
Using Strategies and AND/OR Decomposition for Back of the Envelope Reasoning

Praveen K. Paritosh (paritosh@cs.northwestern.edu)
Kenneth D. Forbus (forbus@northwestern.edu)

Qualitative Reasoning Group, Department of Computer Science,
Northwestern University, 1890 Maple Ave,

Evanston, IL 60201 USA

Abstract

Back of the envelope reasoning involves generating
quantitative answers in situations where exact data and
models are unavailable and where available data is often
incomplete and/or inconsistent. A rough estimate generated
quickly is more valuable and useful than a detailed analysis,
which might be unnecessary, impractical, or impossible
because the situation does not provide enough time,
information, or other resources to perform one. Such
reasoning is a key component of commonsense reasoning
about everyday physical situations. In this paper we present
an approach that uses strategies and creates an AND/OR
decomposition to solve such questions. We present BotE-
Solver, a general-purpose problem solving framework that
uses strategies represented by suggestions, and keeps track of
problem solving progress in an AND/OR tree. BotE-Solver
can currently solve some fairly interesting back of the
envelope estimation questions from different domains. We are
building a library of strategies, which currently contains 23
strategies.

1 Introduction
One goal of qualitative reasoning (QR) is to understand and
model common sense. Forbus and Gentner (1997) proposed
a hybrid model of QR where analogical reasoning and
qualitative reasoning are tightly interwoven. In this paper,
we look at quantitative estimation (also called rough
estimation, back of the envelope analysis, etc). Back of the
envelope (BotE) analysis involves the estimation of rough
but quantitative answers to questions where the models and
the data might be incomplete. In domains like engineering,
design, or experimental science, one often comes across
situations where a rough answer generated quickly is more
valuable than waiting for more information or resources.
Some domains like environmental science [Harte, 1988] and
biophysics [O’Connor and Spotila, 1992] are so complex
that BotE analysis is the best that can be done with the
available knowledge and data. BotE reasoning is ubiquitous
in daily life as well. Common sense reasoning often hinges
upon the ability to rapidly make approximate estimates that
are fine-grained enough for the task at hand. We live in a
world of quantitative dimensions, and reasonably accurate
estimation of quantitative values is necessary for
understanding and interacting with the world. Our life is full
of evaluations and rough estimates of all sorts. How long
will it take to get there? Do I have enough money with me?
How much of the load can I carry at once? These everyday,

common sense estimates utilize our ability to draw a
quantitative sense of world from our experiences. We
believe that the same processes underlie both these common
sense estimates and expert’s BotE reasoning to generate
ballpark estimates.
 The two critical parts of such reasoning are using
heuristics and strategies to simplify complex problems, and
using one’s feel for numbers to make suitable numeric
estimates. This paper presents the results of our work on the
former. We have implemented BotE-Solver, a problem
solver that uses a library of strategies and a large knowledge
base to solve BotE problems. BotE-Solver can currently
answer questions like “How many hotdogs are sold in a
baseball season at Wrigley Field?”
 The paper is organized as follows: next section argues
that BotE reasoning has the same kind of constraints that we
believe common sense QR to have. Section 3 is devoted to
the design and implementation of BotE-Solver. Section 4
discusses the results of running BotE-Solver on various
examples and talks about the limitations of an approach that
just uses first principles reasoning, and briefly discusses our
ongoing work that addresses those limitations. Section 5
concludes with future work.

2 Common Sense QR and BotE
Some of the central assumptions of QR in practice must be
rethought when considering common sense knowledge, as
opposed to narrow domain expertise. It is commonplace in
QR to assume that a domain theory is complete. This
assumption is implausible for common sense reasoning,
whether or not one views QR purely in terms of a
component in a performance system or as a psychological
model. The closer one looks at human knowledge, the more
it appears that it is fragmentary, and more concrete than
abstract. It may be that such an organization is a necessity
for human-level performance, whether or not one is making
psychological claims. Let us call this approach Common
Sense QR (CSQR) for concreteness. There is a striking
resemblance between the key constraints guiding CSQR and
BotE reasoning. This is one of the strong motivations for
building a BotE problem solver. Here are the five important
constraints that we believe underlie CSQR:

1. Incompleteness. Domain theories are incomplete in
terms of their coverage, and even what they do cover
is incompletely covered.

