
Alternative Reality: Qualitative Physics for Digital Arts

Marc Cavazza, Simon Hartley, Jean-Luc Lugrin and Mikael Le bras

School of Computing and Mathematics, University of Teesside,
Middlesbrough, TS1 3BA, United Kingdom

{m.o.cavazza, s.hartley, j-l.lugrin, m.lebras}@tees.ac.uk

Abstract

Virtual Reality Art often involves the design of artificial
worlds to provide new experiences to the spectators. A
recent trend in digital art has been to address physical
behaviour explicitly. However, the prospect of modifying
and authoring alternative physical laws demands
appropriate software tools. In this paper, we introduce the
use of qualitative physics in Virtual Reality Art. We discuss
how qualitative process theory can be used to specify
alternative physical behaviour in virtual environments.
After introducing the hardware and software architecture
for our project, we discuss an example which is part of early
experiments with the baseline “alternative reality” software
we are developing.

Introduction

In this paper, we describe an ongoing project which adapts
qualitative physics to the field of Digital Arts. Virtual
Reality art [Moser, 1996] [Grau, 2002] offers the
perspective of creating alternative worlds that do not obey
the traditional laws of physics and as such can provide
novel user experience. This vision was actually part of the
original ideas behind Virtual Reality, which advocated it as
a way of providing new experiences, sometimes even
explicitly referring to psychedelic ones [Leary, 1994].
Our current work in Alternative Reality investigates the
definition of alternative physical behaviours that could
take place in real time within an interactive environment.
This would open new applications in Digital Arts as well
as entertainment computing.
This is certainly an unusual application for Qualitative
Physics, yet we aim at demonstrating its relevance and its
ability to provide a principled solution to the design of
physical behaviour in virtual environments. After a brief
introduction to the state-of-the-art in Digital Arts, we
describe the overall system architecture including the basic
elements supporting physical behaviour. We then discuss
how qualitative processes can be implemented to override
normal physical behaviour and how these can be integrated
into the system and give an example from work in

progress. Finally, we describe early results from our work,
in the form of an implemented example.
Digital Art works are often based on sophisticated briefs
taking advantage of the plasticity of the digital medium to
free themselves from the traditional constraints of the
physical world. But more interestingly, in recent years, the
work of several artists has explicitly addressed Physics as a
source of inspiration, in particular where it could depart
from our everyday physical experience. For instance, the
exhibition “The Amplitude of Chance” in Kawasaki was
entirely devoted to briefs exploring causality [Sato And
Makiura, 2001].
One sophisticated and even more explicit example is
constituted by the animation series “The Quarxs™”, which
features a set of invisible creatures which violate the laws
of physics and provide an explanation for the unaccounted
phenomena of our everyday world. These “insect-like”
creatures are named after the physical laws they twist: for
instance the Reverso Chronocycli causes time to flow
backwards and the Spiro Thermophage (Figure 1) lives in
water pipes causing cold water to always precede the flow
of hot water.

Figure 1 . The Spiro Thermophage from the Quarxs™ (©

Maurice Benayoun)

As the example from the Quarxs™ illustrated, the
modification of physical laws is a principled way of
creating alternative universes. In the case of alternative
reality, these modification should be effective within a
real-time virtual environment, rather than an offline

Editors
QR2003

17th International Workshop on Qualitative Reasoning
Hosted by University of Brasília Brasília, Brazil

20-22 August, 2003

Editors Paulo Salles & Bert Bredeweg

animation (hence the term “reality”). The definition of new
world behaviours often starts from an artistic brief. Not
only is this qualitative in nature, but the changes tends to
be initially described in terms of the abnormal behaviour,
rather than in terms of the principles that would underlie
these changes. It would be rather challenging to devise
equations reflecting these changes and unclear how
structural equations that could propagate causality would
be defined in this context.

