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Abstract. Spatial Aggregation (SA) is a computational
approach to the analysis of large spatial data sets. It
differs from other tools for data analysis for its hierar-
chical strategy in aggregating spatial objects at higher
and higher levels until the behavioral and structural in-
formation about the underlying physical phenomenon,
that is required for performing a specific task, is ex-
tracted from the data set. This characteristic makes SA
an interesting and versatile framework for the devel-
opment of tools for automated reasoning about physi-
cal phenomena spatially represented. The SA approach
has been successfully applied to different domains and
tasks; but, its soundness strictly depends on the defi-
nitions of spatial adjacency relations at different lev-
els of abstraction. The definitions given in [Huang and
Zhao02000] may reveal to be not fully sound when per-
forming the contouring task. In such a context, the
found drawbacks are at least twofold: (1) metric-based
adjacency relations are too difficult to be optimally de-
fined, and aggregation may fail to extract isocurves;
(2) the soundness of neighborhood relations depends
on the density of the isopoint set, and aggregation may
fail to extract physical structures as isopoint contiguity
may be lost. This paper illustrates the problems above,
and presents new definitions and algorithms for their
solutions.

Keywords. Data analysis, spatial aggregation, spatial
reasoning, contouring.

I ntroduction

Our interest in the SA computational paradigm [Yip
and Zhao1996, Bailey-Kellogg et al.1996] has been
motivated by our long-term goal to build a framework
for the automated interpretation of cardiac potential
maps gathered by endocavitary probes. The map in-
terpretation task is essential for the localization of the
anomalous excitation sites associated with ventricular
arrythmia and other electrical conduction pathologies.
Automating such a task would facilitate the introduc-
tion of cardiac maps into the clinical practice with a
consequent great impact on health care. Conventional
contour analysis allows us to identify patterns of elec-
trical potential distribution but it does not facilitate the
automated extraction of general rules necessary to in-
fer the correlation between pathophysiological patterns
and wavefront structure and propagation. The hier-

archical structure of the objects abstracted by the SA
computational approach to represent and interpret a nu-
meric input field is a promising ground (i) to capture
spatial and temporal adjacencies at multiple scales, (ii)
to identify causal relations between events, and (iii) to
generate high-level explanations for prediction. The
potential of SA is confirmed by its application to dif-
ferent physical contexts [Joskowicz and Sacks1991,
Yip1997, Bailey-Kellogg and Zhao1997, Bailey-Kellog
and Zhao2001, Zhao1995] among those we mention
the weather data analysis problem [Huang2000] as
it presents some similarities with the electrocardio-
graphic map interpretation: global patterns and struc-
tures are identified by looking at the isocurves and rea-
soning about their spatial relations.

In outline, the SA computational framework allows us
to transform a numeric input field into a symbolic, par-
simonious description of the structure and behavior of
the physical process the field is associated with. The
desired output results from successive trasformations
of lower-level abstract objects, called spatial aggre-
gates. Each spatial aggregate is built by applying a
common data structure, the neighborhood graph (n-
graph), and a small set of generic operators. The n-
graph encodes the spatial contiguity between the ob-
jects, and the operators, which are identical at each
level of abstraction, make explicit the neighborhood
and equivalence relations. These latter relations deal
with two distinct concepts, namely strong and weak ad-
jacency, that express intra and inter-relations, respec-
tively. The former one binds a set of contiguous spatial
objects into a spatial aggregate in accordance with a
distinctive property; the latter one highlights the rela-
tions between the spatial objects aggregated at the pre-
vious level.

In a contouring context, at the first level of aggrega-
tion, (i) the n-graph defines the topological contiguities
between isopoints, (ii) the strong adjacency relation
identifies isocurves, whereas (iii) weak adjacency al-
lows us to discover and reason on different global pat-
terns. The classification of contiguous isopoints having
the same isovalue as strong adjacent ones is a rather
delicate issue. The strong adjacency definition origi-
nally proposed [Huang and Zhao2000, Huang2000] is
based on the metric distance of the points in accor-
dance with a user-supplied threshold value. Such an
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approach may turn out to be unsound in many situa-
tions due to the difficulty to choose the optimal thresh-
old value: too large or too small values may be respon-
sible for isocurve entanglement and/or segmentation
phenomena. Another possible cause of failure deals
with a scarse density of isopoints on isocurves. As a
matter of fact, the n-graph is built by exploiting strate-
gies which locally express spatial contiguity but ignore
the values of the physical variables associated with the
geometric domain, and, consequently, points that do
belong to the same isocurve may not result to be con-
nected. This problem has been highlighted in [Huang
and Zhao2000,Huang2000] but no solution of practical
value has been proposed.

