching
For each admissible case of table 1, it remains to impose the
formal matching between the relative landmarks and their
expression in terms of the absolute landmarks, i.e. Q = Q∗.

Let us consider case I, the other ones being dealt with in
a similar way. We want the condition Q = Q∗, i.e.

( α
q2β

, α
qβ

, α
β
, 1

q
) = (k1, k2, 1− k2, 1− k1)

It is hence enough to solve the following system:
α

q2β
+ 1

q
= 1

α
qβ

+ α
β

= 1

}

The unique positive solution for q is q =
√

2, and then β =
(

2+
√

2
2

)

α. The landmarks of OM(5) are:
(

γ = α
q

= α√
2
, α, β = 2+

√
2

2
α, δ = (

√
2 + 1)α

)

The quotients less than 1 are:

(k1 = α
q2β

= 2−
√

2
2 , k2 = α

qβ
=

√
2 − 1,



landmarks OM(5) quotients less than 1 q, β
(γ, α, β, δ) (k1, k2, 1 − k2, 1 − k1)

I (α
q
, α, β, qβ) ( α

q2β
, α

qβ
, α

β
, 1

q
) q =

√
2

β =
�
2+
√

2

2 � α

II (α
q
, α, β, qβ) ( α

q2β
, α

qβ
, 1

q
, α

β
) q ' 1.75487

β = α
q−1

III (β

q
, α,β, qα) ( β

q2α
, 1

q
, β

qα
, α

β
) q ' 2.32472

β = (q − 1)α

Table 2: Cases for consistency

1 − k2 = α
β

= 2 −
√

2, 1 − k1 = 1
q

= 1√
2
)

In case IV, the unique solution for q is the solution of the
equation q3 − q2 + 1 = 0, that is, q ' 1.32, which is not
possible because k2 = 1

q
' 1

1.32
' 0.76 6< 1

2
.

In the cases V, VI, VII and VIII, the corresponding system
of equations has no solution.

Hence, only cases I, II and III have solutions and are sum-
marized in table 2 1.

The conclusion of the above analysis is that consistency
between OM(5) and F-ROM(R) is possible, although it is
highly constrained. Indeed, only one degree of freedom re-
mains out of four for the AOM model, the F-ROM(R) model
resulting fully determined.

6. Bridging AOM and ROM models

This section is concerned with the AOM → ROM and the
ROM → AOM problems, as defined in section 3. These
correspondences are easily obtained graphically.

Figures 2a, 2b and 2c show simultaneously the landmarks
of the absolute model and the landmarks of the relative par-
tition in cases I, II and III respectively.

1In case II, q is obtained from the equation q3−2q2 +q−1 = 0

and its real solution is q = 2

3
+ 1

3

3

�
25−3

√

69

2
+ 1

3

3

�
25+3

√

69

2
'

1.75487. In case III, q is obtained from the equation q3−3q2+2q−
1 = 0 and its real solution is q = 1+ 1

3

3

�
27−3

√

69

2
+

3

�
9+

√

69

18
'

2.32472

Di
Co

Ne Vo

α/q α β qβ

α/q

α

β

qβ

PVS PS PM PL PVL

PVS

PS

PM

PL

PVL

x
y

= k1k2 1 − k2 1 − k1 1

Figure 2a: Case I

Di
Co

Ne Vo

α/q α β qβ

α/q

α

β

qβ

PVS PS PM PL PVL
PVS

PS

PM

PL

PVL

x
y

= k1 k2 1 − k21 − k1 1

Figure 2b: Case II

Di
Co

Ne Vo

β/q α β qα

β/q

α

β

qα

PVS PS PM PL PVL
PVS

PS

PM

PL

PVL

x
y

= k1 k2 1 − k2 1 − k1 1

Figure 2c: Case III



The absolute landmarks are reported on the axes X and
Y, and the relative ones are given by the straight lines of
equations x

y
= k, k ∈ {k1, k2, 1− k2, 1− k1}.

The ROM(R) relations Ne , Co , Vo and Di all lie be-
tween the Y axis and the straight line x = y. Each of
them corresponds to a sector indicated by a double arrow
between a pair of lines. Formally, each of the relations
Ne , Co , Vo and Di , corresponds to the region of the plane
{(x, y) |x ≥ 0, y ≥ 0, x ≤ y, such that x R y}, where R is
any of the four relations.