The rationale for using a game engine is not just its graphic
rendering abilities or the built-in mechanisms for user
interaction with world objects. The Unreal Tournament
2003 engine incorporates a physics engine (the Karma™
system from Mathengine™) together with a sophisticated
API and programming features supporting the modification
of baseline physics. Traditionally in game engines,
physical behaviour of objects can be directly modified
using mutators, which are procedures (in the games’ Java-
like scripting language, Unrealscript™) behaving as “mini-
mods” (where a mod is a modification of the gameplay, i.e.
a consistent alteration of standard game properties).
However, overriding traditional physics with Qualitative
Physics processes requires more complex developments,
though their implementation can still make use of mutators
as a low-level mechanism.

For all these reasons, we have turned to Qualitative
Process Theory [Forbus 1984] as a framework for
qualitative physics modelling. The fact that it is centred
around processes offers the possibility to define and to
integrate behaviours at different levels of abstraction,
integrating them with the interactive aspects of virtual
environments.

System Overview The software architecture integrates an external Qualitative
Physics module, developed as a standalone C++ software,
which simulates physical behaviour using a range of
qualitative physics processes, with the Unreal Tournament
2003 engine, which supports 3D visualisation and
interaction. These modules communicate via a TCP/IP
socket interface by exchanging values for qualitative
variables corresponding to properties of the virtual world’s
objects. However, the actual integration of qualitative
simulation in the game engine in terms of objects’
transformations relies on low-level features of the game
engine, such as the events management system. One of the
reasons is that physical behaviour depends on interaction
between objects and/or physical interaction by the user.

Virtual Reality Art is most often presented in the form of
installations using immersive displays such as CAVEs™.
This supports the participation of a limited number of
spectators enjoying some mobility (over a constrained
space). Our target systems are large-scale virtual reality
installations, based on the SAS Cube™, which is a 4-wall,
PC-based, CAVE™-like, immersive visualisation system.
We use a game engine, Unreal Tournament 2003™ as a
visualisation engine and as a development environment.
Game engines are now increasingly used for visualisation
in scientific research due to their rendering performance
and their ability to communicate with external software
modules [Lewis and Jackobson, 2002]. In addition, Unreal
Tournament has previously been ported to CAVE™
systems [Jackobson and Hwang 2002] and we are
currently porting UT 2003™ to the SAS Cube, using the
original approach described in the CAVE-UT
implementation.

The system uses an initialisation module, implemented
using Unreal‘s mutators, to generate the runtime
application interface between the Qualitative Physics
engine and the virtual environment. This initialisation
module identifies virtual world objects that are associated
with qualitative variables corresponding to the Qualitative
Processes defined for a given application and parameterises
event generation mechanisms accordingly, so that dynamic
interaction can activate the relevant QPs. For instance,
context events corresponding to the pre-conditions of a QP
can be used to trigger its simulation.

The initialisation module dynamically generates, sets and
activates the qualitative process controller, which will act
as an interface (on the game engine side) between the
world objects and the QPs that affect them. Once
instantiated, it will start to supervise the interaction
between the virtual world objects contained in the
environment and the QPs running within the external
Qualitative Physics engine. In addition, it can be noted that
the use of a discretised simulation method is fully
compatible with the basic visualisation and interaction
mechanisms of a game engine, which at their lowest levels Figure 3. The SAS Cube™

tend to follow a similar logic for reasons of efficiency
(event modelling, keyframed animations).