2. Concreteness. Domain knowledge includes
knowledge of many concrete, specific situations.
These concrete descriptions are used directly in
analogical reasoning, in addition to first-principles
reasoning.

3. Highly experiential. Domain expertise improves
through the accumulation of information, both
concrete and abstract. Experience improves our
abilities to reason through similar situations, and helps
us develop intuitions for what is reasonable.

4. Focused reasoning. Instead of maintaining
uncertainty and ambiguity for completeness,
assumptions are made aggressively to tightly constrict
the number of possibilities considered. Common
sense reasoning is required for action in the world, and
there are opportunities for interaction and further
reflection, reducing the amount of stress on any
particular computation. Thus it is better to answer
rapidly and sometimes be wrong than to answer
slowly and vaguely.

5. Pervasively quantitative. Our interaction with the real
world requires concrete choices for quantities. For
example, the amount of salt one adds while cooking a
certain dish cannot be safely specified as “+”. While
there are certainly tolerances, and we believe that
estimation requires drawing upon lots of examples,
our actions in the end require that estimates manifest
as exact values. Quite possibly this is true for every
step along the way, as per the focused reasoning
constraint.

3 BotE-Solver: A Model of Problem solving
 Problem solving is the process that takes us from a problem
to its solution. A computational model of problem solving
has to understand the problem representation, has to have
access to domain knowledge and the ability to retrieve
knowledge that might be relevant. It also needs to have
strategies, which it can try when the problem is complex
and the answer is not directly found. It needs to maintain the
workspace, where it keeps track of the work done and
progress made on the problem. We have implemented BotE-
Solver, a problem solver that uses –

• A large knowledge base (a subset of Cycorp’s Cyc
KB plus knowledge represented and developed in our
research group) for domain knowledge and the FIRE
reasoning engine for retrieving and accessing the
knowledge base.

• Suggestions as representation for strategies.
• AND/OR tree as a model for maintaining the

workspace.
In this section we explain the above ideas, and then present
the core algorithm of Solve. Using AND/OR decomposition
for problem solving is not a new idea [Nilsson, 1994], but
there are quite subtle issues and interesting design choices
we made in Solve which we have not seen mentioned in the
literature. Let’s have a look at an example that BotE-Solver
can find answer for, and as we describe the system we’ll
refer to the example to ground the discussion.

Example: What is total annual amount of gasoline
consumed by cars in the US?
Total consumption = Total miles driven/ miles per gallon
Total miles driven = Number of cars in the US * Miles
driven per car per year
Miles driven per car per year = Miles driven per day *
365
If we say that every household owns a car, since some
don’t and some might have more than one, then
Number of cars in the US = number of households =
population / average size of American household.
Now we have a model, and using the following numbers,
Population ~ 300 million, Average size of household ~ 3,
Daily miles driven ~ 20, Miles per gallon for a car ~ 20.
We get an estimate of 36.5 billion gallons.

3.1 Domain Knowledge
The Knowledge Base (KB) and the FIRE reasoning engine
are part of background infrastructure that this work builds
on, and is provided to contextualize and make the current
work more understandable. The contents of our knowledge
base are a 1.2 million fact subset of Cycorp’s Cyc
knowledge base, which provides formal representations
about a wide variety of everyday objects, people, events and
relationships. Problems, solutions, strategies are all
represented uniformly and stored in this KB. Our group
(Northwestern in collaboration with Xerox PARC) has built
the FIRE reasoning engine. FIRE uses a special purpose
database for storing the knowledge base. It can do
analogical reasoning using structure mapping [Forbus et al,
2002], and has facility for adding various kinds of reasoning
source that allow it to do specialized reasoning, such as
spatial reasoning [Forbus et al, 2003]. It provides the
conventional ASK and TELL interface to the knowledge
base, and QUERY which uses backward chaining to see if it
can find answers.

