A Balanced Differential Learning agorithm in Fuzzy Cognitive M aps

Alberto VazquezHuerga

Departament de Llenguatgesi Sistemes Informétics
Universitat Politémica de Catalunya (UPC)
C\ Jordi Girona1-3.
E0834, Barcdona, Spain.
avazjuez@lsi.upc.es

Abstract

Fuzzy Conceptua Maps have become an important means
for describing a particular domain showing the ncepts
(variables) and the relationship between them. They have
been used for severa tasks like simulation processes,
forecating a dedsion support. In general, the task of
creding Fuzzy Conceptual Maps is made by experts in a
catain damain but it is very promising the aitomatic
credion d Fuzzy Conceptual Maps from raw data. In this
paper we present a new agorithm (the Balanced Differential
Algorithm) to lean Fuzzy Conceptua Maps from data. We
compare the results obtained from the proposed agorithm
versus the results obtained from the Differential Hebbian
agorithm. Based on the results we @nclude that the
agorithm proposed seams to be better to lean patterns and
model agiven damain than in the dassicd approach.

Fuzzy Cognitive Maps

Cognitive Maps (CM) also cdled causal maps are (apart
from Bayesian Networks [Peal 1983]) a useful model to
represent concepts or variables in a given domain and their
causal-effed relations.
Cogritive Maps were first introduced by Axelrod [Axelrod
1976] in 1976 to model causal relations inferred between
the concepts of agiven damain. A CM is adireded gaph,
where nodes are the concepts of the given environment and
arrows among nodes represent causal relations between
concepts

A spedal kind of CM are the Fuzzy Cognitive Maps
(FCM) that were introduced by Kosko [Kosko 1986d] to
represent fuzzy cause-effed relations instead of the aisp
cause-effed relations represented in the original CM.
FCMs are fuzzy-signed digraphs with feedbadk [Kosko
1986a][Kosko 1988. Nodes in the graph that are Fuzzy
Sets representing concepts. Direded edges (arrows)
represent causal-eff ed relations between the conceptsasin
the cae of generic CMs. Arrows can have positive or
negative values, a positive value shows a positive cusal
connedion. As is depicted in figl the value of concept B
increases or deaeases as concept A increases or deaeases.
Whereas in fig2 a negative caisal connedion causes the
value of the oncept B to deaease when the value of
concept A increases, and also a negative caisal connedion

causes the value of concept B to increase when the value of
concept A decreases.
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figl.Positive causal weight
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fig2. Negative causal weight

FCMs have been used as an alternative to expert systemsin
severa areas like eonomics, sociology or simulation. In
the literature there ae alot of implementations of FCMs to
model specific environments like dedsion making and
policy-making [Carlson and Fullé][Stylos and
Groumpos]. The processto build a FCM is smilar to the
process used to crege a knowledge base in an expert
system. First, one or more domain experts identify the
concepts and their causal relationships. They talk about if
two concepts have strong, wek, null, etc... causal relation.
This use of linguistic labels to explain the grade of causa
relation is very used in Fuzzy Logic and hes a dired
trandation in a FCM. The "degreeof-causality" valuesin
the @nneding edges indicae how much one cncept
causes another. Values can range from -1, indicaing a
strong regative impad, through Q or no impad, to +1, a
strong paitive impad.

An exampleis siown in fig3. We can seein the table the
linguistic labels used for the domain experts and a possible
automatic trandlation to weights in the causal web of the
FCM.

SYMBOLIC VALUES NUMERIC VALUES
Affectsalot 1.0

Affects 0.5

Do not Affects 0.0

Affects negatively -0.5

Affects negatively alot -1.0

fig3. Mapping between labels and values




A FCM using thiskind o tables can be eaily designed by
the human domain experts and can be used to have a
graphicd model of the domain. This model of causal
relations is easy to understand by a human agent because
the caisal relations are expressd in a graphicad way. We
can seein figd asimple example of a FCM in the literature
[Levi and Tetlock 1980] to make astraightforward model
explaining hav the Japanese made the dedsion to attack
Peal Harbor. Here in the example, there ae only values of
1.0 or —1.0 represented as + or — respedively in order to
make the example eaier to undxstand the null relation
between two concepts is not usualy drawn. The FCM can
be implemented as a nonsymmetricd weighted sguare

matrix.
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figd. Example of a Causal Cognitive

Oncethe FCM has been designed we can provide an input
of the adua value of every concept or variable in the
environment that the FCM wants to model. Then the FCM
non-linear dynamicd system ads as a neura network.
Every concept C of the input is updated through the
weighted matrix of the FCM using the commonly used
formula depicted in figs urtil the input converges to a
fixed pant (if the system reades the equilibrium), limit
cycleor a chaotic atrador [Dickerson and Kosko 1994.
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fig5. Computing the states using the sigmoid function
Adaptive Fuzzy Cognitive Maps