The Event-based Architecture

Most interactive systems are based on the notion of event
for their implementation. Highly interactive systems, such
as VR systems [Jiang et al] and game engines in particular
intensively exploit this notion for their implementation. On
the other hand the notion of event is also the basis for the
high-level description of physical behaviour, as events
discretise the continuous motion of objects (in terms of
positions, trajectories, contacts with other objects) into
meaningful high-level actions.
This section describes the event management mechanisms,
which support the redefinition of alternative behaviours for
the virtual environment. After introducing the native
mechanisms provided by the UT game engine, we will
show how these can be used to define complex events
corresponding to object behaviour as well as a control
strategy to override the basic mechanisms supporting the
world physical behaviour. This will then open the
possibility of extensive redefinitions of the virtual world
behaviour, supporting alternative views on physics and
causality.
The Unreal Tournament engine extensively relies on event
generation to support many of its interaction aspects and,
most importantly, the mechanism for event generation is
accessible to redefine specific behaviours for the
environment. Formally, an event can be characterised as an
encapsulated message, which is generated by an Event
Source and sent to one or more Event Consumers, these
being both objects of the environment. The transmission of
an event to an Event Consumer triggers some specific
action in response to that event. It should be noted that the
actions triggered by Event Consumers can further be
detected by other Event Sources, and this accounts for the
possibility of Event propagation as a kind of “forward
chaining”, propagating the consequences of an action.
The Unreal Tournament Engine implements two different
kinds of event sources: the primitive events, which are
low-level events defined within the game engine and the
programmed events. The latter are events whose
definitions are scripted (i.e. can be programmed by the
system developer) and are used to customise the
interactions between objects, by defining which objects
will trigger (or react to) specific events. The basic events
can be classified into six major categories, of which two
are mostly used in our implementation to redefine
environment behaviour: the interaction events and the time
notification events. The interaction event category is

further refined into several sub-categories, the most
important being: physics and world interaction event,
player input event, and trigger event, which is the basic
event class supporting the definition of high-level event.
On the other hand, time notifications are related to the
engine internal time management system and can be used
to define the control cycle of any new event-based layer,
for instance to program the sampling rate of event
management.
From another perspective, basic events can also be
classified as discrete or continuous events. Discrete events
notify instantaneous actions, such as “bumping”, while
continuous events signal the beginning and ending of
durative actions, for instance touch/untouch,
attach/unattach (used for instance for carrying or
manipulating physical objects).
The redefinition of event mechanism comprises three main
aspects: i) the attachment of events to objects, ii) the
overriding of native event generation mechanisms and iii)
the definition of ad hoc complex events from basic ones.
Relating events to objects is implemented using the native
UT mutator system, which in UT supports the redefinition
of object behaviours. This confers a new behaviour to the
environment objects, which is the ability to enter into an
“event interception” state. Once an object is set into the
event interception state, every event fired for this object
will not trigger any immediate action (via the procedure
described above) i.e. the message coming from the event
source will be intercepted at the event consumer level.
Instead it will use a procedure to signal the event call and
arguments to an Event Controller module, such as those we
have defined to implement qualitative physics (see below).
The Unreal Engine relies on a fixed set of basic events.
However, for most applications it is necessary to define
high-level events, whose semantics is dictated by the
application. Such complex events are often called context
events. Because they are aggregates of basic events,
context events can be recognised by parsing a stream of
lower-level events using a template for the (high-level)
event to be recognised. This is a standard approach in event
recognition, which has been used previously in computer
vision and VR alike [Andre et al 1988] [Cavazza and
Palmer 1999]

Software Architecture for Qualitative Physics

The virtual world objects that are manipulated by
Qualitative Processes are, in fact, derived from a special
class of Unreal Objects (the class normally used to
represent physical objects) called Qualitative Physics

 Figure 2: Qualitative Process Control Software Architecture

Object (or QP objects). This object class has three main
characteristics. It owns “QP Variables” (variables that can
be altered by qualitative processes, which characterise
dynamic physical properties of the object), and is
associated an event interception system (to activate
relevant qualitative processes) as well as a set of “QP
Events”, which are events transforming the object
according to the output of qualitative processes.
The Event interception system is constructed over the
Unreal native event system as described in the previous
section. In particular, the Event consumers (Native Event
Function) of the QP object have been redefined. The
events recognised correspond for instance to the pre-
conditions of a qualitative process (e.g., that a recipient be
aligned with a flow of liquid). Every event fired for this
object will be communicated to the Qualitative Process
Controller.
QP Objects define special events triggered by the
Qualitative Processes, which are called QP Events. The QP
Events’ implementation and signature depends on the type,
nature and state of the QP objects they’re associated to.