3.2 Strategies
We represent strategies using suggestions. A suggestion
provides a decomposition for the problem. In the above
example of annual gas consumption, we use the idea that the
number of cars can be estimated by finding the number of
households. The suggestion HouseholdStrategyFor-
CountingUnits in Figure 1 captures the idea. It says that
if we know that something is owned by households (refered
to as FamilyCohabitationUnit in the KB), then we
can find how many units of it are owned by estimating the
number of households and number of units per household
and multiplying them.

There are four parts to a suggestion –
1. Trigger: The form which is query for which the

suggestion might be applicable.
2. Test: Additional test conditions which must be true

in order for the suggestion to work.
3. Subgoals: A list of forms that this suggestion

decomposes the current problem into. These are
AND-subgoals, meaning if any one of them fails,
this suggestion fails to solve the original problem.
These subgoals are fully ordered.

4. Result-step: The final step of the suggestion, which
combines the answers to the subgoals.

Inside the suggestion, the variables are order scoped such
that any variable introduced can be used in the subsequent
parts of the suggestion. The defSuggestion macro
mentioned above is a facility for the suggestion author – it
expands the suggestion into assertions in predicate calculus
that are stored in the KB. Suggestions can be as concrete or
abstract as intended. For example, the above suggestion
applies not only to cars, but to televisions, family insurance
policies, etc. Our strategy library currently consists of 23
such suggestions. One of the goals of the current work is to
show that as we build a larger corpus of examples, there is
re-use of these strategies and novel compositions, resulting
in being able to solve newer problems with very little or no
new problem specific knowledge added.

3.3 Tracking problem solving progress
BotE-Solver uses an AND/OR tree1 to track the progress as
it is working on a problem. The mapping between the
AND/OR tree and our representations is very direct. For a
problem, there could be many applicable strategies, any one
of which succeeding lead to a solution to the problem. This
results in an OR node in the tree. A suggestion, on the other
hand, introduces one or more subgoals all of which have to
solved in order to solve the original goal. This results in an
AND node in the tree. Figure 2 shows the AND/OR
decomposition for our annual gas consumption example. An
AND/OR decomposition lets us keep track of dependencies

1 Because the solutions are obtained and cached in a TMS, we get
the functionality of an AND/OR graph, i.e., we don’t re-solve an
already solved node, although the underlying representation is a
tree. The advantage of having a tree is that the propagation
algorithms are much simpler.

between the original problem and new subgoals introduced.
During the course of problem solving, a node can be –
• SOLVED: An OR-node is solved when any one of its

children gets solved, and an AND-node is solved when
all of its children are solved.

• FAILED: An OR-node fails when all of its children fail,
and an AND-node when any one of its children fail.

• MOOT: A node is moot when it is not solved or failed,
but when there is no point on working on it at the
current point. So, if any one of the siblings of OR-nodes
has succeeded, the other siblings are MOOT-VIA-
SUCCESS, as at any point we are interested in finding
one solution, so if one strategy has succeeded, we don’t
want to pursue others right now. However, we might
come back and un-moot the other strategies if at some
point we want more solutions, or after propagating this
solution upwards in the tree we find that the original
goal is still not solved. A strategy can generate many
solutions, and we try the next sibling strategy only if we
have exhausted all the solutions that this strategy has to
offer. On the other hand, if an AND-node fails, its
siblings are MOOT-VIA-FAILURE as there is no point
in working on them, as the parent suggestion has failed
as a result of one of its children failing. However, if
later we find that we can solve the subgoal that failed
by working more, we can un-moot the siblings.

These inferences are made by maintaining flags at each
node, which are updated/propagated after every unit of
problem solving.