This paper discusses the problems above, and presents
definitions and algorithms for a sound aggregation and
classification of isopoints. More precisely, it gives
(1) an algorihm for the n-graph generation capable of
checking and fixing contiguity loss situations, and (2)
an equivalence predicate which defines a strong adja-
cency relation between isopoints by exploiting topo-
logical adjacency properties rather than a metric dis-
tance.

Contouring: problemswith SA

Given an input field, the SA computation process fol-
lows an iterative procedure which terminates as soon as
the required behavioral and structural information for
performing a specific task has been achieved: spatial
objects at a given level of abstraction are transformed
into ones at a higher abstraction level using neighbor-
hood and equivalence relations defined on that set of
objects. The overall process goes through three main
steps (Figure 1). The first step, called aggregation,
builds a n-graph from field primitive objects to expli-
cate their spatial contiguity. This step is initialized with
primitive objects which result from a pre-processing
operation on the input field aimed at organizing the
available data in a form suitable to perform the task.
Then, an equivalence relation is defined on contiguous
objects to characterize them with respect to properties
of interest for the reasoning task. This is the classifica-
tion step upon which, through the redescribe operator,
the abstraction of new spatial objects is eventually ac-
complished.

Since our interest for the application of SA to contour-
ing does not merely lie in visualizing a map, that is
what other graphical tools efficiently do [Lorenson and
Cline1987], but we rather want to produce abstract spa-
tial objects, hierarchically organized, upon which fur-
ther high-level reasoning can be performed. To achieve
this goal we cannot leave out a thorough analysis of all
the steps SA performs to transform an input field into
isocurves. In the following, we will focus our discus-
sion on each step to highlight the related problems, and
propose solutions.

Input field

aggregate

n-graph

classify

equivalence
classes

redescribe

new spatial
object

Figure 1: Main steps in SA.

Input field
Initial data for the 2D contouring problem consist of:

1. a geometrical domain discretized by a mesh made
up of a set of elements {E;};—1. ~nr , and of nodes,
vertices of the elements, {x;}i=1.n;

2. the scalar values {u;};—1..n ofafunction u(x) ei-
ther computed or measured at the mesh nodes;

3. a couple of scalar values (g, Au) to uniformly
scan the range of u(x) and generate isocurves for
the levels ag, @ + Au, dg + 2Awu, .., 4o +nAu.

Due to the frequent irregularities in the shape of real-
istic geometric domains as well as to the need to ad-
equately capture the gradient of w, the given mesh is
rarely uniform: its elements, usually triangles or quad-
rangles, can widely vary in size and shape. We here
assume that mesh data can be given in either triangular
or quadrangular form.

Let us observe that the optimal choice of the scan step
Auw is usually suggested by domain-specific knowl-
edge, and is critical in so far as it should be small
enough to capture the function main changes over the
geometric domain, but large enough to produce a con-
tour map that is readable and not burdened with an un-
necessary mass of minor, possibly artifactual, details.

Pre-processing The available input data are pro-
cessed to derive and organize all the auxiliary knowl-
edge that is needed to successfully perform the abstrac-
tion processes eventually aimed at the production of
contour maps in the form of SA high level objects.
First, isopoints for the required levels are generated by
assuming a piecewise-linear approximation @(x) for
the function u(x) , with a(x;) = u(x;) for each mesh
node x; . The isopointset, 7 , is generated by compar-
ison of the values of u at the vertices of each element
with the required levels, and by linear interpolation of
the nodal values when necessary.
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Isopoint aggregation - Possible failure of the
n-graph to capture topological contiguities of
isopoints

The spatial contiguity between isopoints is explicitly
coded in the n-graph through the application on Z of
the aggregate operator. Such operator uses a neigh-
borhood specification, the definition of which is task-
dependent. For example, a minimal spanning tree can
be a n-graph well-suited to abstract features that rely
on minimum-distance propagation pathways.

