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Abstract

Methods developed for the qualitative simulation of dynami-
cal systems have turned out to be powerful tools for studying
genetic regulatory networks. A bottleneck in the application
of these methods is the analysis of the simulation results. In
this paper, we propose a combination of qualitative simula-
tion and model-checking techniques to perform this task sys-
tematically and efficiently. By means of the example of the
network controlling the initiation of sporulation in B. subtilis,
we argue that this approach is well-adapted to the kind of
questions biologists habitually ask and the kind of data avail-
able to answer these questions.

Introduction
Qualitative simulation is concerned with making predictions
of the behavior of dynamical systems when only qualitative
information is available. In QSIM (Kuipers 1994), probably
the best-known approach towards qualitative simulation, the
variables of the system take qualitative values expressed in
terms of a totally-ordered set of landmark values. The struc-
ture of the system is described by means of a qualitative dif-
ferential equation, an abstraction of a class of ordinary dif-
ferential equations. A qualitative differential equation con-
sists of constraints on the qualitative value of the variables,
corresponding to basic mathematical equations. Qualitative
simulation exploits the qualitative constraints and continuity
properties of the variables to predict the possible qualitative
behaviors of the system. Given an initial qualitative state,
consisting of a qualitative value for each of the variables, the
simulation algorithm produces a branching tree of all reach-
able qualitative states.

Qualitative simulation provides a discrete view on the dy-
namics of a system. A qualitative behavior produced by
QSIM consists of a sequence of qualitative states, alternat-
ing between time-points and time-intervals. The order of
qualitative states in the behavior expresses a temporal order
of events at which the qualitative value of some variable,
and hence the qualitative state of the system, changes. The
abstraction of the continuous behavior of a system into a se-
quence of qualitative states makes it possible to use model-
checking techniques for the verification of properties of the
system (Clarke, Grumberg, & Peled 1999). The application

of these techniques has been proposed as a means to deal
with one of the major problems of QSIM and other classi-
cal qualitative simulation methods: the analysis of the large
number of possible sequences of qualitative states predicted
(Brajnik & Clancy 1998; Shults & Kuipers 1997).

The aim of this paper is to explore the combined use
of qualitative simulation and model checking techniques in
the context of a biological application, the analysis of ge-
netic regulatory networks. These networks of regulatory in-
teractions between genes, proteins, metabolites, and other
small molecules underlie the development and functioning
of all living organisms. Mathematical methods supported
by computer tools are indispensable for the analysis of ge-
netic regulatory networks, since most networks of interest
involve many genes connected through interlocking positive
and negative feedback loops, thus making an intuitive under-
standing of their dynamics difficult to obtain (de Jong 2002).
Currently, only a few networks are well-understood on the
molecular level, and quantitative information on the interac-
tions is seldom available. This has stimulated an interest in
qualitative approaches towards the analysis of genetic regu-
latory networks.

In previous work we have developed a method for the
qualitative simulation of genetic regulatory networks (de
Jong et al. 2002a; 2002b; 2001). The method differs from
traditional approaches towards qualitative simulation in that
it has been tailored to a class of piecewise-linear (PL) dif-
ferential equations with favorable mathematical properties
(Glass & Kauffman 1973; Mestl, Plahte, & Omholt 1995;
Thomas & d’Ari 1990). This allows it to deal with large and
complex networks of regulatory interactions. The qualita-
tive simulation method has been implemented in a publicly-
available computer tool, called Genetic Network Analyzer
(GNA) (de Jong et al. 2003). The program has been used
to analyze several genetic regulatory networks of biological
interest, including the network controlling the initiation of
sporulation in B. subtilis.

In this paper, we will show how the graph of qualitative
behaviors produced by the simulation method can be refor-
mulated as a Kripke structure. Moreover, we will illustrate
how observed properties of the behavior of the genetic reg-
ulatory network can be expressed in the temporal logic CTL
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(Clarke & Emerson 1981). This allows existing, highly-
efficient model-checking techniques (Clarke, Grumberg, &
Peled 1999; Cimatti et al. 2002) to be used to validate the
model of the network, that is, to check whether a statement
in temporal logic representing an observed property is satis-
fied by the Kripke structure obtained from the model through
simulation. We will argue by means of the example of the
sporulation network that the chosen combination of quali-
tative simulation and model checking is well-adapted to the
kind of questions biologists habitually ask as well as the kind
of data available to answer these questions.

