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Abstract 
Fuzzy Conceptual Maps have become an important means 
for describing a particular domain showing the concepts 
(variables) and the relationship between them. They have 
been used for several tasks like simulation processes, 
forecasting or decision support. In general, the task of 
creating Fuzzy Conceptual Maps is made by experts in a 
certain domain but it is very promising the automatic 
creation of Fuzzy Conceptual Maps from raw data. In this 
paper we present a new algorithm (the Balanced Differential 
Algorithm) to learn Fuzzy Conceptual Maps from data. We 
compare the results obtained from the proposed algorithm 
versus the results obtained from the Differential Hebbian 
algorithm. Based on the results we conclude that the 
algorithm proposed seems to be better to learn patterns and 
model a given domain than in the classical approach. 

Fuzzy Cognitive Maps  

Cognitive Maps (CM) also called causal maps are (apart 
from Bayesian Networks [Pearl 1988]) a useful model to 
represent concepts or variables in a given domain and their 
causal-effect relations.  
Cognitive Maps were first introduced by Axelrod [Axelrod 
1976] in 1976 to model causal relations inferred between 
the concepts of a given domain. A CM is a directed graph, 
where nodes are the concepts of the given environment and 
arrows among nodes represent causal relations between 
concepts  
 A special kind of CM are the Fuzzy Cognitive Maps 
(FCM) that were introduced by Kosko [Kosko 1986a] to 
represent fuzzy cause-effect relations instead of the crisp 
cause-effect relations represented in the original CM. 
FCMs are fuzzy-signed digraphs with feedback [Kosko 
1986a][Kosko 1988]. Nodes in the graph that are Fuzzy 
Sets representing concepts. Directed edges (arrows) 
represent causal-effect relations between the concepts as in 
the case of generic CMs. Arrows can have positive or 
negative values, a positive value shows a positive causal 
connection. As is depicted in fig1 the value of concept B 
increases or decreases as concept A increases or decreases. 
Whereas in fig2 a negative causal connection causes the 
value of the concept B to decrease when the value of 
concept A increases, and also a negative causal connection 

causes the value of concept B to increase when the value of 
concept A decreases. 
 
 
 
 
 
 
 
 
 
 
 
FCMs have been used as an alternative to expert systems in 
several areas like economics, sociology or simulation. In 
the literature there are a lot of implementations of FCMs to 
model specific environments like decision making and 
policy-making [Carlsson and Fullér][Stylos and 
Groumpos]. The process to build a FCM is similar to the 
process used to create a knowledge base in an expert 
system. First, one or more domain experts identify the 
concepts and their causal relationships. They talk about if 
two concepts have strong, weak, null, etc… causal relation. 
This use of linguistic labels to explain the grade of causal 
relation is very used in Fuzzy Logic and has a direct 
translation in a FCM. The  "degree-of-causali ty" values in 
the connecting edges indicate how much one concept 
causes another. Values can range from -1, indicating a 
strong negative impact, through 0, or no impact, to +1, a 
strong positive impact.  
 An example is shown in fig3. We can see in the table the 
linguistic labels used for the domain experts and a possible 
automatic translation to weights in the causal web of the 
FCM. 
 

SYMBOLIC VALUES NUMERIC VALUES 
Affects a lot 1.0 
Affects 0.5 
Do not Affects 0.0 
Affects negatively -0.5 
Affects negatively a lot  -1.0 

    
   fig3. Mapping between labels and values 

_ 

fig1.Positive causal weight 

+ 

+ 
A B 

A B - 

- 
A B 

A B 

fig2. Negative causal weight 



 
A FCM using this kind of tables can be easily designed by 
the human domain experts and can be used to have a 
graphical model of the domain. This model of causal 
relations is easy to understand by a human agent because 
the causal relations are expressed in a graphical way. We 
can see in fig4 a simple example of a FCM in the literature 
[Levi and Tetlock 1980] to make a straightforward model 
explaining how the Japanese made the decision to attack 
Pearl Harbor. Here in the example, there are only values of 
1.0 or –1.0 represented as + or – respectively in order to 
make the example easier to understand the null relation 
between two concepts is not usually drawn. The FCM can 
be implemented as a non-symmetrical weighted square 
matrix.  
 