3.4 The BotE-Solver Algorithm
As BotE-Solver works on a problem, it maintains its
progress in an AND/OR tree as mentioned above. It also
maintains an agenda, which is a list of things that it can do
next. The agenda consists of suggestions that have been
found that it can try, and subgoals that have been suggested.
The agenda is ordered by difficulty estimates2 so that the
first thing on the agenda is the easiest one. BotE-Solver
starts with enqueuing the original goal on to the agenda and

2 Currently we use a very crude estimate of difficulty – the
length+depth of the s-expression corresponding to the agenda
item! Over many problem solving episodes, one might maintain
statistics about which strategies work best, and how tough a
particular subgoal is, based on experience, and use that (cf.
[Minton 1988])

(defSuggestion HouseholdStrategyForCountingUnits
 :trigger (unitsTotal ?obj ?place ?time ?total-units)
 :test (ownedBy ?obj FamilyCohabitationUnit)
 :subgoals ((numberOfHouseholds ?place ?time ?num-households)
 (unitsPerHousehold ?obj ?units-per-household))
 :result-step (evaluate ?total-units
 (TimesFn ?num-households ?units-per-household)))

Figure 1. An example suggestion.

running the main loop. Since BotE-Solver is an incremental
algorithm, the rest of the discussion will explain what
happens at some point in midst of problem solving when we
have done some work and have an already expanded
AND/OR tree. There are two different ways in which
solutions are generated in solve –

• AGENDA processing: The original goal hasn’t been

solved yet, and we are either trying to find suggestions
that will solve it, or working on the subgoals that were
suggested. It picks the easiest thing off the agenda. If
it is a goal node, then sees if it can be solved by a
primitive operation, QUERY. If that fails, it uses
QUERY to gather suggestions. Found suggestions are
added the children of the original goal and enqueued
on the agenda. If it is a suggestion node, then it
instantiates the first subgoal of the suggestion node as
a child node of the suggestion in the graph, and
enqueues it on the agenda.

• IN-PLAY processing: This happens when the original
goal has been expanded into a graph all of whose leaf
nodes are solved. Now, no more problem solving
needs to be done, and we can keep generating new
solutions until we have exhausted all possible bindings
found at the leaf nodes. We call a node that is solved
and can possibly generate more solutions as an IN-
PLAY node. Every subgoal maintains a pointer to the
current IN-PLAY suggestion. IN-PLAY processing is
implemented by the get-next-solution loop in BotE-

Solver, whose main concern is to properly update what
bindings have been already used.

All the bindings that are found as a result of a successful
solution are maintained at the nodes locally and only those
that are of interest to the parent from the first successful
combination of the bindings are propagated upwards. Each
node maintains marker to the bindings that it has already
used, and these are updated to make sure we exhaustively go
through the space of combination of bindings from the
subgoals. Since the combinatorial possibilities of bindings
from subgoals can be large, for example, consider a
suggestion whose three subgoals are solved by a primitive
operation (these will correspond to leaf nodes in the graph).
For these leaf nodes if we found 2, 5 and 50 successful
bindings, we have 500 combinations of bindings that could
possibly lead to as many solutions for the parent. BotE-
Solver tries each of these combinations one by one until it
finds one solution for the parent and that is all it propagates
upward in the graph. At the same point the binding markers
at the nodes are updated appropriately so that solve could
come back and try the next combination if that solution was
not good, or we wanted more answers.
 The main BotE-Solver loop drives both these kinds of
processing. It checks if there are in-play solutions, if not it
picks the next thing off agenda and processes it. The
pseudocode for the main loop, get-next-solution, propagate-
bindings and process-agenda steps are available on request.

HouseholdStrategyForCountingUnits

Total annual
gasoline
consumption

Total miles
driven

Miles per
Gallon

MileageStrategy

Number of
cars

Miles driven
per day

Annual miles
driven per car

Number of
households

Number of cars
per house

PerUnitStrategy

PerDayForYearStrategy

Figure 2. AND/OR tree for the gasoline consumption problem. The circles represent the
suggestion nodes (AND-node) and the rectangles subgoal-nodes (OR-nodes).