In the next two sections of this paper, we briefly review
the qualitative modeling and simulation of genetic regula-
tory networks. This will set the stage for a discussion of the
combined use of qualitative simulation and model-checking
techniques in the third section. The applicability of this
approach to the validation of actual genetic regulatory net-
works is the subject of the next section. We finish with a
discussion of the approach in the context of related work.

Qualitative modeling of genetic regulatory
networks

The dynamics of genetic regulatory networks can be mod-
eled by a class of piecewise-linear (PL) differential equa-
tions of the following general form (Glass & Kauffman
1973; Mestl, Plahte, & Omholt 1995; Thomas & d’Ari
1990): �	�
����	���������	���	���	������ (1)
where 	�
�� � � �"!"!#!$�%�'&(�*) is a vector of cellular protein con-
centrations, and �+
,�.- � �"!"!#!"�/-0&��*) , �1
 diag �32 � �"!#!"!#�*24&�� .
The rate of change of each concentration �65 , 798;:<8= , is
defined as the difference of the rate of synthesis - 5 �.	�� and
the rate of degradation 2 5 �.	��>� 5 of the protein.

The function -?5A@<B & CEDGF B C'D
is defined as- 5 �.	��H
JIK3L4MON 5 K4P 5 K �.	���� (2)

where N 5 KRQTS
is a rate parameter,

P 5 K @�B & C'D F U S � 74V
a regulation function, and W a possibly empty set of in-
dices of regulation functions. A regulation function

P 5 K is
the arithmetic equivalent of a Boolean function expressing
the logic of gene regulation (Mestl, Plahte, & Omholt 1995;
Thomas & d’Ari 1990). The function 2X5 expresses the reg-
ulation of protein degradation. It is defined analogously to- 5 , except that we demand that 2 5 ��	�� is strictly positive. In
addition, in order to formally distinguish degradation rates
from synthesis rates, we will denote the former by Y instead
of N .

Figure 1 gives an example of a simple genetic regulatory
network. Genes a and b, transcribed from separate promot-
ers, encode proteins A and B, each of which controls the ex-
pression of both genes. More specifically, proteins A and B
repress gene a as well as gene b at different concentrations.

The network in figure 1 can be described by means of the
following pair of state equations:Z�'[O
1N'[�\?]^� �'[��%_ �[ �`\4]a� �6b#�%_ �b �c� Y [d�'[ (3)Z� b 
1N b \ ] ��� [ �e_ �[ �(\ ] � � b �e_ �b �c� Y b � b ! (4)

Gene a is expressed at a rate N6[ QfS
, if the concentra-

tion of protein A is below its threshold _ �[ and the con-
centration of protein B below its threshold _ �b , that is, if\ ] ��� [ �e_ �[ �`\ ] � � b �%_ �b �g
 7 . Recall that \ ] � �d�%_h� is a step
function evaluating to 1, if �jik_ , and to 0, if � Q _ . Protein
A is spontaneously degraded at a rate proportional to its own
concentration ( Y [ QkS

is a rate constant). The state equation
of gene b is interpreted analogously.

Qualitative simulation of genetic regulatory
networks

The dynamical properties of the PL models (1) can be an-
alyzed in the = -dimensional phase space box l 
 l �9m!"!"! m l & , where every l 5 , 7n8o:;8o= , is defined asl 5 
 U � 5�p B C'Drq S 8 � 5 8tsvu"w 5 V . svu"w 5 is a pa-
rameter denoting a maximum concentration for the protein.
Given that the protein encoded by gene : has x 5 threshold
concentrations, the = � 7 -dimensional threshold hyperplanes�E5^
y_hz/{5 , 798+| 5 8�x 5 , partition l into (hyper)rectangular
regions that are called domains (de Jong et al. 2002a). More
precisely, a domain }�~�l is defined by } 
 } � m !"!"! m } & ,
where every } 5 , 7v8;:<8�= , is defined by one of the equa-
tions below:

} 5d
 U �E5 q S 8 �E5Hi�_ �5 V �
} 5 
 U � 5 q � 5 
1_ �5 V �
} 5d
 U �E5 q _ �5 i��'5�i�_ �5 V �!#!"!
} 5d
 U �E5 q _�� {5 ik�E5 8���� �E5 V !