Sometimes it is not posshle to have a human expert to
model the domain becaise the number and complexity of
the variables involved are so huge that the task to built by
hand the FCM is very difficult. In this case the solution is
to use aaptive fuzzy cognitive maps. An adaptive FCM
leans its causal web from data There ae well-known
techniques to learn causal patterns from data: Correlation
or Hebbian Leaning in FCMs or Temporal Asciative
Memories (TAM) [Amari 1973. In [Dickerson and Kosko
1994] the Correlation encoding wsing the TAM method is

widely explained and dscussd as a poa model to infer
causdlity because it treds in the same way zero and
negative causal edges generating “spurious’ causal
implications.

In this ®nse Differential Hebbian Learning [Kosko
1986b] encodes causal changes to avoid spurious causality.
The basic ideahere isto updite those weights in the causal
web that are diredly related to the changesin the mncepts
values. If the value concepts change in the same diredion,
the dgorithm increases its positive caisal weight in the
FCM (the weight between the two concepts becomes
“more” positive) otherwise if the value ncepts change in
opposite diredion the dgorithm increases its negative
causal weight (the weight between the two concepts
becomes “more” negative). The dgorithm computes the
discrete danges along time: AGC () =C,(t)-C, (t-1).
Being C(t) the value of thei Concept at timet. The rule to
calculate the weights can be summarised with the
following formula:
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figb. Computing the weights. The Differential
Hebbian Learning Algorithm

The C, isafactor used to slowly forget the old weights
for the new ones. The factor is calculated with the
following formula:

L
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fig7. Learning Factor

The main problem that the classical differential hebbian
learning has is the fact that weights measure the causal-
effect strength between two concepts C, C only have into
account these two concepts C, C. For example we can see
the following concepts:

c,lclc,lcc,
t, | 0.0 o.o+ o.o+ o.o+ 0.0
t, 00 | 10" 1.07| 1.07| 0.0
t, 1.0+ 00| 00| 00| 00

Fig8. Example of value evolution

The classical agorithm detects that C, C, and C, have
changed intimet, whileintimet, C, haschanged. So, it



is inferred that C,, C, and C, are positive cause for C,. The
problem here is: the learnt weights are too genera. If we
use as training set the data depicted in fig8 and we apply
the differential hebbian learning agorithm the FCM
obtained infer that only if one of the three concepts have
the value of 1.0 the concept C, changes to 1.0. It is clear
that in genera this is not true!. The correct pattern that
should be learnt is the following: when the three variables
have changed to 1.0 then C, hasto changeto 1.0.

A Balanced Differential Learning Algorithm

A new agorithm to update the weights is proposed based
on the differential hebbian learning explained in the last
section. The aim of this new approach is to avoid the
problem explained in the previous section (sometimes the
cause-effect relation is distributed among concepts).

Given two concepts C and C being C cause of C, the
computed weight now is normalised with the number of
other concepts C, that are acting at the same time as a
cause of change for the concept C. Another important
issue is that FCMs have in the proposed algorithm diagonal
links (a concept that has a causal-effect link to itself) to
ensure that one concept C, is active (value of 1.0 or closeto
1.0) without the presence of another concept C, that causes
this effect in C. For diagonal links the weight computed in
the FCM is the mean of al the values of the concept along
the training set. Summarising, the proposed rule to update
weightsisthe presented in fig 9.
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fig9. Computing the weights with the Baanced
Differential Algorithm

In the formula we can see the computation of the weights
in terms of Probability, the diagonal links (i=j) are the
probability that the concept has the value of 1.0. This
probability is obtained computing the mean of al the
values the concept C (x) takes along the training set.

The other causal-effect links can be seen like a
conditional probability. When there is a change in a
concept C(x) (AC(x)Z0) to the same direction that C(x)
(AC(x)AC(x)>0) the value computed updates the weight
between the concepts and converts the link in a positive
causal link. Otherwise if there is a change in a concept
C(x) (AC(x)z0) to a different direction (AC(x)AC(x,)<0)

the value computed by the algorithm updates the weight
between the concepts and converts the link in a negative
causal link. These weights are obtained computing the
quotient AC(x)/AC(x) that measures the proportional
change factor that the concept C(x) shows when the
concept C(x) changes along time. This value is computed
normalising it with the change factor of the other concepts
C.(x,) that can be acting as a cause of the change of the
concept C(x). These other collatera causa relations are
detected because they are changing at the same time and in
the same direction than C(x). The normalisation allows
estimating the importance of causal relation between the
concept C(x) and the concept C(x). If there are a lot of
concepts C(x,) involved in changes of the concept C(x)
then the concept C(x) has lower importance than if it was
the only one concept that causes changes in the value of
C(x).