 
 
 
 
 
 
 
 
 

 
Once the FCM has been designed we can provide an input 
of the actual value of every concept or variable in the 
environment that the FCM wants to model. Then the FCM 
non-linear dynamical system acts as a neural network. 
Every concept Ci of the input is updated through the 
weighted matrix of the FCM using the commonly used 
formula depicted in fig5 until the input converges to a 
fixed point (if the system reaches the equilibrium), limit 
cycle or a chaotic attractor [Dickerson and Kosko 1994].  
  
 
 
 
 
 
 
 

Adaptive Fuzzy Cognitive Maps  

 
Sometimes it is not possible to have a human expert to 
model the domain because the number and complexity of 
the variables involved are so huge that the task to buil t by 
hand the FCM is very difficult. In this case the solution is 
to use adaptive fuzzy cognitive maps. An adaptive FCM 
learns its causal web from data. There are well-known 
techniques to learn causal patterns from data: Correlation 
or Hebbian Learning in FCMs or Temporal Associative 
Memories (TAM) [Amari 1972]. In [Dickerson and Kosko 
1994] the Correlation encoding using the TAM method is 

widely explained and discussed as a poor model to infer 
causali ty because it treats in the same way zero and 
negative causal edges generating “spurious” causal 
implications. 
 In this sense Differential Hebbian Learning [Kosko 
1986b] encodes causal changes to avoid spurious causality. 
The basic idea here is to update those weights in the causal 
web that are directly related to the changes in the concepts’ 
values. If the value concepts change in the same direction, 
the algorithm increases its positive causal weight in the 
FCM (the weight between the two concepts becomes 
“more” positive) otherwise if the value concepts change in 
opposite direction the algorithm increases its negative 
causal weight (the weight between the two concepts 
becomes “more” negative). The algorithm computes the 
discrete changes along time: )1(tC(t)C(t)

� �

iii −−= . 
Being Ci(t) the value of the i Concept at time t. The rule to 
calculate the weights can be summarised with the 
following formula: 
 
 
 
 
 
 
 
 
 
 
 The tc is a factor used to slowly forget the old weights  
for the new ones. The factor is calculated with the 
following formula: 
 
 
 
 
 
 
 
 
The main problem that the classical differential hebbian 
learning has is the fact that weights measure the causal-
effect strength between two concepts Ci, Cj only have into 
account these two concepts Ci, Cj. For example we can see 
the following concepts: 
 

 
0C  1C  2C  3C  4C  

0t  0.0 0.0 0.0 0.0 0.0 

1t  0.0 1.0 1.0 1.0 0.0 

2t  1.0 0.0 0.0 0.0 0.0 

 
 
 
The classical algorithm detects that C1, C2 and C3 have 
changed in time t1 while in time t2 C0 has changed. So, it 
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fig4. Example of a Causal Cognitive 
Map. 

fig5. Computing the states using the sigmoid function 
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fig6. Computing the weights. The Differential 
Hebbian Learning Algorithm 
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Fig8. Example of value evolution 

 



is inferred that C1, C2 and C3 are positive cause for C0. The 
problem here is: the learnt weights are too general. If we 
use as training set the data depicted in fig8 and we apply 
the differential hebbian learning algorithm the FCM 
obtained infer that only if one of the three concepts have 
the value of 1.0 the concept C0 changes to 1.0. It is clear 
that in general this is not true!. The correct pattern that 
should be learnt is the following: when the three variables 
have changed to 1.0 then C0 has to change to 1.0.  

A Balanced Differential Learning Algorithm 

A new algorithm to update the weights is proposed based 
on the differential hebbian learning explained in the last 
section. The aim of this new approach is to avoid the 
problem explained in the previous section (sometimes the 
cause-effect relation is distributed among concepts).  
 Given two concepts Ci and Cj being Cj cause of Ci, the 
computed weight now is normalised with the number of 
other concepts Ck that are acting at the same time as a 
cause of change for the concept Ci. Another important 
issue is that FCMs have in the proposed algorithm diagonal 
links (a concept that has a causal-effect link to itself) to 
ensure that one concept Ci is active (value of 1.0 or close to 
1.0) without the presence of another concept CJ that causes 
this effect in Ci. For diagonal links the weight computed in 
the FCM is the mean of all the values of the concept along 
the training set. Summarising, the proposed rule to update 
weights is the presented in fig 9. 