Figure 2(a) shows the subdivision into domains of the
two-dimensional phase space box of the example network.
We distinguish between domains like }�� and }9� , which
are located on (intersections of) threshold planes, and do-
mains like } �

, which are not. The former domains are called
switching domains and the latter regulatory domains.

When evaluating the step function expressions of (1) in a
regulatory domain, - 5 and 2 5 reduce to sums of rate con-
stants. More precisely, in a regulatory domain } , - 5 re-
duces to some ���5 , and 245 to some �`�5 . It can be shown that
all solution trajectories in } monotonically tend towards a
stable equilibrium � � } ��
 U � ������ �`�� �"!"!#!"� ���& � ���& � V , the
target equilibrium (Glass & Kauffman 1973; Mestl, Plahte,
& Omholt 1995; Thomas & d’Ari 1990). The target equi-
librium level ���5 � ���5 of the protein concentration � 5 gives
an indication of the strength of gene expression in } . If� � } ��� }��
 U V , then all trajectories will remain in } . If
not, they will leave } at some point. In regulatory domain} �

in figure 2(b), the trajectories tend towards � � } � �g
U �.N'[ � Y [X��N'b � Y b�� V . Since � � } � ��� } � 
 U V , the trajec-
tories starting in } will leave this domain at some point.
Different regulatory domains generally have different target
equilibria. For instance, in regulatory domain } �

, the target
equilibrium is given by

U � S ��N6b � Y b�� V (not shown).
In switching domains, -?5 and 245 may not be defined,

because some concentrations assume their threshold value.
Moreover, - 5 and 2 5 may be discontinuous in switching do-
mains. In order to cope with this problem, the system of
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Figure 1: Example of a genetic regulatory network of two genes (a and b), each coding for a regulatory protein (A and B) (see
figure 4 for the legend).
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Figure 2: Qualitative simulation of the regulatory network in figure 1. (a) Subdivision of the phase space into regulatory and
switching domains. (b) Analysis of the model in regulatory domain ÂÄÃ , using the parameter inequalities (5)-(6). (c) Transition
graph resulting from a simulation of the example system starting in the domain Â Ã . Qualitative states associated with regulatory
domains and switching domains are indicated by unfilled and filled dots, respectively. Qualitative states associated with domains
containing an equilibrium point are circled (de Jong et al. 2002a).

differential equations (1) is extended into a system of dif-
ferential inclusions, following an approach widely used in
control theory (Gouzé & Sari 2003). Using this generaliza-
tion, it can be shown that, in the case of a switching domainÂ , the trajectories either traverse Â instantaneously or re-
main in Â for some time, tending towards a target equilib-
rium set ÅÇÆ.Â�È . Here, ÅÇÆ�Â�È is the smallest closed convex set
including the target equilibria of regulatory domains havingÂ in their boundary, intersected with the hyperplane con-
taining Â (see (de Jong et al. 2002a) for technical details).
If ÅÇÆ�ÂgÈcÉÄÂfÊËÍÌ4Î , then the trajectories may remain in Â .
If not, they will leave Â at some point.

Most of the time, precise numerical values for the thresh-
old and rate parameters in (1) are not available. However,
the above summary of the properties of PL models reveals
that a qualitative understanding of the dynamics of a regula-
tory system can be obtained by knowing the relative position
of Â and ÅÇÆ�ÂgÈ . This relative position can be determined
from a set of qualitative constraints that are called param-
eter inequalities (de Jong et al. 2002a). More precisely,
the parameter inequalities specify a total ordering of the ÏÑÐ
threshold concentrations of gene Ò , as well as the possible
target equilibrium levels Ó�ÔÐÇÕ0Ö ÔÐ of × Ð in all regulatory do-
mains ÂÙØ�Ú . The parameter inequalities for the example
network described by (3)-(4) are given byÛÝÜ�Þ Ãß Ü�Þhàß Ü�á ß Õ#â ß ÜJãvä"å ßXæ (5)ÛÝÜ�Þ Ãç Ü�Þ àç Ü�á ç Õ¨â ç ÜJãvä"å ç#è (6)

