
A Balanced Differential Learning algor ithm in Fuzzy Cognitive Maps

Alber to Vázquez Huerga

Departament de Llenguatges i Sistemes Informátics
Universitat Politécnica de Catalunya (UPC)

C\ Jordi Girona 1-3.
E0834, Barcelona, Spain.

avazquez@lsi.upc.es

Abstract
Fuzzy Conceptual Maps have become an important means
for describing a particular domain showing the concepts
(variables) and the relationship between them. They have
been used for several tasks like simulation processes,
forecasting or decision support. In general, the task of
creating Fuzzy Conceptual Maps is made by experts in a
certain domain but it is very promising the automatic
creation of Fuzzy Conceptual Maps from raw data. In this
paper we present a new algorithm (the Balanced Differential
Algorithm) to learn Fuzzy Conceptual Maps from data. We
compare the results obtained from the proposed algorithm
versus the results obtained from the Differential Hebbian
algorithm. Based on the results we conclude that the
algorithm proposed seems to be better to learn patterns and
model a given domain than in the classical approach.

Fuzzy Cognitive Maps

Cognitive Maps (CM) also called causal maps are (apart
from Bayesian Networks [Pearl 1988]) a useful model to
represent concepts or variables in a given domain and their
causal-effect relations.
Cognitive Maps were first introduced by Axelrod [Axelrod
1976] in 1976 to model causal relations inferred between
the concepts of a given domain. A CM is a directed graph,
where nodes are the concepts of the given environment and
arrows among nodes represent causal relations between
concepts
 A special kind of CM are the Fuzzy Cognitive Maps
(FCM) that were introduced by Kosko [Kosko 1986a] to
represent fuzzy cause-effect relations instead of the crisp
cause-effect relations represented in the original CM.
FCMs are fuzzy-signed digraphs with feedback [Kosko
1986a][Kosko 1988]. Nodes in the graph that are Fuzzy
Sets representing concepts. Directed edges (arrows)
represent causal-effect relations between the concepts as in
the case of generic CMs. Arrows can have positive or
negative values, a positive value shows a positive causal
connection. As is depicted in fig1 the value of concept B
increases or decreases as concept A increases or decreases.
Whereas in fig2 a negative causal connection causes the
value of the concept B to decrease when the value of
concept A increases, and also a negative causal connection

causes the value of concept B to increase when the value of
concept A decreases.

FCMs have been used as an alternative to expert systems in
several areas like economics, sociology or simulation. In
the literature there are a lot of implementations of FCMs to
model specific environments like decision making and
policy-making [Carlsson and Fullér][Stylos and
Groumpos]. The process to build a FCM is similar to the
process used to create a knowledge base in an expert
system. First, one or more domain experts identify the
concepts and their causal relationships. They talk about if
two concepts have strong, weak, null, etc… causal relation.
This use of linguistic labels to explain the grade of causal
relation is very used in Fuzzy Logic and has a direct
translation in a FCM. The "degree-of-causali ty" values in
the connecting edges indicate how much one concept
causes another. Values can range from -1, indicating a
strong negative impact, through 0, or no impact, to +1, a
strong positive impact.
 An example is shown in fig3. We can see in the table the
linguistic labels used for the domain experts and a possible
automatic translation to weights in the causal web of the
FCM.

SYMBOLIC VALUES NUMERIC VALUES
Affects a lot 1.0
Affects 0.5
Do not Affects 0.0
Affects negatively -0.5
Affects negatively a lot -1.0

 fig3. Mapping between labels and values

_

fig1.Positive causal weight

+

+
A B

A B -

-
A B

A B

fig2. Negative causal weight

A FCM using this kind of tables can be easily designed by
the human domain experts and can be used to have a
graphical model of the domain. This model of causal
relations is easy to understand by a human agent because
the causal relations are expressed in a graphical way. We
can see in fig4 a simple example of a FCM in the literature
[Levi and Tetlock 1980] to make a straightforward model
explaining how the Japanese made the decision to attack
Pearl Harbor. Here in the example, there are only values of
1.0 or –1.0 represented as + or – respectively in order to
make the example easier to understand the null relation
between two concepts is not usually drawn. The FCM can
be implemented as a non-symmetrical weighted square
matrix.