 
 
 
 
 
 
In the formula we can see the computation of the weights 
in terms of Probability, the diagonal links (i=j) are the 
probability that the concept has the value of 1.0. This 
probability is obtained computing the mean of all the 
values the concept Cj (xj) takes along the training set.  
 The other causal-effect links can be seen like a 
conditional probability. When there is a change in a 
concept Cj(xj) (∆Cj(xj)≠0) to the same direction that Ci(xi) 
(∆Ci(xi)∆Cj(xj)>0) the value computed updates the weight 
between the concepts and converts the link in a positive 
causal link. Otherwise if there is a change in a concept 
CJ(xJ) (∆Cj(xj)≠0) to a different direction (∆Ci(xi)∆Cj(xj)<0) 

the value computed by the algorithm updates the weight 
between the concepts and converts the link in a negative 
causal link. These weights are obtained computing the 
quotient ∆Ci(xi)/∆Cj(xj) that measures the proportional 
change factor that the concept Ci(xi) shows when the 
concept Cj(xj) changes along time. This value is computed 
normalising it with the change factor of the other concepts 
Ck(xk) that can be acting as a cause of the change of the 
concept Ci(xi). These other collateral causal relations are 
detected because they are changing at the same time and in 
the same direction than Cj(xj). The normalisation allows 
estimating the importance of causal relation between the 
concept Ci(xi) and the concept Cj(xj). If there are a lot of 
concepts Ck(xk) involved in changes of the concept Ci(xi) 
then the concept Cj(xj) has lower importance than if it was 
the only one concept that causes changes in the value of 
Ci(xi). 

Experimental results 

The aim of our experiments has been to compare the 
classical differential hebbian algorithm versus our 
proposed balanced differential algorithm. We have worked 
with four different training sets. Every training set 
represents a pattern of changes in the values of the 
concepts and is given to the algorithm repeated times until 
a FCM has been learnt. Then for each FCM we introduce 
an input that belongs to the pattern to learn and then we 
can see if the FCM can reproduce the limit cycle that 
represents the pattern. We have depicted in the next figures 
the value 1.0 as a white cell and the 0.0 as a white cell.  

Experiment 1 
 
The first pattern we have shown to the learning algorithm 
(fig 10) is quite difficult to learn because is not only 
determined by the value of the concepts but for the specific 
point of time the concepts have determined values. For 
example concepts c2 and c4 with value 1.0 in time t1 
causes that concepts c1 and c5 change their value to 1.0 in 
time t2. Otherwise in time t3 concepts c2 and c4 with value 
1.0 causes concept c3 to change its value from 0.0 to 1.0 
and do not modify the value of c1 and c5 in this case.  
 
 

 c1 c2 c3 c4 c5 
t0      
t1      
t2      
t3      
t4      

 
fig 10. The first pattern to learn. 

 
Both classical and new algorithms learn and abstract model 
of the causal effect relation between concepts or variables. 
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fig9. Computing the weights with the Balanced 
Differential Algorithm 

 



After 15 epochs with input [0,0,1,0,0] (values of concepts 
in time t0 in the pattern to learn) the balanced algorithm 
finds a two steps limit cycle (fig11) that is the fusion of the 
input at time t0 and the input at time t3 of the pattern to 
learn. The classical algorithm shows after 30 epochs the 
same outcome than the proposed algorithm. In this 
experiment the algorithms converge to the same solution 
but the classical algorithm is slower than the proposed one. 
 
 

 c1 c2 c3 c4 c5 
t0      
t1      
t2      
t3      
t4      

 
 

 

Experiment 2 
 
In this experiment we present a pattern (depicted in fig12) 
with more concepts and a longer cycle to learn but with 
less indetermination:  
 

 c1 c2 c3 c4 c5 c6 c7 
t0        
t1        
t2        
t3        
t4        
t5        
t6        

 
 
 
 
In fig13 we can see that the pattern learnt by our proposed 
algorithm in 50 epochs is quite similar to the original one. 
There is only one mistake, in time t5 the concept c4 takes 
the value 0 instead of 1. This can be explained in a similar 
way that in the previous example, concept c2 when 
changes from 0 to 1 in time t4 causes that c4 changes his 
value from 0 to 1 in t5. In time t1 when concept c2 
changes his value from 0 to 1 in the next time (t2) c4 does 
not change his value. We can see that  when a concept not 
only depends on his value but also depends on the exact 
point of time the concept has a value, it is very difficult to 
learn a pattern. This problem is not solved by any of the 
two discussed algorithms. 
 Now, in the fig14 we can see that the limit cycle learnt 
from the classical algorithm is not so close to the original 

pattern. For example we can see that with the classical 
algorithm it is impossible to learn that the concept c5 has 
to change from 0 to 1 only when concepts c2, c3 and c4 
have the value of one because every concept is treated 
independently with respect the others.  
 