As regards the contouring task, the n-graph should re-
flect the local contiguity of isopoints. A natural way
to express contiguity between points is by triangula-
tion. A Delaunay triangulation [George and Borou-
chakil998] is, for example, a rather good choice due
to its higher regularity with respect to others possi-
ble: it guarantees that, for each element, the smallest
angle has the largest possible width. But, isopoints
are not merely geometrical points as they express a
context-dependent property, namely the value of w.
As a matter of fact, in our context, a Delaunay graph
may fail, since it just connects points without taking
into account the values of «. Then, it may happen
- depending on the spatial course of « - that ab ini-
tio isopoints which truly belong to the same isocurve
are not connected through the n-graph, whereas iso-
points of two topologically non-adjacent isocurves are
connected. Figure 2 illustrates this undesired situation:
the isopoints A and B on the isocurve @ + Au are
denied contiguity; whereas the edge CD states conti-
guity between isopoints which belong to topologically
non-adjacent isocurves, namely @ and o + 2Au. As
mentioned in [Huang2000, Huang and Zhao2000] this
problem may realistically occur when isopoints are not
“dense” enough on each isocurve. Since this latter
property depends on the size of the elements, this is
not a problem when the input data are from a uniform
mesh with a sufficiently small element diameter, but it
needs care when such conditions are not met, which
often occurs with a generic mesh. It has been proved
in [Huang2000] that if the set 7 satisfies the closeness
condition, then the n-graph D generated by a Delau-
nay triangulation of Z guarantees that no contiguity
loss occurs. But, unfortunately, it is objectively dif-
ficult to verify such a condition [Huang2000] within
a contouring context as it explicitely relies on curves
whose identification is the final goal.

The n-graph plays a crucial role in the classification
phase as it establishes spatial contiguities upon which
the strong adjacency relation is applied to generate
isocurves. As a matter of fact, an inadequate n-graph
might induce, by effect of possible isopoint contiguity
loss, undesired curve segmentation. While it is objec-
tively difficult to generate a triangulation that a priori
guarantees avoiding the risk of topological contiguity
losses, it is however necessary to identify risky situa-
tions and adopt some strategy to avoid the occurrence

of such events.

Figure 2: Isopoint contiguity loss after a triangulation.
White, grey, and black nodes denote the values @,
u+ Au, and u + 2Au, respectively; true isolines are
represented by dashed lines; solid lines mark contigui-
ties by the n-graph.

Isopoint classification - Possible failure of the
metric-based strong adjacency relation

The classification step is based on the definition of
an equivalence relation on contiguous elements of Z .
Isocurves, which are abstracted as new higher level
spatial objects through the redescribe operator, cor-
respond to the classes resulting from the application
of the strong adjacency relation on contiguous ele-
ments of 7 . Such classes are redescribed as polylines,
namely they instantiate the strong adjacencies holding
between their constituent points.

3

—

e

Figure 3: Metric-based strong adjacency (D1): curve
entanglement may occur when the curve turns sharply
with a high curvature.

The success of the abstraction process with respect to
a given task relies on the appropriateness of both the n-
graph, which is the device explicating spatial contigu-
ity, and the definition of the strong adjacency relation,
which implicitly identifies the new object “isocurve”
through a distinctive property shared by its low-level
components. To make this issue clear, let us consider
the definition of strong adjacency between isopoints
given in [Huang and Zhao2000, Huang2000], limited
to the contouring task. Let Ap(x) be the set of the
contiguous nodes of x € Z within the n-graph D .

Definition D1. Vx,y € Z and such that y € Ap(x),
x and y are said to be strongly adjacent if and only if
u(x) = uly) A d(x,y) < 6*, where d(x,y) is
the Euclidean distance between x and y ,and 6* > 0
is a user-defined suitable nearness radius.
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Figure 4: Metric-based strong adjacency (D1): curve
entanglement (a), and (b); curve segmentation (b), and
(c). Thick lines connect strongly adjacent isopoints;
thin solid lines connect contiguous points within the
n-graph. Thin dotted lines correspond to the mesh.

If definition D1 is used, a few problems may arise
in the classification of isopoints, leading to incorrect
isocurve abstraction, namely curve entanglement and
curve segmentation.

A - Curve entanglement. The curve entanglement prob-
lem may appear where a single curve makes a sharp
bend with a high curvature (Figure 3).

The same phenomenon, as illustrated by Figure 4a,
may also occur when too large a nearness radius §* is
used. Inthe case illustrated by the figure, the geometri-
cal domain [0,6]x[0,6] is discretized by a uniform 3x3
square element mesh, and the matrix U of u values®

For the sake of clearness, let us observe that the matrix
element U;; storesthevalueof u inthedomain node (2 *
(i—1),6—2x(j—1)),i=1.4,j=1.4.

on the 16 nodes is given:

6.70 6.00 5.10 1.00
5.00 3.60 2.30 2.00 | .
1.00 2.90 3.20 3.30 |’
3.30 3.10 3.90 5.00

U=

the required contour levels are {1.5,3.0,4.5,6.0},and
6* is equal to the length of the diagonal of the square
elements of the grid.