They constrain ÅÇÆ.Â�Ã�È to lie somewhere in Â à�é
, so that tra-

jectories starting in Â Ã reach one of the domains Â à
, Â9ê ,

and Â�ë at some point. The information necessary to specify
the parameter inequalities can usually be inferred from the
biological data.

A domain Â supplemented by the relative position of Â
and ÅÇÆ.Â�È will be called a qualitative state of the system.
Given the qualitative state associated with Â , it can be in-
ferred which domains can be reached, in finite time, by tra-
jectories starting in Â . Since a qualitative state can be asso-
ciated to each of these domains in turn, this amounts to the
computation of transitions between qualitative states. In (de
Jong et al. 2002a), a simulation algorithm is described that
recursively generates qualitative states and transitions from
qualitative states, starting at the qualitative state associated
with an initial domain Â�ì . This results in a transition graph,
a directed graph of qualitative states and transitions between
qualitative states. The transition graph may contain quali-
tative equilibrium states or qualitative cycles. These may
correspond to equilibrium points or limit cycles reached by
solutions, and hence indicate functional modes of the regu-
latory system. Moreover, it has been shown that the transi-
tion graph produced by the qualitative simulation algorithm
is guaranteed to cover all possible solutions of the PL model
of the genetic regulatory network. The qualitative simula-
tion algorithm is sound (de Jong et al. 2002a).

Figure 2(c) shows the transition graph generated for the
example network, when starting in the regulatory domain



} �
. It shows that the system has a choice between three

qualitative equilibrium states, two of which are stable ( íaî �
and í^î �%ï

) and one of which is unstable ( í^î � ). This con-
forms to the expected behavior of the system, which is a
simplified version of a well known molecular switch deter-
mining the response of E. coli to phage ð infection (Ptashne
1992).

For the purpose of validating models of genetic regulatory
networks, it is usually more convenient to consider a refined
version of the transition graph. Here the qualitative states
are associated with (hyper)rectangular regions in the phase
space where the derivatives of the concentration variables
have a determinate sign. Often these hyperregions coincide
with the domains defined above, for instance in the case of
regulatory domain } �

, where
Z�6[ QñS

and
Z�6b QñS

, for all	 p } �
. However, sometimes a domain may need to be

divided into subdomains, to each of which a separate quali-
tative state is associated. In that case, transitions may need
to be added between the refined qualitative states, in order
to keep the soundness property. The refined transition graph
can be deduced from the transition graph described in the
previous paragraph. In our simple example, the refinement
is straightforward. However, this may not be true in general
(the automatization of this step is currently under way). In
what follows, we assume that the transition graph generated
by the qualitative simulator is the refined transition graph.

The qualitative simulation method described in this sec-
tion has been implemented in Java 1.3 in the program Ge-
netic Network Analyzer (GNA) (de Jong et al. 2003). GNA is
available for non-profit academic research purposes at (GNA
2003). The core of the system is formed by the simula-
tor, which generates a transition graph from a qualitative PL
model and initial conditions. The input of the simulator is
obtained by reading and parsing text files specified by the
user. A graphical user interface (GUI), named VisualGNA,
assists the user in specifying the model of a genetic regula-
tory network as well as in interpreting the simulation results.

Analysis of genetic regulatory networks by
model checking

We have presented above how predictions of the behavior
of a genetic regulatory network can be obtained by qual-
itative simulation. The model of the network, expressing
hypotheses on the genes and proteins involved and their mu-
tual interactions, can be validated by means of experimental
data. The validation of a model is complicated by the size
of the transition graphs obtained through simulation, which
for networks with more than a dozen genes become too big
to analyze by hand.