 

 c1 c2 c3 c4 c5 c6 c7 
t0        
t1        
t2        
t3        
t4        
t5        
t6        

 

 

 

 c1 c2 c3 c4 c5 c6 c7 
t0        
t1        
t2        
t3        
t4        
t5        
t6        

 

 

Experiment 3 
 
The third experiment is similar than the previous with 
more concepts involved. The pattern to learn is depicted in 
fig15. 
 
 

 c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 

t0           
t1           
t2           
t3           
t4           
t5           
t6           

 
fig15. The third pattern to learn. 

 

fig11. The learnt pattern  (new algorithm, 15 
epochs, classical algorithm, 30 epocs) 
 
 

fig12. The second pattern to learn. 
 

 

fig13. The learnt pattern  (new algorithm) after 50 
epochs. 

 

fig14. The learnt pattern  (classical algorithm) after 100 
epochs. 

 



 The balanced differential algorithm after 40 epochs 
learns the given pattern without any mistakes. The reason 
is that this pattern has ambiguities that can be resolved 
because of the distribution of the causality between 
concepts. For example, when concept c3 changes from 0 to 
1 the concept c7 only changes at next step if concept c4, c5 
and c6 have changed as well . This does not occur with the 
classical algorithm as we can see in fig17. After more than 
40 epochs the classical algorithm is not able to learn the 
pattern. 
 
 

 c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 

t0           
t1           
t2           
t3           
t4           
t5           
t6           

 
 
 
 
 

 c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 

t0           
t1           
t2           
t3           
t4           
t5           
t6           

 
 
 
 

Experiment 4 
 
The last experiment has been extracted from [Dickerson 
and Kosko 1994]. In the paper the authors include a 
comparison between a learnt FCM using the differential 
hebbian algorithm and a hand-designed FCM. Here, we 
have compared the differential hebbian algorithm with our 
balanced differential hebbian algorithm. The inputs that we 
presented to the learning algorithms are the depicted in 
fig18. This pattern is the limit cycle that we obtain if we 
apply the input [1,0,0,0,0,0,0,0,0,0] to the hand made FCM 
that is included in the section 1.4 of [Dickerson and Kosko 
1994]. 
 Once we have applied 800 epochs to the learning 
algorithms we obtain two different FCM’s. The FCM buil t 
with the balanced learning algorithm with input 

[1,0,0,0,0,0,0,0,0,0] reproduce exactly the same pattern 
that we presented to the algorithm (fig19). The FCM built 
with the classical algorithm cannot reproduce the original 
pattern (fig20). 
 

 c0 c1 c2 c3 c4 c5 c6 c7 c8 C9 

t0           
t1           
t2           
t3           
t4           
t5           
t7           
t8           
t9           

 
 
 
 
We can now have a look to the fig19 and fig20 to the 
FCMs generated with the two algorithms and the later 
training data. The links between concepts (nodes of the 
FCM) are similar, but there are two main differences. One 
of them is recurrent links in the balanced algorithm. These 
recurrent links (diagonal l inks) always have a positive 
value because they are the mean of the concept values that 
can not be smaller than 0. Diagonal links (as is explained 
in the previous section) are necessary to ensure that the 
value of a concept was the same (in mean) when there are 
not other concepts that could cause to change his value. 
We are only using a heuristic but it works very well i n all 
the experiments. A possible explanation is that mean 
reflects if a concept in the training set has low or high 
values. When we present the test set a high value in a 
diagonal link leads to maintain the input value to the next 
iteration (in the training set this concept had high values). 
A low value in a diagonal li nk leads to obtain in the next 
iteration a value close to 0 like it was expected given the 
training set. 
 
 

 c0 c1 c2 c3 c4 c5 c6 c7 c8 C9 

t0           
t1           
t2           
t3           
t4           
t5           
t7           
t8           
t9           

 
 
 

fig16. The learnt pattern  (new algorithm) after 
40 epochs. 

fig17. The learnt pattern  (classical algorithm) after 
40 epochs. 

fig18. The fourth pattern to learn 

fig19. The learnt pattern  (new algorithm) after  800 
epochs. 
              