In the figure, entanglement regards the two curves of
level 3.0 in proximity of the saddle point located within
the element [2,4]x[2,4].

B - Curve segmentation. Another undesired classifica-
tion result, symmetric with respect to entanglement, is
isocurve segmentation that might derive by using def-
inition D1 with a smaller radius, as illustrated by Fig-
ure 4b. In this case, d* is chosen equal to the length
of the side of the square elements. As a consequence,
curve segmentation appears, while curve entanglement
is slightly reduced. Let us notice that, to completely
avoid entanglement, 6* should be - a posteriori - cho-
sen less than the distance of the points A and B shown
in Figure 4b, but this choice would unavoidably leave
many points in singleton classes, and produce a dif-
fuse unacceptable fragmentation of the isocurves (Fig-
ure 4c).

The previous examples highlight the criticity of the
choice of ¢*, and the intrinsic inadequacy of the met-
ric criterion in definition D1. The cited phenomena can
appear when uniform regular meshes are given, as in
the simple examples we have shown, but are far more
frequent in the case of generic meshes which approxi-
mate more complex and realistic geometrical domains
as those in Electrocardiology. The use of a very fine
mesh, which makes isopoints spatially denser but at a
higher computational cost, often avoids the problem in
practice. But a really robust approach to such an is-
sue is to make strong adjacency depend on topological
relations rather than on metric distances.

Solutions

Our solutions to the isopoint aggregation and classifi-
cation problems presented in the previous section are
respectively provided by an algorithm for the identi-
fication of contiguity loss situations and their succes-
sive recovery, and by a new definition of strong adja-
cency relation (Figure 5). To tackle, satisfactorily and
automatically, the most general case of non uniform
meshes, both triangular and quadrangular ones, such a
relation exploits the available knowledge related to the
mesh data, and grounds on the inter and intra-element
topological adjacency properties of isopoints.

Isopoint set generation

During the generation of the set Z in the pre-
processing phase of the input field, we also incremen-
tally build two maps, 7 and ~, which state the inter
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Figure 5: Main steps in the revised approach to SA-
based contouring.

and intra-element topological adjacency, respectively.
The former, 7, maps each isopoint x that is added in
7 to the set of mesh elements that share x, that is:

VxeZI, 7 :x—7(x)={E;: E;>x,i=1.NE}.

This mapping plays a crucial role in the definition of
a strong adjacency relation between isopoints, but is
unable to treat complex and even ambiguous situations
that may occur with a quadrangular mesh. To this end,
we introduce the map -~ that is implicitly defined by
the assumed approximation for « . For each couple of
newly generated isopoints x,y belonging to the same
element E, « flags their intra-element topological ad-
jacency in accordance with the result of the comparison
of their value @ = 4(x) = @(y) with the nodal values
u; (i = 1,..,4):itholds y(x,y) = 1 if the segment
xy = {z € E|lz=60x+(1-0)y, § €][0,1]}
divides E in two regions where the values of @ are in
agreement with the nodal values u; . With reference to
Figure 6, we have 2:

Cases 1,5: The element E contains either none or just
one isopoint, and then, no intra-element relation ap-
plies to these cases.

Cases 2,3,6,8: The element E contains two isopoints
x, y such that the segment xy leaves the nodal val-
ues less than @ and greater than « on opposite sides,
respectively. Thus, y(x,y) = 1.

Case 4: The element E contains four isopoints
yij, one of them on each side x;x;; then,
set y(yi2,¥23) = (¥se,yu) = 1, and
Y(¥23,¥34) = Y(¥ya1,¥12) = 0.

%in the following, (i1,42,43,44) iS a permutation of
(172’374)

Case 7: The element E contains three isopoints, one
of them coincides with one of its vertices x;, i =
1..4. If both the isopoints x,y are different from x; ,
v(x,y) = 1, otherwise v(x,y) =0.

Case 9: The opposite vertices, x;, and x;, , of the ele-
ment E are isopoints, and both the other two opposite

vertices, x;, and x;, assume a value either greater or

lower than @, thus ~(x;,,X,) = 0.

Cases 10- 12 : The element E contains either three or
four isopoints for which v(x,y) = 1 inall cases. Let
us note that case 12 describes an isoregion of value .