Once the FCM has been designed we can provide an input
of the actual value of every concept or variable in the
environment that the FCM wants to model. Then the FCM
non-linear dynamical system acts as a neural network.
Every concept Ci of the input is updated through the
weighted matrix of the FCM using the commonly used
formula depicted in fig5 until the input converges to a
fixed point (if the system reaches the equilibrium), limit
cycle or a chaotic attractor [Dickerson and Kosko 1994].

Adaptive Fuzzy Cognitive Maps

Sometimes it is not possible to have a human expert to
model the domain because the number and complexity of
the variables involved are so huge that the task to buil t by
hand the FCM is very difficult. In this case the solution is
to use adaptive fuzzy cognitive maps. An adaptive FCM
learns its causal web from data. There are well-known
techniques to learn causal patterns from data: Correlation
or Hebbian Learning in FCMs or Temporal Associative
Memories (TAM) [Amari 1972]. In [Dickerson and Kosko
1994] the Correlation encoding using the TAM method is

widely explained and discussed as a poor model to infer
causali ty because it treats in the same way zero and
negative causal edges generating “spurious” causal
implications.
 In this sense Differential Hebbian Learning [Kosko
1986b] encodes causal changes to avoid spurious causality.
The basic idea here is to update those weights in the causal
web that are directly related to the changes in the concepts’
values. If the value concepts change in the same direction,
the algorithm increases its positive causal weight in the
FCM (the weight between the two concepts becomes
“more” positive) otherwise if the value concepts change in
opposite direction the algorithm increases its negative
causal weight (the weight between the two concepts
becomes “more” negative). The algorithm computes the
discrete changes along time:)1(tC(t)C(t)

� �

iii −−= .
Being Ci(t) the value of the i Concept at time t. The rule to
calculate the weights can be summarised with the
following formula:

 The tc is a factor used to slowly forget the old weights
for the new ones. The factor is calculated with the
following formula:

The main problem that the classical differential hebbian
learning has is the fact that weights measure the causal-
effect strength between two concepts Ci, Cj only have into
account these two concepts Ci, Cj. For example we can see
the following concepts:

0C 1C 2C 3C 4C

0t 0.0 0.0 0.0 0.0 0.0

1t 0.0 1.0 1.0 1.0 0.0

2t 1.0 0.0 0.0 0.0 0.0

The classical algorithm detects that C1, C2 and C3 have
changed in time t1 while in time t2 C0 has changed. So, it

_

+

+

+

Japanesse
success in
war

US
Preparedness

Japanesse
attrition

Japanesse
remain
idle

fig4. Example of a Causal Cognitive
Map.

fig5. Computing the states using the sigmoid function

)(1

1
)(

Txce
x −−+

=θ

=+ ∑

=

N

k
kkji tCtwtC

1

)(*)()1(θ

[]

=∆
≠∆−∆∆+

=+
0)()(

0)()()()()(
)1(

iiij

iiijjjiitij

ij xCiftw

xCiftwxCxCctw
tw

fig6. Computing the weights. The Differential
Hebbian Learning Algorithm

 −=

N

t
tc i

it 1.1
11.0)(

 fig7. Learning Factor

+

Fig8. Example of value evolution

is inferred that C1, C2 and C3 are positive cause for C0. The
problem here is: the learnt weights are too general. If we
use as training set the data depicted in fig8 and we apply
the differential hebbian learning algorithm the FCM
obtained infer that only if one of the three concepts have
the value of 1.0 the concept C0 changes to 1.0. It is clear
that in general this is not true!. The correct pattern that
should be learnt is the following: when the three variables
have changed to 1.0 then C0 has to change to 1.0.