In the following the four relations are characterized in
terms of the corresponding region and a few examples of
ROM → AOM and AOM → ROM correspondances are pro-
vided.

6.1 Relation Ne

x Ne y ⇐⇒ (x = y = 0) or (y 6= 0 and
∣

∣

∣

x
y

∣

∣

∣
≤ k1), thus

x Ne y when the point (x, y) lies in the region between the
straight lines x = 0 and x

y
= k1.

Examples of correspondances are:
1.1. Any very small number is negligible with respect to any
very large number: ∀x ∈ VS, ∀y ∈VL: x Ne y
1.2. The numbers that are not very small can be negligible
only with respect to some very large numbers: x 6∈VS,
x Ne y =⇒ y ∈VL.

6.2 Relation Vo
x Vo y ⇐⇒ (x = y = 0) or (y 6= 0 and |x−y|

max{|x|,|y|} ≤ k1),
thus, for x ≤ y, x Vo y when the point (x, y) lies in the
region between the straight lines x

y
= 1 − k1 and x

y
= 1.

Examples of correspondances are:
2.1. In case I, any very small number is not Vo with respect
to any medium, or large, or very large number: x ∈VS,
x Vo y =⇒ y ∈VS or y ∈ S.

2.2. In case I, any small or medium number is not Vo with
respect to any very large number.

2.3. In cases II and III, any very small or small number is
not Vo with respect to any large, or very large number.

6.3 Relation Co
x Co y ⇐⇒ (x = y = 0) or (y 6= 0 and |x−y|

max{|x|,|y|} ≤
1− k2), thus, for x ≤ y, x Co y when the point (x, y) lies in
the region between the straight lines x

y
= k2 and x

y
= 1.

Examples of correspondances are:
3.1. Any very small number is not Co to any large or very
large number.

3.2. Any small number is not Co to any very large number.

6.4 Relation Di

x Di y ⇐⇒ (x = y = 0) or (y 6= 0 and |x−y|
max{|x|,|y|} ≥ k2),

thus, for x ≤ y, x Di y when the point (x, y) lies in the
region between the straight lines x = 0 and x

y
= 1 − k2.

Examples of correspondances are:
4.1. In case I, any very small or small number is distant from
any large or very large number.

4.2. In cases II and III, any very small number is distant
from any medium or large or very large number.

4.3. In cases II and III, any small or medium number is
distant from any very large number.

7. Characterization of the ROM relations in
the absolute world

The consistency conditions established in section 5 and sum-
marized in table 2 allow us to provide a characterization of
the ROM(R) relations in terms of AOM concepts.

7.1 Negligibility

Proposition 2. x is negligible with respect to y, x Ne y, if
and only if x = y = 0 or, in the case y 6= 0, there exists a
very large number M (M ∈ PVL) such that the quotient x

y

multiplied by M is still a very small number (PVS).

Proof: If x Ne y, and y 6= 0, then
∣

∣

∣

x
y

∣

∣

∣
≤ k1 (remember that

k1 = α
q2β

= 2−
√

2
2 in case I, k1 = α

q2β
= q−1

q2 , q ' 1.75487

in case II, and k1 = β
q2α

= q−1
q2 in case III).

In cases I and II, we obtain qβ
∣

∣

∣

x
y

∣

∣

∣
≤ α

q
. When this

inequality is strict2, there exists M such that qβ
∣

∣

∣

x
y

∣

∣

∣
≤

M
∣

∣

∣

x
y

∣

∣

∣
<

∣

∣

∣

α
q

∣

∣

∣
.

Reciprocally, if there exists M ≥ qβ such that
∣

∣

∣

Mx
y

∣

∣

∣
< α

q
,

then
∣

∣

∣

qβx
y

∣

∣

∣
≤

∣

∣

∣

Mx
y

∣

∣

∣
< α

q
, implying that x Ne y.

The proof in case III is analogous, by interchanging α and
β �

Since xNky is equivalent to
(

k1

k
· x

)

Ne y, by the above
characterization of Ne , we obtain the characterization of
Nk .

Proposition 3. x is negligible at order k with respect to y,
xNky, if and only if x = y = 0 or, in the case y 6= 0, there
exists a very large number M such that the quotient k1

k
· x

y

multiplied by M is still a very small number.