Papalinyael¥a
JalVeRRyayal
YalWalliya¥a
yaVaPaliaPa
galyapaliya

Figure 6: Quadrangular element: possible locations of
isopoints for level @. A black circle, a white circle,

and a star denote a value lower than «, greater than
u, and equal to @ , respectively.

As a matter of fact, y(x,y) = 1 basically means that

the segment xy belongs to the polyline which approx-
imates the isocurve that crosses the element.

Cases from 1 to 4 are the most frequent ones; cases
5 to 7 are less frequent but not rare, while cases 8 to
12 are very unlikely. Case 4, u;, < @ < u;, k =
1,3 and [ = 2,4, which corresponds to the presence
of a saddle point of « located inside the element, de-
serves particular attention. In fact this situation is in-
trinsically ambiguous with respect to which isopoints
truly belong to the same curve. Figure 7 illustrates such
ambiguity: four new isopoints, one on each side, are
generated, and two distinct « -valued isopolylines are
expected to cross the element leaving the saddle point
in between. The choice between a) and b), that marks
the two possible ways of connecting the isopoints, is
arbitrary at this level of abstraction, and is fixed by - .

We observe that such ambiguity might be naturally re-

moved at a higher level of abstraction if an inconsistent
interpretation would occur.

Let us notice that, in the case of a triangular mesh,
intra-element adjacency of isopoints is never ambigu-
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Figure 7: Saddle point: ambiguity in assessing intra-
element isopoint adjacency.

ous since for any two isopoints belonging to the same
element their associated segment divides the element
into regions where the values of @ are in agreement
with the nodal values u; (y =1).

Isopoint aggregation: An algorithm for the
generation of a suitable n-graph

The adequacy of the candidate n-graph D generated
by Delaunay triangulation to represent the spatial con-
tiguity between isopoints must be verified before iso-
point classification is performed. The algorithm given
below identifies possible contiguity loss situations, and
locally amends D by adding new connections where
necessary.
Algorithm Al (n-graph generation):
1. Generate D by Del aunay triangul ation
of T.
2. For each node x€D
consider the set Ap(x) of its con-
tiguous nodes within D;
for each node y € Ap(x)
if |u(x)—u(y)|>Au then
augnment D with any new connec-
tions between coupl es of nodes

z,w € Ap(x) N Ap(y) such that
[u(z) — u(w)| < Au
endf or
endf or

The algorithm introduces new connections where
“false” contiguities have locally taken the place of true
ones (Figure 8). The data set used in this example
results from a slight perturbation of the element Us,
in the matrix U (Usz = 2.92). Figure 8 shows a
“false” contiguity between the isopoints x, y in the
graph. The algorithm detects such a situation, and lo-
cally adds a connection which re-establishes neighbor-
hood between w and z. The resulting n-graph D
provides for a better spatial coverage of any region
where adjacent points with unexpectedly far « values
are detected. The algorithm introduces only a mini-
mum number of extra connections, which prevents un-
necessary computational overload. It can be proved
that the overall algorithm keeps the same time com-
plexity of the Delaunay triangulation algorithm, that is
O(nlogn) where n is the number of isopointsin Z.
Let us remark that the algorithm may end up with a n-
graph that does not correspond to a triangulation any
more, but this is irrelevant with respect to the abstrac-
tion processes that are subsequently performed.

Figure 8: A - The Delaunay n-graph does not correctly
explicate topological contiguities between isopoints; B
- the n-graph fixed by algorithm Al recovers contiguity
between z and w .

Isopoints classification: A new definition of
“strong adjacency” relation on Z

The definition of strong adjacency D1 given in the orig-
inal version of SA establishes spatial adjacencies be-
tween aggregate objects using a metric distance, and
spatial nearness is assessed when such a distance is
within a user-predefined radius. The limits of this
approach when applied to high level objects, such as
curves, have been discussed in [Huang and Zhao2000].
However, as highlighted in the previous section of this
paper, in a contouring context analogous limits can
hold at the lowest level of abstraction as well, that is
when the aggregate objects are points.

For the contouring task, given the n-graph D, we de-
fine a strong adjacency relation on Z as follows:

Definition D2. Vx,y € Z and such that y € Ap(x),
x and y are strongly adjacent if and only if

Mux) =uly) A 2)rx)N7ly)#0 A
(3) v(x,y) #0.