A Balanced Differential Learning Algorithm

A new algorithm to update the weights is proposed based
on the differential hebbian learning explained in the last
section. The aim of this new approach is to avoid the
problem explained in the previous section (sometimes the
cause-effect relation is distributed among concepts).
 Given two concepts Ci and Cj being Cj cause of Ci, the
computed weight now is normalised with the number of
other concepts Ck that are acting at the same time as a
cause of change for the concept Ci. Another important
issue is that FCMs have in the proposed algorithm diagonal
links (a concept that has a causal-effect link to itself) to
ensure that one concept Ci is active (value of 1.0 or close to
1.0) without the presence of another concept CJ that causes
this effect in Ci. For diagonal links the weight computed in
the FCM is the mean of all the values of the concept along
the training set. Summarising, the proposed rule to update
weights is the presented in fig 9.

In the formula we can see the computation of the weights
in terms of Probability, the diagonal links (i=j) are the
probability that the concept has the value of 1.0. This
probability is obtained computing the mean of all the
values the concept Cj (xj) takes along the training set.
 The other causal-effect links can be seen like a
conditional probability. When there is a change in a
concept Cj(xj) (∆Cj(xj)≠0) to the same direction that Ci(xi)
(∆Ci(xi)∆Cj(xj)>0) the value computed updates the weight
between the concepts and converts the link in a positive
causal link. Otherwise if there is a change in a concept
CJ(xJ) (∆Cj(xj)≠0) to a different direction (∆Ci(xi)∆Cj(xj)<0)

the value computed by the algorithm updates the weight
between the concepts and converts the link in a negative
causal link. These weights are obtained computing the
quotient ∆Ci(xi)/∆Cj(xj) that measures the proportional
change factor that the concept Ci(xi) shows when the
concept Cj(xj) changes along time. This value is computed
normalising it with the change factor of the other concepts
Ck(xk) that can be acting as a cause of the change of the
concept Ci(xi). These other collateral causal relations are
detected because they are changing at the same time and in
the same direction than Cj(xj). The normalisation allows
estimating the importance of causal relation between the
concept Ci(xi) and the concept Cj(xj). If there are a lot of
concepts Ck(xk) involved in changes of the concept Ci(xi)
then the concept Cj(xj) has lower importance than if it was
the only one concept that causes changes in the value of
Ci(xi).

Experimental results

The aim of our experiments has been to compare the
classical differential hebbian algorithm versus our
proposed balanced differential algorithm. We have worked
with four different training sets. Every training set
represents a pattern of changes in the values of the
concepts and is given to the algorithm repeated times until
a FCM has been learnt. Then for each FCM we introduce
an input that belongs to the pattern to learn and then we
can see if the FCM can reproduce the limit cycle that
represents the pattern. We have depicted in the next figures
the value 1.0 as a white cell and the 0.0 as a white cell.

Experiment 1

The first pattern we have shown to the learning algorithm
(fig 10) is quite difficult to learn because is not only
determined by the value of the concepts but for the specific
point of time the concepts have determined values. For
example concepts c2 and c4 with value 1.0 in time t1
causes that concepts c1 and c5 change their value to 1.0 in
time t2. Otherwise in time t3 concepts c2 and c4 with value
1.0 causes concept c3 to change its value from 0.0 to 1.0
and do not modify the value of c1 and c5 in this case.

 c1 c2 c3 c4 c5
t0
t1
t2
t3
t4

fig 10. The first pattern to learn.

Both classical and new algorithms learn and abstract model
of the causal effect relation between concepts or variables.