4 Results
Table 1 shows examples of problems that BotE-Solver can
answer currently. Most of the times BotE-Solver finds an
answer that is in the ballpark. The goal of BotE-Solver is to
find an answer that is no more than an order of magnitude
off on either side. Sometimes, the estimates being off can be
an interesting thing. So in question 4 below, we see that if
we bought everybody personal insurance, we would be
spending half of the US healthcare expense. The healthcare
system in US is complicated, but this estimate provokes us
to think about why the system is incurring more costs. In
cases like these, carrying out an estimate and comparing it
to the expected value might trigger a model refinement and
the fact that one needs to know more to understand the

process. In the last column, we have the number of
suggestion specific axioms that were added to the
knowledge base for the particular problem. One hope of this
work is to show that that number decreases with increasing
the corpus of problems that BotE-Solver can handle. As the
number of strategies increases, we think we might
asymptotically reach to a stage where very little or none
problem specific knowledge is added for a new problem.
The current work shows that this approach is promising,
though we don’t have enough data to make that claim here.
We do find that some reuse of strategies in these examples
which are from quite a broad range of domains, which we
find encouraging.

Problem
Number

Problem, and its predicate calculus representation Answer found by BotE-
Solver, and comparison to a
known answer if available

Number of
specific
axioms added
for this
problem.

1 How many popcorn kernels would it take to fill in the
1890 Maple big classroom?
(CountContained CS381ClassRoom
Popcorn ?number)

(?number . 1.343444e+7)
BotE-Solver: 13 million
Correct answer3: not
available!

30

2 How much money is spent on newspapers in the US?
(annualSales NewspaperCopy
UnitedStatesOfAmerica (YearFn 2003)
?money)

(?money . 2.1884363e+10)
BotE-Solver: 21 billion
Correct answer: 26 billion

30

3 How many K-8 teachers are there in the US?
(cardinality K-8SchoolTeacher
?numteachers)

(?numteachers . 1056454)
BotE-Solver: 1.05 million
Correct Answer: 1.9 million

20

4 What is the annual cost of healthcare in the US?
(annualSales HealthCare
UnitedStatesOfAmerica (YearFn 2003)
?money))

(?money . 799428834000)
BotE-Solver: 0.8 trillion
Correct Answer: 1.6 trillion

12

5 How many cars are bought per year in the US?
(unitsBoughtPerYear Automobile
UnitedStatesOfAmerica (YearFn 2003)
?num)

(?num . 8920000)
BotE-Solver: 8.9 million
Correct Answer: 8 million

30

6 What is the weight of garbage thrown away by
American families each year?
(annualProduction Garbage-Generic
UnitedStatesOfAmerica (YearFn 2003)
(Pound-UnitOfMass ?garbage-mass))

(?garbage-mass . 446000000)
BotE-Solver: 446 million
pounds
Correct answer: not
available!

10

7 How many hotdogs are sold in a baseball season in
Wrigley Field?
(unitsSold HotDogSandwich
WrigleyField BaseballSeason ?num-
dogs)

(?num-dogs . 1600000)
BotE-Solver: 1.6 million
Correct answer: not
available!

18

8 What is the total amount of gasoline consumption by
cars in the US?
(annualAutomobileGasConsumption
UnitedStatesOfAmerica (YearFn 2003)
(Gallon-US ?oil-consumption)))

(?oil-consumption .
32558000000)
BotE-Solver: 32.6 billion
gallons
 Correct Answer: 35 billion
gallons

20

3 The correct numbers are all from Statistical Abstracts of the United States, 2003.

Table 1. A summary of the problems that BotE-Solver can successfully do.