Conditions (2) and (3) in the definition D2 allow us to
ground the relation on the topological adjacency prop-
erties of the isopoints at element level, which are avail-
able from the input mesh data and the pre-processing
step. The definition of adjacency grounded on topolog-
ical properties rather than on a metric distance makes
the classification abstraction process more robust with
respect to the given task as it does not depend any more
on the particular mesh size and shape.
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Figure 9 shows the result of classification according to
definition D2 of strong adjacency with the same data
set used in Figure 4: the use of a topological criterion
allows us to a priori avoid the entanglement and seg-
mentation problems which may occur when definition
D1 is applied (Figure 4).

Figure 9: Classification of isocurves built in accor-
dance with definition D2.

SA-based contouring in Electrocar diology

Electrocardiology is a stimulating and promising ap-
plication domain for qualitative and spatial reason-
ing. Most research effort aimed at the automated
interpretation of electrocardiograms (ECG’s) [Bratko
et al.1989, Weng et al.2001, Kundu et al.1998, Wa-
trous1995], for which an interpretative rationale is well
established. However, a major drawback of ECG’s,
which record electrical potential from nine sites only
on the body surface, is their poor spatial covering.
Thanks to the latest advances in technology, far more
informative techniques are becoming available: epicar-
dial/endocardial mapping, where electrical potential is
either measured by endocavitary probing or obtained
non invasively from body surface data through mathe-
matical inverse procedures. Through these techniques
a great deal of spatial information about the heart elec-
trical activity is available, but the ability to relate visual
features to the underlying complex phenomenastill be-
longs to very few experts [Taccardi et al.1998]. Thus,
the need for an automated tool for map interpretation
to be used in a clinical context.

Figure 10A illustrates a 3D model ventricular geome-
try. Its discretization was carried out by 15 horizontal
sections, 30 angular sectors on each section, and 6 ra-
dial subdivisions of each sector. A numerical simula-
tion was carried out on this mesh to simulate the ex-
citation wavefront propagation in the anisotropic ven-
tricular tissue [Colli Franzone et al.1998], and for each
node x; the activation time wu;, i.e. the instant at
which the excitation front reaches the node, was com-
puted. To investigate the wavefront propagation, the
contour maps of the activation time (isochrones) need
to be built and analyzed not only on the ventricular sur-
faces, but also on sections of the wall (Figure10B). An

Figure 10: A - Geometry of a ventricle model; B - A
horizontal section of the discretized ventricular wall.

activation isochrone map delivers a lot of information
about the wavefront propagation: each contour line ag-
gregates all and none but the points that share the same
excitation state, and subsequent isocurves are nothing
but subsequent snapshots of the travelling wavefront.
Figure 11 highlights the performance of SA-based con-
touring on a horizontal section of this domain: Figure
11A and B show the isochrone maps obtained in ac-
cordance with the application of original SA and our
revised approach, respectively.

Conclusions

The work here described focusses on the construction
of isocurves from a numeric input field within the SA
reasoning framework. It gives a significant contribu-
tion to original SA as to the contouring problem by
providing new algorithms and definitions for soundly
building adjacency relations upon 2D complex domain
geometry.

An alternative way to solve the unsoundness problem
of SA in performing contouring could be its integration
with conventional contouring tools. More precisely, we
could exploit the former ones to efficiently and soundly
construct isocurves, and, afterwards, consider them as
primitive spatial objects upon which the SA approach
is applied to build spatial relations. But, in this way of
proceeding, the hierarchical structure of the built spa-
tial objects would be impoverished of the lower-level
spatial aggregates with a consequent loss of informa-
tion which could result to be relevant for a specific task,
for example for the explanations of causal relations be-
tween events.
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Figure 11: Activation isochrone map obtained by ap-
plying: A - the original SA; B - our revised approach.

Future work will deal with a thorough study of weak
adjacency relations to identify and define spatial rela-
tions between isocurves, as well as between possible
higher-level aggregated objects. Such relations should
reveal adjacencies and interactions between the spatial
objects, and, then, underlie the feature extraction pro-
cess. To this end, a crucial issue deals with the specifi-
cation of the neighborhood graphs that properly repre-
sent the spatial relations between geometrical objects
at different levels of abstraction.

As far as the specific application problem, future work
will deal with the interpretation of activation isochrone
maps: contour shapes, the directions along which the
front velocity is higher, minimum and maximum re-
gions represent the features we are currently inter-
ested to extract from the input field. Such features
can be correlated to the expected activation sequence,
and used in a diagnostic context: deviations from the
nominal patterns would highlight anomalous excitation
pathways and possible ectopic sites associated with
ventricular arrythmias.
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