Our aim is to develop a method that can be used to test au-
tomatically if a transition graph satisfies an observed prop-
erty. In this section, we propose an approach based on model
checking. Model-checking techniques are widely used for
the formal analysis of discrete state systems. Computer
tools exists that can test automatically if a given property,
expressed as a temporal logic statement, is satisfied by a dis-
crete state system, represented by a Kripke structure. They
combine formal precision and computational efficiency.

Expressing observed properties in temporal logic
As a first step in the validation of a model, we must express
properties of the observed behavior of a genetic regulatory
network in a formal language, here a temporal logic (Clarke,
Grumberg, & Peled 1999). That is, we have to define the set
of atomic propositions that will be used to describe the states
of the system and choose an appropriate temporal logic.

The atomic propositions we will consider describe quali-
tative properties of the value of protein concentrations, since
the qualitative simulation method yields predictions of this
kind. More particularly, the atomic propositions concern the
range in which a protein concentration falls and the sign of
the derivative of the protein concentration. Let ò 5 be the set
of concentration landmarks for gene : , defined as

ò 5 
 U S �e_ �5 �"!#!"!#�%_ � {5 � ��� � 5 Vó U � �5 � � �5 q } regulatory domain V !
We now introduce the variables ô0�X= 2>õ>���'5ö� and \ : 2 = � Z�'5.� .
Definition 1 A state of a regulatory system is described us-
ing the variables ô0�h= 2�õ>� � 5 � and \ : 2 = � Z� 5 � , 7v8�:÷8�= . The
domains of these variables are øúù [�&0û$ü�ý¯þ {.ÿ and ø�� 5 û/&�ý��þ {.ÿ ,
respectively, where øúù [�&0û$ü�ý�þ { ÿ is the set of (semi-)open or
closed intervals

� 5 ~1l 5 , such that ���	� � � 5 ����
���A� � 5 � p ò 5 ,
and ø�� 5 û�&>ý	�þ { ÿ is the set

U � 7 � S � 7 ��� V .

ô0�X= 2>õ>��� 5 � 
 � 5 is interpreted as meaning that the con-
centration �'5 lies between the two landmark concentrations���	� � � 5 � and 
����� � 5 � . \ : 2 = � Z�'5 ��
�\¨5 is interpreted as mean-
ing that the sign of the derivative of � 5 is positive, negative,
or zero, if \ 5 equals 7 , � 7 , or

S
, respectively. The special

value � is used to express that
Z�65 does not have a unique

sign. This may occur in certain switching domains, as a con-
sequence of the extension of the differential equations (1) to
differential inclusions (see previous section).

We can define the set of atomic propositions in terms ofô��X= 2�õ>� � 5 � and \ : 2 = � Z� 5 � .
Definition 2 The set of atomic propositions ��� is given by:

��� 
 U ô0�h= 2�õ>� �'5 ��
 ô 5e�c\ : 2 = � Z�E5 ��
J\¨5q ô 5 p ø ù [�&?û�ü/ý�þ {�ÿ ��\¨5 p ø�� 5 û�&>ý	�þ {.ÿ � 7O8�:H8k=�V !
For example, ô0�X= 2>õ>���6[0� 
�� S �e_ �[ � , ô0�h= 2�õ>� �6be� 
�3N'b � Y b"� ��� �'b�� , \ : 2 = � Z�'[�� 
 � 7 , and \ : 2 = � Z�'b���
�� are
valid atomic propositions.

Of the several temporal logics that exist (Emerson 1998),
we have chosen to use Computation Tree Logic (CTL). Four
our purposes, a CTL formula is verified by a qualitative state
of the system if the possible qualitative behaviors starting
from that state satisfy the formula. A CTL formula consists
in atomic propositions connected by operators. The opera-
tors are either the usual logical operators ( � , � , � , � , !"!#! )
or a restricted combination of path quantifiers and temporal
operators. The path quantifiers � or � are used, respec-
tively, to specify that all or some of the behaviors starting at
a state have some property. The temporal operators describe
properties that hold during a behavior. � ,  , or ! are tem-
poral operators used to specify that the neXt state, some Fu-
ture state, or (Globally) all future states in a behavior satisfy



some property. In CTL a path quantifier is necessarily paired
with a temporal operator (see Clarke and Emerson (1981) for
the formal syntax and semantics of CTL).