7.2 Proximity
The proximity at order k relation, xPky, is equivalent to:

(x = y = 0) or
(

y 6= 0 and |x−y|
max{|x|,|y|} ≤ k

)

,

i.e. |x − y|Nkmax{|x|, |y|}. Hence, from Proposition 3 the
following result is straightforward:

Proposition 4. x is close at order k to y, x Pk y, when
x = y = 0 or, in the case y 6= 0, there exists a very large
number M such that the quotient k1

k
· |x−y|

max{|x|,|y|} multiplied
by M is a very small number.

The following proposition gives a characterization for the
relation Vo , which is a particular case of Pk with k = k1.

2When ���
αy

qx
���
= qβ, the number M needs to be large but not

very large. Nevertheless, since qβ is precisely the landmark be-
tween large and very large numbers, this does not change the nature
of the result.



Proposition 5. When x, y 6= 0, let z be the quotient in

the set
{

x
y
, y

x

}

such that |z| ≤ 1. Then, x Vo y if and only if

there exists a very large number M such that M multiplied
by (1 − z) is a very small number.
Proof:

Since x Vo y means x Pk1
y, by proposition4 this is equiv-

alent to the existence of a very large number M such that the
quotient |x−y|

max{|x|,|y|} multiplied by M is a very small number,
and this is equivalent to the fact that the product (1− z) ·M
is a very small number, because |x−y|

max{|x|,|y|} = |1− z|.

7.3 Comparability
The comparability relation Co is also a particular case of
Pk with k = 1 − k2.

Proposition 6. Let us assume x, y 6= 0 and let z be the

quotient in the set
{

x
y
, y

x

}

such that |z| ≤ 1. Then,

I) In case I, x Co y if and only if there exists a large number
M such that M multiplied by (1 − z) is a small or a very
small number.

II) In case II, x Co y if and only if there exists a medium num-
ber M such that M multiplied by (1 − z) is a very small
number.

III) In case III, when x Co y there exists a medium number M
such that M multiplied by (1− z) is a small or very small
number.

Proof:

• Case I. If |x| ≥ |y|, i.e. z = y
x

, the relation x Co y is
equivalent to: 1 − y

x
≤ 1 − k2 = 1 − α

qβ
, and, tak-

ing into account that 1 − α
qβ

= α
β

this is equivalent

to: β
(

1 − y
x

)

≤ α. If x Co y, it is enough to consider
M = β. Reciprocally, if M is a large number such that
M

(

1 − y
x

)

≤ α, then β
(

1 − y
x

)

≤ α because M ≥ β.
The proof in the case |x| < |y| is analogous.

• Case II. f |x| ≥ |y|, i.e. z = y
x

, the relation x Co y is
equivalent to: 1 − y

x
≤ 1 − k2 = 1 − α

qβ
, and, tak-

ing into account that 1 − α
qβ

= 1
q

this is equivalent

to: α
(

1 − y
x

)

≤ α
q

. If x Co y, it is enough to con-
sider M = α. Reciprocally, if M is a medium number
such that M

(

1 − y
x

)

≤ α
q

, then α
(

1 − y
x

)

≤ α
q

because
M ≥ α. The proof in the case |x| < |y| is analogous.

• Case III. If |x| ≥ |y|, i.e. z = y
x

, x Co y is equivalent
to: 1 − y

x
≤ 1 − k2 = β

qα
, and this is equivalent to:

α2q
β

(

1 − y
x

)

≤ α. It is enough to take M = α2q
β

=
αq

q−1 > α. The proof in the case |x| < |y| is analogous �

In case I, 1 − k2 = 1 − α
qβ

= α
β

is the quotient between
the length of the interval corresponding to [PVS,PS] and the
length of the interval [PVS,PM].

In case II, 1−k2 = 1− α
qβ

= 1
q

is the quotient between the
length of the interval corresponding to PVS and the length
of the interval [PVS,PS]. This is also the quotient between

the length of the interval corresponding to [PVS,PM] and
the length of the interval [PVS,PL].

In case III, 1 − k2 = 1 − 1
q

= β
αq

is the quotient be-
tween the length of the interval corresponding to PVS and
the length of the interval [PVS,PS]. This is also the quo-
tient between the length of the interval corresponding to
[PVS,PM] and the length of the interval [PVS,PL].