Experimental results

The am of our experiments has been to compare the
classical differential hebbian agorithm versus our
proposed balanced differential agorithm. We have worked
with four different training sets. Every training set
represents a pattern of changes in the values of the
concepts and is given to the algorithm repeated times until
a FCM has been learnt. Then for each FCM we introduce
an input that belongs to the pattern to learn and then we
can see if the FCM can reproduce the limit cycle that
represents the pattern. We have depicted in the next figures
thevalue 1.0 asawhite cell and the 0.0 asawhite cell.

Experiment 1

The first pattern we have shown to the learning algorithm
(fig 10) is quite difficult to learn because is not only
determined by the value of the concepts but for the specific
point of time the concepts have determined values. For
example concepts c2 and c4 with value 1.0 in time t1
causes that concepts c1 and c5 change their valueto 1.0 in
time t2. Otherwise in time t3 concepts c2 and ¢4 with value
1.0 causes concept c3 to change its value from 0.0 to 1.0
and do not modify the value of c1 and ¢5 in this case.

t0
t1
t2
t3
t4

fig 10. Thefirst pattern to learn.

Both classical and new algorithms learn and abstract model
of the causal effect relation between concepts or variables.



After 15 epochs with input [0,0,1,0,0] (values of concepts
in time tO in the pattern to learn) the balanced algorithm
finds atwo stepslimit cycle (figll) that is the fusion of the
input at time t0 and the input at time t3 of the pattern to
learn. The classical algorithm shows after 30 epochs the
same outcome than the proposed agorithm. In this
experiment the agorithms converge to the same solution
but the classical algorithm is slower than the proposed one.

figll. The learnt pattern (new algorithm, 15
epochs, classical agorithm, 30 epocs)

Experiment 2

In this experiment we present a pattern (depicted in fig12)
with more concepts and a longer cycle to learn but with
less indetermination:

figl2. The second pattern to learn.

In figl3 we can see that the pattern learnt by our proposed
algorithm in 50 epochs is quite similar to the original one.
There is only one mistake, in time t5 the concept ¢4 takes
the value 0 instead of 1. This can be explained in a similar
way that in the previous example, concept c2 when
changes from 0 to 1 in time t4 causes that c4 changes his
value from 0 to 1 in t5. In time t1 when concept c2
changes his value from 0 to 1 in the next time (t2) c4 does
not change his value. We can see that when a concept not
only depends on his value but also depends on the exact
point of time the concept has a value, it is very difficult to
learn a pattern. This problem is not solved by any of the
two discussed algorithms.

Now, in the figl4 we can see that the limit cycle learnt
from the classical algorithm is not so close to the original

pattern. For example we can see that with the classical
algorithm it is impossible to learn that the concept ¢5 has
to change from 0 to 1 only when concepts c2, ¢3 and c4
have the value of one because every concept is treated
independently with respect the others.

figl3. The learnt pattern (new algorithm) after 50
epochs.

t0
tl
t2
t3
t4
t5
t6

figl4. The learnt pattern (classical agorithm) after 100
epochs.

Experiment 3

The third experiment is similar than the previous with
more concepts involved. The pattern to learn is depicted in
figls.

fig15. The third pattern to learn.



The balanced differential algorithm after 40 epochs
leans the given pattern withou any mistakes. The reason
is that this pattern has ambiguities that can be resolved
becaise of the distribution o the causaity between
concepts. For example, when concept ¢3 changes from O to
1 the concept ¢7 only changes at next step if concept ¢4, c5
and c6 have changed as well. This does not occur with the
clasgcd agorithm as we can seein figl7. After more than
40 epochs the dasdcd agorithm is not able to learn the
pattern.

fig16. The leant pattern (new agorithm) after
40 epochs.

figl7. Theleant pattern (classcd agorithm) after
40 epochs.

Experiment 4

The last experiment has been extraded from [Dickerson
and Kosko 1994]. In the paper the aithors include a
comparison between a leant FCM using the differential
hebbian algorithm and a hand-designed FCM. Here, we
have mmpared the differential hebbian algorithm with our
balanced dfferential hebbian algorithm. The inpus that we
presented to the leaning algorithms are the depicted in
figl8. This pattern is the limit cycle that we obtain if we
apply theinput [1,0,0,0,0,0,0,0,0,0] to the hand made FCM
that isincluded in the sedion 14 of [Dickerson and Kosko
1994].