CTL, unlike some other temporal logics, allows us to
quantify over the behaviors of the system. This is neces-
sary for our application, since an observation provides in-
formation on one particular behavior, but not on all possible
behaviors. Efficient algorithms for performing CTL model-
checking exist (Clarke, Grumberg, & Peled 1999), which is
a key issue for the practical use of the method.

As an example of the use of CTL, consider the observa-
tion that, in the system of figure 1, the concentrations � [ and�'b increase at first, while �Ñ[ is steady and �6b decreases af-
terwards. This can be expressed by means of the following
CTL statement:

�" �.\ : 2 = � Z�'[0�H
 7#� \ : 2 = � Z�6be��
 7
�$�" �.\ : 2 = � Z�'[4��
 S

� \ : 2 = � Z�'b���
 � 7 �%��! (7)
The CTL statement says that, from the initial state onwards,
there Exists at least one behavior of the system leading to
some Future state in which (1) the concentrations � [ and�'b increase, and (2) from that state onwards, there Exists at
least one behavior leading to some Future state in which ��[
is steady and � b decreases.

Translating transition graph into Kripke structure
In the framework of CTL model checking, the discrete state
system is described by means of a Kripke structure. A
Kripke structure % over the set of atomic propositions ���
is a four-tuple % 
'&)(��*( D � � � W,+ , where ( is a finite set of
states, ( D ~ ( the set of initial states,

� ~ ( m ( a total tran-
sition relation and W @-( F/.1032

a function that labels each
state with the atomic propositions true in that state (Clarke,
Grumberg, & Peled 1999).

We have to define how to generate a Kripke structure from
the transition graph produced by the qualitative simulator.
Recall that a transition graph consists of qualitative states
and transitions between qualitative states. Every qualitative
state in the transition graph is defined as í^î 
/&4( } ��5 + ,
where ( } 
6( } � m !"!"! m ( } & is a hyperrectangular region
included in a domain } and 5G
y�.\ � �"!#!"!$�/\ & �%) the sign vec-
tor of the derivatives

�	 . The information contained in a qual-
itative state can be straightforwardly expressed in terms of
the atomic predicates ��� of definition 2. This gives the fol-
lowing Kripke structure corresponding to a transition graph.
Definition 3 A Kripke structure % 
t�)(��*( D � � � W � over��� corresponds to a transition graph produced by the qual-
itative simulator, if

1. ( is the set of qualitative states in the transition graph;
2. ( D

is the set of initial qualitative states;
3.

� ~ ( m ( the transition relation, such that
� � í^î � í^î ) �

holds, iff there is a transition from íaî to í^î ) in the tran-
sition graph, or í^î 
 í^î ) 
7&4( } ��5 + and ( } ~ } ,
such that � � } ��� }T�
 U V ;

4. W @8( F9.:032
such that for all í^î 
;&4( } �5 + ,

W � í^î ��
 U ô0�X= 2�õX��� 5 ��
<( } 5 ��\ : 2 = � Z� 5 ��
J\ 5 q 7¢8k:H8�=�V !

It can be shown that the transition relation in the definition
is total. The Kripke structure corresponding to the transition
graph obtained from qualitative simulation of the example
network in figure 1 is shown figure 3.

Checking if model is validated by observations
When properties of the observed behavior of the system
have been expressed in CTL, and the transition graph
obtained through qualitative simulation translated into a
Kripke structure, the validation of the model is straightfor-
ward to achieve. Highly-efficient algorithms for CTL model
checking have been developed and implemented in publicly-
available computer tools. We will use NuSMV2, a symbolic
model checker that combines BDD-based and SAT-based
model-checking components (Cimatti et al. 2002).