If we see carefully fig19 and fig20 we will see another 
difference in the FCMs: most of the links have different 
values. The explanation is that our algorithm distributes the 
causal weight among nodes as we have explained in the 
previous section. For example, the link between concept c1 
and c2 has a value of 0.49 (close to 0.5) because is not the 
single concept that cause c2 to change his value. It shares 
the causal-effect relation with the concept c5 that also have 
a value of 0.49 (close to 0.5). Then the model obtained is 
more accurate: when concept c1 has a value close to 1 the 
value of the concept c5 will not change unless concept c2 
has a value close to 1 as well. This control of concept co-
ocurrence is not possible when we apply the differential 
hebbian learning algorithm. 
 
 

 c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 

t0           
t1           
t2           
t3           
t4           
t5           
t7           
t8           
t9           

 
 
 
 
We can compare the FCMs (fig21 and fig22), obtained 
after computing the two learning algorithms. As we 
expected, in fig21 we can see some weights that are not so 
close to 1.0 or 0.0 than in fig22 because the proposed 
learning algorithm distributes better the causal-effect 
relation between variables. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Conclusions 

 
In this paper we have studied the differential hebbian 
learning algorithm applied to build automatic FCMs and 
we have proposed an evolution of the traditional algorithm 
to another one that takes into account more than one 
concept in order to calculate the weights for causal-effect 
links between variables. The algorithm, that we have called 
Balanced Differential learning algorithm, has been 
implemented and tested with four different training sets 
and we have observed that is better than the Differential 
Hebbian learning algorithm. In general improves the 
quality of the patterns learned besides is not necessary to 
present the training set so many times. 
The disadvantage of the presented algorithm is that is a 
little bit slower, to compute every weight it is necessary to 
consider the other concepts involved in the causal-effect 
relation for a target concept. 
The observed results have shown that the proposed 
algorithm improves the FCMs obtained with training sets 
but still more experiments have to be done. 
Finally, the area of FCM learning is very promising 
because the cognitive maps (FCMs) obtained are directly 
interpretable by a human and are a useful tool to extract 
information from data about the relations between the 
concepts or variables inside a domain. 
 

fig20. The learnt pattern  (classical algorithm) after 
1600 epochs. 

-0.9 

-0.9 
0.9 

0.2
6 

C0 C1 

C2 

C3 

C4 

C5 
C6 

C7 

C8 

C9 

-0.9 

-0.9 

-0.9 

0.9 

0.
49 

-0.9 

0.9 

0.9 

0.75 

-0.9 

-0.49 

0.4
9 

-0.9 

0.4
9 

-0.49 

0.1
4 

0.9 

-0.9 0.1
4 

0.9 

0.9 

-0.9 

0.2
6 

0.2
7 

0.1
4 

0.5
3 0.1

4 

 
fig21. The FCM learnt after 800 epochs with the 
new algorithm 
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fig22. The FCM learnt after 800 epochs with the 
classical algorithm 



Future Work 

 
The algorithm has to be tested now with real data training 
sets and use the obtained FCMs to model real domains. In 
addition has to be tested with variables that could have 
float values not only binary values as in our examples. 
 The work made has allowed us to start working with 
inductive rule extraction and ontologies. 

Inductive rule extraction 
The algorithm presented is very suitable to automatic rule 
extraction because to build the FCM takes into account not 
only the value of individual concepts but the relationship 
between them. As we have seen the differential hebbian 
algorithm has connections very close to 1.0 or –1.0 in all 
concepts and the rules that we can obtain are in general 
less expressive.  

Ontologies 
 
We are very interested in the relationships that we see 
between formal Ontologies (or less formal like thesauri) 
with Fuzzy Cognitive Maps. Ontologies are very useful 
tools to model a particular domain and are increasingly 
used (every time more and more) to sort out a wide range 
of problems, they have an important fault though: they 
have to be designed by hand. 
 We are working with FCMs as a first step to obtain an 
automatic or semi-automatic tool to build Ontologies in 
FCMs. They can be obtained in an automatic or 
semiautomatic way (eg. By using a learning algorithm like 
the ones shown in this paper) and they model the cause-
effect relationships that we do not need model by hand in 
the Ontology. As a future work we also will have to sort 
out an important issue: how to model and integrate (in an 
automatic way if possible) the generic-specific 
relationships among terms (classes and subclasses) that are 
commonly used in  hand-made Ontologies.  
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