7.4 Distance
Proposition 7.
If |x−y|

max{|x|,|y|} 6= k2, then x Di y if and only if there exists
some real number M neither large nor very large such that
M multiplied by the quotient |x−y|

max{|x|,|y|} is not very small.

Proof: In cases I and II, k2 = α
qβ

, and in case III, k2 = 1
q

.
Let us give the proof in cases I and II, the one in case III
being analogous.
Let us suppose that there exists M such that |M | ≤ β and
|M (x− y)|

max{|x|, |y|} ≥ α/q, then
|β(x − y)|

max{|x|, |y|} ≥ α/q, therefore

|x−y|
max{|x|,|y|} ≥ α

qβ
, i.e., x Di y.

Reciprocally, if x Di y, it suffices to take M such that
αmax{|x|, |y|}

q|x − y| < |M | < β. The case
αmax{|x|, |y|}

q|x − y| = β

is a limit case (cf. footnote 2) �

Since xDky is equivalent to k2

k
· |x − y|
max{|x|, |y|} ≥ k2, from

proposition 7 the following result is straightforward:

Proposition 8.
If |x−y|

max{|x|,|y|} 6= k2, then xDky if and only if there exists
some real number M neither large nor very large such that
M multiplied by the quotient k2

k
· |x−y|

max{|x|,|y|} is not very
small.

8. Conclusions
The aim of this paper is to analyse under which conditions
an AOM and a ROM model are consistent and to determine
the constraints that consistency implies. A graphical inter-
pretation of the constraints is provided, bridging the absolute
qualitative labels of two quantities into their corresponding
relative relation(s), and conversely. The ROM relations are
then characterized in the absolute world.

The study has been performed with a general AOM model
OM(n) on one hand and the most general interpretable in R

ROM model, F-ROM(R), on the other hand. The obtained
results show that consistency is highly constrained. Indeed,
only one degree of freedom remains out of four for the AOM
model, the F-ROM(R) model resulting fully determined.

It is our opinion that the definition of consistency that has
been adopted is the most intuitive and the one that guaran-
tees the best correspondances between the absolute and the
relative world, hence providing the best determined char-
acterization of ROM(R) relations in terms of absolute con-
cepts. Indeed, consistency requires that the quotients be-
tween the landmarks of the AOM model coincide with the



landmarks of F-ROM(R). This requires first, the number of
quotient landmarks to be 4 and second, the formal match-
ing of their corresponding expressions. The first condition
guarantees full expressivity in the relative world and implies
an AOM model OM(n) of granularity n superior to 5. The
second condition provides the most deterministic AOM →
ROM and ROM → AOM correspondances, and hence the
most deterministic characterization of ROM relations in the
absolute world.

However, the problem could be formulated with a weaker
definition of consistency. Preserving full expressivity in
the relative world with an OM(5) absolute model, a weak-
consistency property could be defined by relaxing the sec-
ond condition, leading to weaker correspondances and char-
acterizations. Another option could be to consider a higher
granularity AOM model, but at the price of poorer semantics
for the absolute labels.

Both two conditions could be relaxed as well. A
special case would be to consider Mavroviouniotis and
Stephanopoulos (1997) O(M) model instead of F-ROM(R).
O(M) is a particular case of ROM(R) with k1 = k2, there-
fore in this model there are only two quotients less than 1:
k1 and 1 − k1. In this case, an OM(4) is sufficient to con-
struct the matching. With the absolute landmarks γ, α and
β, only two quotients less than 1 are obtained if and only if
γ
α

= α
β

, i.e., α is the geometric mean of γ and β (γ = α2

β
).

By imposing that the addition of the two quotients α2

β2 and
α
β

is 1, the equation α2

β2 + α
β
− 1 = 0 reduces to one case:

β = qα, with q =
√

5+1
2 .

A detailed study of this case could be performed in a way
similar to sections 5, 6 and 7. However, one should notice
that the absolute landmarks are also highly constrained by
the numeric value of q.

Finally, we believe that our study could be advantageously
completed by reinterpreting, in the case of consistency, the
ROM(K) axioms in the absolute world. This would exhibit
the semantics of these rules in the absolute world.
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Travé-Massuyès,L. et al.1997. Le raisonnement qualitatif
pour les sciences de l’ingénieur. Ed. Hermès, Paris.