The key steps of the approach advocated in this paper can
be summarized as follows:

1. Perform a qualitative simulation of the genetic regulatory
network;

2. Translate the resulting transition graph into a Kripke
structure;

3. Formulate properties of the observed behavior of the sys-
tem as a CTL statement;

4. Use NuSMV2 to test the validity of the model of the net-
work.

The validation of the model gives rise to one of two re-
sults. First, there may be a qualitative behavior predicted
from the model satisfying the observed properties of the sys-
tem. In this case, we say that the model is corroborated by
the observations. Second, if there is no qualitative behavior
predicted from the model satisfying the observed properties
of the system, then the model is invalidated by the obser-
vations. Recall that the transition graph produced by the
qualitative simulation algorithm is guaranteed to cover all
possible solutions of the PL model of the genetic regulatory
network. This is critical for the decision to reject or revise a
model when it is invalidated by the observations.

The approach sketched above can be illustrated by means
of the simple network of two genes and their mutual inter-
actions. Using the Kripke structure derived from the transi-
tion graph (figure 3), we can check whether the observation
formulated as the CTL statement (7) is consistent with the
model. The test of this property by means of NuSMV2 gives
a positive answer. The reader can verify that this answer is
correct by looking at the path � íaî � � í^î ï � í^î ��� � í^î �%ï � in
the Kripke structure in figure 3.

Applicability of the approach
The previous section has given an outline of the use of model
checking techniques in the analysis of genetic regulatory
networks. Although we have given a proof of principle by
applying the approach to an example of a small network, one
can legitimately ask whether it is applicable to the genetic
regulatory networks actually studied by biologists in their
laboratory. Below we will argue that this is indeed the case,
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Figure 3: Kripke structure corresponding to the transition graph obtained from the qualitative simulation of the example network
in figure 1. The labeling function is shown separately in the adjacent table.

illustrating our arguments by means of the network control-
ling the initiation of sporulation in the bacterium Bacillus
subtilis.

Qualitative modeling and simulation of sporulation
network
Under conditions of nutrient deprivation, B. subtilis cells
may cease to divide and form a dormant, environmentally-
resistant spore instead (Burkholder & Grossman 2000). The
decision to either divide or sporulate is controlled by a regu-
latory network integrating various environmental, cell-cycle,
and metabolic signals. A graphical representation of the net-
work is shown in figure 4, displaying key genes and their
promoters, proteins encoded by the genes, and the regula-
tory action of the proteins.

Sporulation in B. subtilis is one of the best-understood
model systems for prokaryotic development. However,
notwithstanding the enormous amount of work devoted to
the elucidation of the network of interactions underlying the
sporulation process, very little quantitative data on kinetic
parameters and molecular concentrations are available. This
has motivated the use of the qualitative formalism described
at the beginning of this paper to model the sporulation net-
work and to simulate the response of the cell to nutrient de-
privation.

The graphical representation of the network has been
translated into a PL model supplemented by qualitative con-
straints on the parameters (de Jong et al. 2003). The re-
sulting model consists of nine state variables and two in-
put variables. The 49 parameters are constrained by 58 pa-
rameter inequalities, the choice of which is largely deter-
mined by biological data. Simulation of the sporulation net-
work by means of GNA reveals that essential features of the
initiation of sporulation in wild-type and mutant strains of
B. subtilis can be reproduced by means of the model (de
Jong et al. 2003). In particular, the choice between veg-
etative growth and sporulation is seen to be determined by
competing positive and negative feedback loops influencing
the accumulation of the phosphorylated transcription fac-
tor Spo0A. Above a certain threshold, Spo0A s P activates
various genes whose expression commits the bacterium to
sporulation, such as genes coding for sigma factors that con-

trol the alternative developmental fates of the mother cell
and the spore.

Towards the analysis of sporulation network by
means of model checking
Although the predictions obtained by qualitative simula-
tion lack numerical precision, the sporulation example illus-
trates that they do nevertheless capture essential features of
the dynamics of the regulatory system and provide interest-
ing insights into the underlying regulatory logic. However,
the conclusions summarized above were arrived at through
painstaking manual analyses of the transition graphs pro-
duced by the simulator, usually consisting of several hun-
dreds of states. The proposed model-checking approach can
be used to speed up the analysis and reduce interpretation
errors of the modeler, induced by the failure to extract cru-
cial information from the transition graph. We will give two
examples to illustrate that experimental data used to validate
a model can be expressed in terms of temporal logic.