Once we have @plied 800 epochs to the leaning
algorithms we obtain two dfferent FCM’s. The FCM built
with the baanced leaning agorithm with input

[1,0,0,0,0,0,0,0,0,0] reproduce e&adly the same pattern
that we presented to the dgorithm (figl9). The FCM built
with the dassicd algorithm canna reproduce the origina
pattern (fig20).

t0

fig18. The fourth pattern to lean

We ca now have alook to the figl9 and fig20 to the
FCMs generated with the two agorithms and the later
training data. The links between concepts (nodes of the
FCM) are similar, but there ae two main dfferences. One
of them is reaurrent links in the balanced algorithm. These
reaurrent links (diagonal links) always have a positive
value becaise they are the mean of the concept values that
can na be smaller than 0. Diagordl links (as is explained
in the previous ®dion) are necessary to ensure that the
value of a mncept was the same (in mean) when there ae
not other concepts that could cause to change his value.
We ae only using a heuristic but it works very well in all
the eperiments. A possible explanation is that mean
refleds if a @ncept in the training set has low or high
values. When we present the test set a high value in a
diagordl link leads to maintain the input value to the next
iteration (in the training set this concept had high values).
A low value in a diagonal link leads to obtain in the next
iteration a value dose to O like it was expeded given the
training set.

fig19. The leant pattern (new algorithm) after 800
epochs.



If we see carefully figl9 and fig20 we will see another
difference in the FCMs. most of the links have different
values. The explanation isthat our algorithm distributes the
causal weight among nodes as we have explained in the
previous section. For example, the link between concept cl1
and c2 has a value of 0.49 (close to 0.5) because is not the
single concept that cause c2 to change his value. It shares
the causal-effect relation with the concept ¢5 that also have
a value of 0.49 (close to 0.5). Then the model obtained is
more accurate: when concept c1 has a value close to 1 the
value of the concept ¢5 will not change unless concept c2
has a value close to 1 as well. This control of concept co-
ocurrence is not possible when we apply the differential
hebbian learning algorithm.

fig20. The learnt pattern (classical agorithm) after
1600 epochs.

We can compare the FCMs (fig21 and fig22), obtained
after computing the two learning agorithms. As we
expected, in fig21 we can see some weights that are not so
close to 1.0 or 0.0 than in fig22 because the proposed
learning agorithm distributes better the causal-effect
relation between variables.

fig21. The FCM learnt after 800 epochs with the
new algorithm

fig22. The FCM learnt after 800 epochs with the
classical algorithm

Conclusions

In this paper we have studied the differential hebbian
learning algorithm applied to build automatic FCMs and
we have proposed an evolution of the traditional algorithm
to another one that takes into account more than one
concept in order to calculate the weights for causal-effect
links between variables. The algorithm, that we have called
Balanced Differential learning algorithm, has been
implemented and tested with four different training sets
and we have observed that is better than the Differential
Hebbian learning agorithm. In general improves the
quality of the patterns learned besides is not necessary to
present the training set so many times.

The disadvantage of the presented algorithm is that is a
little bit slower, to compute every weight it is necessary to
consider the other concepts involved in the causal-effect
relation for atarget concept.

The observed results have shown that the proposed
algorithm improves the FCMs obtained with training sets
but still more experiments have to be done.

Finally, the area of FCM learning is very promising
because the cognitive maps (FCMs) obtained are directly
interpretable by a human and are a useful tool to extract
information from data about the relations between the
concepts or variables inside a domain.



Future Work

The dgorithm has to be tested now with red data training
sets and use the obtained FCMs to model red domains. In
addition has to be tested with variables that could have
float values nat only binary values asin ou examples.

The work made has alowed us to start working with
inductive rule extradion and ortologies.

Inductiverule extraction

The dgorithm presented is very suitable to automatic rule
extradion because to buld the FCM takes into aceunt not
only the value of individual concepts but the relationship
between them. As we have seen the differential hebbian
algorithm has connedions very close to 1.0 or —1.0 in all
concepts and the rules that we @n oltain are in genera
lessexpressve.

Ontologies

We ae very interested in the relationships that we see
between formal Ontologies (or less formal like thesauri)
with Fuzzy Cogntive Maps. Ontologies are very useful
tools to model a particular domain and are increasingly
used (every time more and more) to sort out a wide range
of problems, they have an important fault though they
have to be designed by hand.

We ae working with FCMs as a first step to oktain an
automatic or semi-automatic tool to build Ontologies in
FCMs. They can be obtained in an automatic or
semiautomatic way (eg. By using a leaning algorithm like
the ones fown in this paper) and they model the cause-
effed relationships that we do nd need model by hand in
the Ontology. As a future work we dso will have to sort
out an important issue: how to model and integrate (in an
automatic way if posshle) the generic-spedfic
rel ationships among terms (classes and subclasss) that are
commonly used in hand-made Ontologies.
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