For instance, certain QP events will launch specific
animations (e.g. water level rising, object melting or
breaking), while other QP events will potentially update an
object’s variables (e.g. mass) or its state.
The Qualitative Process Controller is composed of four
components: the Basic Events Modeller, the Context
Events Modeller, the TCP/IP Interface and the Qualitative
Process Events Modeller.
The Basic Event Modeller continuously intercepts and
stores the basic events triggered from the QP object
instance interacting in the virtual environment. It passes the
list of events to the Context Events Modeller at regular
intervals defined by an “event sampling rate”, which
depends on the kind of processes defined for any given
application.
The Context Event Modeller contains the definition of the
Qualitative Process Context Events, i.e. high-level events
that are part of qualitative processes definitions, such as
events corresponding to the pre-condition of a qualitative
process. These are defined at initialisation time as Finite-
State Automata whose elementary nodes are basic events,

so they can be dynamically recognised by parsing a
sequence of basic events involving relevant objects.
The triggered context events activate the simulation of
Qualitative Processes, which takes place in the external
Qualitative Physics engine. Throughout the simulation the
active qualitative processes update the qualitative process’
variables, duplicated from the virtual world during the
initialisation phase. When a process reaches Landmark
values, it forwards appropriate values to the Qualitative
Process Controller via the TCP/IP interface.
Within the Qualitative Process Controller, the QP Event
Modeller converts the information coming from the
Qualitative Physics engine into appropriate events that
would be dispatched to the corresponding virtual world
objects. These events will update the objects’ appearance
according to the variables’ new values: for instance a
heating object would glow, the level of water in a recipient
would rise, etc.

Formalising Qualitative Processes for
Alternative Physics

In this example we detail how we are using the definition
of a basic heat flow process as in [Collins and Forbus,
1989] and altering some of the basic definitions of a Heat-
Path. Where A Heat-Path is described in terms of objects
in contact and heat-aligned indicates that the contact is
unbroken as in [Collins and Forbus, 1989] as Shown in
figure 1.

Figure 3: QPT Formalisation of a Flow Process

 The heat path that is described uses the Thermally-
Connects-To to describe a one way thermal connection

between the basic physic objects, Heat-Connection
indicates a bidirectional thermal connection and the
Thermal-Conductance is the paths ability to transmit heat.
In our initial implementation we considered the heat path
to be connected when the two objects for which they relate
a heat path receive the context event. This aligns the heat
path in the same way as the fluid path.
 In an extension to this method we are altering the heat-
aligned path precondition to determine which heat flow
process occurs. In the initial implementation the context
event aligned is generated when the heat physics objects
bump into one another.
In an alternate method the context event is generated for an
aligned connection of the heat path for the Objects, not
between the two objects that are in connection, but
between the heat source and a heat destination that is
distant. This method allows the heat process to act at a
distance.
 Another alternative implementation for the generation of
the context event allows the creation of the context event
between two heat objects whose heat potential is the
greatest. This allows the different heat process to occur at
distance. Since we have not altered the heat flow or boiling
processes the system can heat and boil the heat destination.

Process: Heat-Flow (?src ?dst ?path)

Individuals: ?path :type heat-path
:conditions (thermally-connects-to ?path ?src ?dst)
 ?src :A simple-thermal-physob
 ?dst :A simple-thermal-physob

Preconditions: heat-aligned ?path

Quantity Conditions: (A(temperature ?src)>
 (A(temperature ?dst))
Relations:
(Quantity heat-flow-rate) α

(A(temp ?src)- (A(temp ?dst))

Influences: I+ (heat ?dst) (A heat-flow-rate)
 I- (heat ?src) (Aheat-flow-rate)