Figure 5 represents the expression of two genes in the
course of the sporulation process in a B. subtilis strain
(Perego & Hoch 1988). The authors have used an exper-
imental technique in which the specific activity of an en-
zyme (here t -galactosidase) reflects the expression of the
gene. The lowest curve represents the expression of the
gene hpr, which “increased in proportion of the growth
curve, reached a maximum level at the early stationary phase
[( u 7 )], and remained at the same level during the station-
ary phase” ((Perego & Hoch 1988), p. 2564). This inter-
pretation can be expressed by means of the CTL statement�" �.\ : 2 = � Z�kv � ù � 
 7��w�" x�"! �.\ : 2 = � Z�kv � ù � 
 S �%� , where�kv � ù denotes the concentration of Hpr. This formula can be
paraphrased as “starting from the initial state, there exists at
least one behavior of the system leading to a future state in
which the concentration of Hpr is increasing, and continu-
ing from which there exists at least one behavior leading to
a future state continuing from which there exists a behavior
in which the concentration of Hpr is constant.

Under conditions of nutrient deprivation, a fraction of
the cells in a B. subtilis culture enters sporulation, whereas
the other cells continue to divide. In Chung et al. (1994)
this phenomenon is related to the observation that “within
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Figure 5: Time-series data showing the expression of two
genes during sporulation in a wild-type B. subtilis strain
(Perego & Hoch 1988).

a culture of sporulating cells of B. subtilis, there are two
distinct subpopulations, one that has initiated the devel-
opmental program [leading to sporulation] !"!"! and one in
which early developmental gene expression remains unin-
duced” (p. 1977). The gene sigF, shown in figure 4, is
an example of such a developmental gene. Representing
the concentration of the protein ~[� encoded by sigF by
the variable � � 5 û � , the above expression can be translated
into the following CTL statement: �" � ô0�X= 2>õ>��� � 5 û � ��
� S �%_ � 5 û � � � ���" � ô0�X= 2�õX��� � 5 û � ��
�� _ � 5 û � � ��� � � 5 û � �3� . Here,_ � 5 û � and ��� � � 5 û � denote a threshold and the maximum
concentration of the protein. This simply states that, starting
from the initial state, there exist two behaviors of the system,
one leading to a future state characterized by a low concen-

tration of ~ � (below the threshold), the other leading to a
state characterized by a high concentration of ~[� (above the
threshold).

These two examples illustrate that temporal logic formu-
las can be used for expressing biological observation in a
formal manner. They illustrate also that the formalization
of the observation is not an easy task, as a sentence given
in natural language may correspond to several CTL formu-
las, having a slightly different meaning, and thus possibly
yielding different results.

Discussion
We have presented an approach towards the analysis of ge-
netic regulatory networks based on the combination of qual-
itative simulation and model-checking techniques. The ap-
proach consists of the translation of the transition graph pro-
duced through qualitative simulation into a Kripke structure
and the expression of observed properties of the behavior
of a system in temporal logic. Using an existing efficient
model-checking tool, the validity of the model of a genetic
regulatory network can be tested. We have shown the in-
principle feasibility of the approach on a simple network of
two genes and argued for its applicability to networks actu-
ally studied by biologists.

The integration of qualitative simulation and model
checking has been proposed before as a remedy for the anal-
ysis of the large number of qualitative behaviors produced
by qualitative simulators. Shults and Kuipers (1997) have
combined QSIM and CTL � , whereas Brajnik and Clancy
(1998) have focused on QSIM and a variant of PLTL. Our
work differs from these approaches in that, apart from a dif-
ferent temporal logic, we employ a qualitative simulation
method tailored to a class of PL models. This allows us to



deal with large and complex genetic regulatory networks.
Several groups are currently working on the application of
model-checking techniques to the analysis of biochemical
networks. As in this paper, Antoniotti et al. (2003) and
Chabrier and Fages (2003) have chosen CTL, but they work
with either completely numerical models or rather simple
rule-based models. The advantage of the qualitative mod-
els used in our approach is that they are at the same time
biologically valid and actually applicable.

Further work will focus on the implementation of the ap-
proach sketched in this paper and its application to the anal-
ysis of the initiation of sporulation in B. subtilis and other
regulatory processes in prokaryotes.
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