−

∆∆
∆∆−

+<∆∆≠

−

∆∆

∆∆
+>∆∆≠

+=

=+

∑

∑

<∆∆
=

>∆∆
=

)(
)(/)(

)(/)(
)(0)()(

)(
)(/)(

)(/)(
)(0)()(

/)(

)1(

0)()(
..1

0)()(
..1

tw
xCxC

xCxC
ctwxCxCji

tw
xCxC

xCxC
ctwxCxCji

NCtwji

tw

ij

xCxC
nk kkii

jjii

tijjjii

ij

xCxC
nk kkii

jjii

tijjjii

iij

ij

kikiii

kikiii

fig9. Computing the weights with the Balanced
Differential Algorithm

After 15 epochs with input [0,0,1,0,0] (values of concepts
in time t0 in the pattern to learn) the balanced algorithm
finds a two steps limit cycle (fig11) that is the fusion of the
input at time t0 and the input at time t3 of the pattern to
learn. The classical algorithm shows after 30 epochs the
same outcome than the proposed algorithm. In this
experiment the algorithms converge to the same solution
but the classical algorithm is slower than the proposed one.

 c1 c2 c3 c4 c5
t0
t1
t2
t3
t4

Experiment 2

In this experiment we present a pattern (depicted in fig12)
with more concepts and a longer cycle to learn but with
less indetermination:

 c1 c2 c3 c4 c5 c6 c7
t0
t1
t2
t3
t4
t5
t6

In fig13 we can see that the pattern learnt by our proposed
algorithm in 50 epochs is quite similar to the original one.
There is only one mistake, in time t5 the concept c4 takes
the value 0 instead of 1. This can be explained in a similar
way that in the previous example, concept c2 when
changes from 0 to 1 in time t4 causes that c4 changes his
value from 0 to 1 in t5. In time t1 when concept c2
changes his value from 0 to 1 in the next time (t2) c4 does
not change his value. We can see that when a concept not
only depends on his value but also depends on the exact
point of time the concept has a value, it is very difficult to
learn a pattern. This problem is not solved by any of the
two discussed algorithms.
 Now, in the fig14 we can see that the limit cycle learnt
from the classical algorithm is not so close to the original

pattern. For example we can see that with the classical
algorithm it is impossible to learn that the concept c5 has
to change from 0 to 1 only when concepts c2, c3 and c4
have the value of one because every concept is treated
independently with respect the others.

 c1 c2 c3 c4 c5 c6 c7
t0
t1
t2
t3
t4
t5
t6

 c1 c2 c3 c4 c5 c6 c7
t0
t1
t2
t3
t4
t5
t6

Experiment 3

The third experiment is similar than the previous with
more concepts involved. The pattern to learn is depicted in
fig15.

 c0 c1 c2 c3 c4 c5 c6 c7 c8 c9

t0
t1
t2
t3
t4
t5
t6

fig15. The third pattern to learn.

fig11. The learnt pattern (new algorithm, 15
epochs, classical algorithm, 30 epocs)

fig12. The second pattern to learn.

fig13. The learnt pattern (new algorithm) after 50
epochs.

fig14. The learnt pattern (classical algorithm) after 100
epochs.

 The balanced differential algorithm after 40 epochs
learns the given pattern without any mistakes. The reason
is that this pattern has ambiguities that can be resolved
because of the distribution of the causality between
concepts. For example, when concept c3 changes from 0 to
1 the concept c7 only changes at next step if concept c4, c5
and c6 have changed as well . This does not occur with the
classical algorithm as we can see in fig17. After more than
40 epochs the classical algorithm is not able to learn the
pattern.

 c0 c1 c2 c3 c4 c5 c6 c7 c8 c9

t0
t1
t2
t3
t4
t5
t6

 c0 c1 c2 c3 c4 c5 c6 c7 c8 c9

t0
t1
t2
t3
t4
t5
t6

Experiment 4

The last experiment has been extracted from [Dickerson
and Kosko 1994]. In the paper the authors include a
comparison between a learnt FCM using the differential
hebbian algorithm and a hand-designed FCM. Here, we
have compared the differential hebbian algorithm with our
balanced differential hebbian algorithm. The inputs that we
presented to the learning algorithms are the depicted in
fig18. This pattern is the limit cycle that we obtain if we
apply the input [1,0,0,0,0,0,0,0,0,0] to the hand made FCM
that is included in the section 1.4 of [Dickerson and Kosko
1994].
 Once we have applied 800 epochs to the learning
algorithms we obtain two different FCM’s. The FCM buil t
with the balanced learning algorithm with input