Figure 4: Heat Flow with alternate Heat Path

Results

 We created a test environment to experiment with this
qualitative simulation technology. This environment was
inspired from some of the Quarxs™ episodes, which tend
to take place in everyday settings such as kitchens and
bathrooms. Actually these areas concentrate many potential
physical processes, such as the fall of objects, flows of

liquids, heat transmission, surface contacts, formation of
bubbles and foam, etc.
To illustrate the definition of alternative qualitative
processes we will discuss an example in an area well
described in qualitative physics, including by qualitative
process theory, which is fluid behaviour. Let us imagine
that we want to create recipients in which more liquid can
be poured than its volume would normally allow. We want
this to take place without violating other physics laws such
as conservation of mass. We will thus define a process
according to which when more liquid is added, the
quantity of matter will increase but not the volume, which
amounts to make density of that specific fluid to vary
locally, in that recipient, according to the volume poured
into it.
Below is an example of the fluid flow process that we
implement to show the alternative behaviour of a glass,
which can hold an infinite amount. This alternative
behaviour leads to the glass becoming to heavy for the user
to move.
The description of the fluid flow process which describes
the filling of the Glass :

Figure 5: QPT Formalisation of a Fluid Flow Process

In our example we have defined three Objects for the
qualitative physics simulation. The details for these objects

are then sent to the Qualitative Physics engine which
instances the Processes fluid flow. The fluid process is
instanced as the three objects which its applies to exist i.e.
the Tap (a contained liquid source), the Glass (a contained
liquid destination.) and a fluid path (shown as a column of
water). This then generates for the list of potential
processes two fluid flow processes, these processes
represent water flowing processes from the tap to the glass
and from the glass to the tap.
 Next the simulation loop for the qualitative physics engine
is given for the example of the water flowing into the glass.
The definition of a process determines the conditions under
which it can become active. The conditions that the user
can directly affect are known as preconditions for instance
aligning a glass/container under a tap is a precondition for
water flow to occur. (as shown in Figure 7. Process
Generation and user interaction). Context Event is defined
by adding the QP FlowPath Mutator to the Event
controllers list of Active Context Events, where A, B and C
are virtual world object references. Note: The object A
points to a FlowPath Object instance in the world (i.e.: Tap
Water flow) and B refers to a Container object instance
(i.e., a Glass). It is the alignment precondition that the glass
has to be aligned with the flow that the moving the glass by
the user fulfils. This movement causes the context event
path aligned to be sent to the QP engine.

Process: Fluid-flow (?source?sub ?dst ?path)

Individuals: ?source a contained liquid
 ?destination a contained liquid
 ?sub a substance
 ?path a fluid-path

Preconditions: Connects(?path,?source,?dst)

 Aligned(?path)

Quantity Conditions:

A[Pressure(C-S(?sub, liquid, ? source))]
> A[Pressure(?dst)]

Relations:
Quantity(flow-rate) Flow-rate=Pressure(C-
S(?sub,liquid,source)) -Pressure(?dst)

Influences:
I+(Amount-of-in(?sub, liquid, ?Source), A[flow-rate])
I-(Amount-of-in(?sub, liquid, ?dst), A[flow-rate])

 The conditions that apply to the quantities within the
objects, whose values and changes are governed by the
qualitative process theory, are known as quantity
conditions. An example of this is for the water flow
process for which the pressure of the individuals needs to
be different for the process to occur. To determine which
processes are active we have to test the preconditions and
the quantity conditions if these are both active we place
these objects into the active process stack. In our example,
we had two potential processes which both had passed the
quantity conditions. Now for the process to occur the
precondition and quantity conditions for the processes need
to be tested. For both processes the precondition are that
there must be an aligned path between the two contained
liquid individuals. If the user then moves the glass under
the flow we have the context event aligned path that is sent
from the environment to the QP engine. This event aligns
the flow and allows both processes to pass the
preconditions. The next stage is the quantity conditions for
the processes since we are comparing the pressures for the
two objects only one process will pass this stage, the
process from tap to glass.