[1,0,0,0,0,0,0,0,0,0] reproduce exactly the same pattern
that we presented to the algorithm (fig19). The FCM built
with the classical algorithm cannot reproduce the original
pattern (fig20).

 c0 c1 c2 c3 c4 c5 c6 c7 c8 C9

t0
t1
t2
t3
t4
t5
t7
t8
t9

We can now have a look to the fig19 and fig20 to the
FCMs generated with the two algorithms and the later
training data. The links between concepts (nodes of the
FCM) are similar, but there are two main differences. One
of them is recurrent links in the balanced algorithm. These
recurrent links (diagonal l inks) always have a positive
value because they are the mean of the concept values that
can not be smaller than 0. Diagonal links (as is explained
in the previous section) are necessary to ensure that the
value of a concept was the same (in mean) when there are
not other concepts that could cause to change his value.
We are only using a heuristic but it works very well i n all
the experiments. A possible explanation is that mean
reflects if a concept in the training set has low or high
values. When we present the test set a high value in a
diagonal link leads to maintain the input value to the next
iteration (in the training set this concept had high values).
A low value in a diagonal li nk leads to obtain in the next
iteration a value close to 0 like it was expected given the
training set.

 c0 c1 c2 c3 c4 c5 c6 c7 c8 C9

t0
t1
t2
t3
t4
t5
t7
t8
t9

fig16. The learnt pattern (new algorithm) after
40 epochs.

fig17. The learnt pattern (classical algorithm) after
40 epochs.

fig18. The fourth pattern to learn

fig19. The learnt pattern (new algorithm) after 800
epochs.

If we see carefully fig19 and fig20 we will see another
difference in the FCMs: most of the links have different
values. The explanation is that our algorithm distributes the
causal weight among nodes as we have explained in the
previous section. For example, the link between concept c1
and c2 has a value of 0.49 (close to 0.5) because is not the
single concept that cause c2 to change his value. It shares
the causal-effect relation with the concept c5 that also have
a value of 0.49 (close to 0.5). Then the model obtained is
more accurate: when concept c1 has a value close to 1 the
value of the concept c5 will not change unless concept c2
has a value close to 1 as well. This control of concept co-
ocurrence is not possible when we apply the differential
hebbian learning algorithm.

 c0 c1 c2 c3 c4 c5 c6 c7 c8 c9

t0
t1
t2
t3
t4
t5
t7
t8
t9

We can compare the FCMs (fig21 and fig22), obtained
after computing the two learning algorithms. As we
expected, in fig21 we can see some weights that are not so
close to 1.0 or 0.0 than in fig22 because the proposed
learning algorithm distributes better the causal-effect
relation between variables.

Conclusions

In this paper we have studied the differential hebbian
learning algorithm applied to build automatic FCMs and
we have proposed an evolution of the traditional algorithm
to another one that takes into account more than one
concept in order to calculate the weights for causal-effect
links between variables. The algorithm, that we have called
Balanced Differential learning algorithm, has been
implemented and tested with four different training sets
and we have observed that is better than the Differential
Hebbian learning algorithm. In general improves the
quality of the patterns learned besides is not necessary to
present the training set so many times.
The disadvantage of the presented algorithm is that is a
little bit slower, to compute every weight it is necessary to
consider the other concepts involved in the causal-effect
relation for a target concept.
The observed results have shown that the proposed
algorithm improves the FCMs obtained with training sets
but still more experiments have to be done.
Finally, the area of FCM learning is very promising
because the cognitive maps (FCMs) obtained are directly
interpretable by a human and are a useful tool to extract
information from data about the relations between the
concepts or variables inside a domain.

fig20. The learnt pattern (classical algorithm) after
1600 epochs.