Figure 7: Process Generation and user interaction

The process will then become active (as shown in figure 7:
Process Activation) and begin altering the quantities as
described by the influence equations.
In the case of water flow the amount of water in the glass
will increase.
The next stage involves calculating the relations between
the individuals for the process and then determining
changes in the quantity via resolving influence equations.
 When determining changes in the quantity via resolving
influence equations the first stage is to resolve the direct
influences of the processes. In our example the directly
influenced values are the amount of water in the glass and
the amount of water in tap. Then the process applies the
relations for the changes in these quantities, this is to alter
the indirectly influenced quantities. In our case we are
changing the amount of water in the glass but by our
alternate laws the glass can hold an infinite amount. So the
water will not over flow but the glass will get heavier so
the user will be unable to move the glass. Eventually a
limit point for the glass/container mass will be reached and
this will generate an event that will be sent from the

qualitative physics engine to the UT 3D virtual
environment.
This event informs the virtual environment that the mass
has passed a certain value. For alternative laws the virtual
environment could respond in many ways to this event
such as breaking the glass or starting different processes
any of which would affect the user experience.

Conclusions

Modifying the laws of physics in Virtual Reality to create
principled, yet not always consistent, behaviours is
certainly a challenge in terms of conception,
implementation and authoring. Qualitative physics, in
particular qualitative process theory can support the
definition and the authoring of a wide range of alternative
behaviours. Qualitative physics also facilitates integration
within an interactive environment, being compatible with

the timescales of user interaction and the animations that
visualise physical events.

Acknowledgements

This work has been funded in part through the ALTERNE
project (IST-38575), funded by the European Union under
the Information Society Technologies programme (Cross-
Programme Action 15). Maurice Benayoun is thanked for
introducing us to the Quarxs™ and for authorising the use
of Figure 1. SAS-Cube™ picture courtesy of
CLARTE/Laval Mayenne Technopole. Unreal
Tournament™ is a trademark of Epic™ Ltd.

References

Andre, E, Herzog, G and Rist, T, 1988: On the
Simultaneous Interpretation of Real-world images and
Natural Language Descriptions: the SOCCER system.
Proceedings of the 8th
European Conference on Artificial Intelligence, Munich,

Cavazza, M. and Palmer, I.J., 1999: High-level
Interpretation in Virtual Environments, Applied Artificial
Intelligence.

Collins, J. and K. Forbus. (1989). Building qualitative
models of thermodynamic processes. Proceedings of the
Qualitative Reasoning Workshop.

 Forbus, K.D., 1996: Qualitative Reasoning. In A.B.
Tucker, editor, The Computer Science and Engineering
Handbook, pages 715--733. CRC Press.

Grau, O.,Virtual Art, 2002 : From Illusion to Immersion
,Cambridge (Massachussets), MIT press. ISBN:
0262072416.

Jacobson, J. and Hwang, Z. 2002 Unreal Tournament for
Immersive Interactive Theater.
Communications of the ACM, Vol. 45, 1, pp. 39-42.
Jiang, H., Kessler, G.D and Nonnemaker, J., DEMIS,
2002: a Dynamic Event Model for Interactive Systems.
ACM Virtual Reality Software Technology 2002, Hong
Kong

Lewis, M and Jacobson, Games Engines in Scientific
Research. Communications of ACM, Vol. 45, No. I,
January 2002. pp27-31.

M. Sato and N. Makiura,2001 Amplitude of Chance: the
Horizon of Occurrences, Kinyosya Printing Co.,
Kawasaki, Japan.

Leary, T,1994: Chaos and Cyberculture, Ronin Press.

 Moser, M.A. (Ed.), .,1996, Immersed in Technology: Art
and Virtual Environments, Cambridge (Massachussets),
MIT Press.

	page461: 47
	page471: 48
	page481: 49
	page491: 50
	page501: 51
	page511: 52
	page521: 53
	page531: 54