-0.9

-0.9
0.9

0.2
6

C0 C1

C2

C3

C4

C5
C6

C7

C8

C9

-0.9

-0.9

-0.9

0.9

0.
49

-0.9

0.9

0.9

0.75

-0.9

-0.49

0.4
9

-0.9

0.4
9

-0.49

0.1
4

0.9

-0.9 0.1
4

0.9

0.9

-0.9

0.2
6

0.2
7

0.1
4

0.5
3 0.1

4

fig21. The FCM learnt after 800 epochs with the
new algorithm

C0 C1

C2

C4

C5
C6

C7

C8

-0.9

-0.9

-0.9

0.9

0.9

0.9

0.9

-0.9

0.9 -
0.9

0.9

-0.9

-0.9
0.9

-0.9

-0.9

0.9

0.9

-0.9

-0.9
-0.9

C9

0.9
C3

-0.9

-0.9

-0.9

-0.9 0.9

fig22. The FCM learnt after 800 epochs with the
classical algorithm

Future Work

The algorithm has to be tested now with real data training
sets and use the obtained FCMs to model real domains. In
addition has to be tested with variables that could have
float values not only binary values as in our examples.
 The work made has allowed us to start working with
inductive rule extraction and ontologies.

Inductive rule extraction
The algorithm presented is very suitable to automatic rule
extraction because to build the FCM takes into account not
only the value of individual concepts but the relationship
between them. As we have seen the differential hebbian
algorithm has connections very close to 1.0 or –1.0 in all
concepts and the rules that we can obtain are in general
less expressive.

Ontologies

We are very interested in the relationships that we see
between formal Ontologies (or less formal like thesauri)
with Fuzzy Cognitive Maps. Ontologies are very useful
tools to model a particular domain and are increasingly
used (every time more and more) to sort out a wide range
of problems, they have an important fault though: they
have to be designed by hand.
 We are working with FCMs as a first step to obtain an
automatic or semi-automatic tool to build Ontologies in
FCMs. They can be obtained in an automatic or
semiautomatic way (eg. By using a learning algorithm like
the ones shown in this paper) and they model the cause-
effect relationships that we do not need model by hand in
the Ontology. As a future work we also will have to sort
out an important issue: how to model and integrate (in an
automatic way if possible) the generic-specific
relationships among terms (classes and subclasses) that are
commonly used in hand-made Ontologies.

References

[Axelrod 1976] Axelrod, R. 1976. Structure of Decision:
the Cognitive Maps of Political Elites, Princeton
University Press, Princeton, New Jersey.

[Kosko 1986a] Kosko, B. 1986. Fuzzy Cognitive Maps,
International Journal of Man-Machine Studies, 24:65-75.

[Kosko 1988] Kosko, B. 1988. Hidden Patterns in
Combined and Adaptive Knowledge Networks,
International Journal of Approximate Reasoning, 2:337-
393.

[Dickerson and Kosko 1994] Dickerson, J. A. and Kosko,
B. 1994. Virtual Worlds as Fuzzy Cognitive Maps,
Presence, 3(2), 173-189.

[Kosko 1986b] Kosko, B. 1986. Differential hebbian
learning. AIP Conference Proceedings 151:265—270.

[Amari 1972] Amari, S. 1972. Learning patterns and
pattern sequences by self organizating nets of threshold
elements. IEEE Transactions on Computers, 21:1197-
1206.

[Pearl 1988] Pearl, J. 1988. Probabil istic Reasoning in
Intelligent Systems. San Mateo, CA: Morgan Kauffman.

[Carlsson and Fullér 1996] Carlsson, C and Fullér, R.
1996. Adaptive Fuzzy Cognitive Maps for
Hyperknowledge Representation in Strategy Formation
Process, Proceedings of International Panel Conference
on Soft and Intelligent Computing,Technical University of
Budapest 43-50.

[Stylios and Groumpos] Stylios, C.D. and Groumpos, P.P.
2000. Fuzzy Cognitive Maps in Modell ing Supervisory
Control Systems. Journal of Intelligent & Fuzzy Systems 8,
2:83-98.

[Levi and Tetlock] Levi, A and Tetlock, P. E. 1980. A
Cognitive Analysis of Japan’s 1941 Decision for War.
Journal of Conflict Resolution, 24:195-211.