4.1 Feel for Numbers
As mentioned earlier in the introduction, another key part
of doing back of the envelope estimates is the feel for
numbers. Once we have the model that relates the
parameter to other quantities that might be known, the
reasoning bottoms out with making good guesses for
numeric parameters. Sometimes the exact numeric
parameter might be known. But many times, we have
observed in informal protocols of people doing this kind
of reasoning, people are able to use an example (or
multiple examples) from their experience to guess for a
number that might not be directly known. Many times we
know the range of values a parameter might fall in, but we
need to guess a typical value rather than do interval math.
For example, in the Cyc KB, it is known that –
(age Automobile (YearsDuration 5 50))

In question 5 above, this knowledge is used to infer
how many cars are bought per year, by dividing the total
number of cars by the age of a typical car. A typical value
to assume might be 10 years as a life of a car. In many
estimation problems, we are looking for typical, high, or
low values for a parameter. For example, consider the
question – What does a good gaming PC cost? Now, we
know that a good gaming PC has a high RAM, expensive
video card, and a fast processor, and everything else
might be the usual fare. Being able to represent and
reason with notions like high, low and typical values for
quantity is a key aspect of BotE reasoning. Using the
theoretical framework laid out in Paritosh (2003), we are
building CARVE [Paritosh 2004], a system that
automatically builds symbolic representations of quantity.
These symbolic representations will capture the feel for
numbers part of BotE reasoning, thus making it much
more flexible and powerful.

4.2 Related Work
The most similar project in this spirit was FERMI [Larkin
et al, 1988]. FERMI used two general principles,
decomposition and invariance, with domain specific
knowledge to solve textbook problems in fluid statics,
DC-circuits and centroid location. Our approach is
simpler, more general, builds upon existing large
knowledge bases, and is more concerned with the kind of
breadth of common sense reasoning as opposed to natural
science. Such reasoning has relevance to education,
especially engineering. More than 90% of mechanical
engineering seniors (100 at MIT, and 250 from five other
universities) came up with wrong order of magnitude
estimates of value of energy stored in a 9-volt “transistor”
battery [Linder, 1999]. The responses varied by nine
orders of magnitude excluding outliers! Having a clearer
understanding of BotE reasoning at the knowledge level
and computationally, might be helpful in fixing that kind
of innumeracy.

5 Conclusions and Future Work
We presented BotE-Solver, a system that uses an
AND/OR tree and estimation strategies to solve problems.
BotE-Solver can already solve fairly interesting BotE
estimation problems. We plan to represent a much larger
corpus of BotE problems, of about fifty different
problems. This will enable us to test the hypothesis that
there is a stable collection of strategies that solve most
BotE problems, by measuring the amount of additional
background knowledge and strategies needed to solve
each new problem. Tucked away in these strategies are
interesting modeling decisions, approximations and
simplifications. With a robust library of BotE strategies,
we would like to get a better understanding of the
similarities and differences between estimation-model
building in BotE and model composition in compositional
modeling [Falkenhainer and Forbus, 1991; Nayak, 1994].
We plan to combine BotE-Solver with representations
built by CARVE, to give it the feel for numbers, which
we expect will make it much more powerful and flexible.

 Acknowledgments
This research is supported by the Artificial Intelligence
Program of the Computer Science Division of the Office
of Naval Research.

References
Falkenhainer, B. and Forbus, K. "Compositional

Modeling: Finding the Right Model for the Job",
Artificial Intelligence, 51 (1-3), October, 1991.

Forbus, K., Gentner, D. 1997. Qualitative mental models:
Simulations or memories? Proceedings of Eleventh
International Workshop on Qualitative Reasoning,
Cortona, Italy.

Forbus, K., Mostek, T., and Ferguson, R. 2002. An
analogy ontology for integrating analogical processing
and first principles reasoning. In Proceedings of IAAI-
02, July 2002.

Forbus, K., Tomai, E., and Usher, J. 2003. Qualitative
spatial reasoning for visual grouping in sketches. In
Proceedings of the 16th International Workshop on
Qualitative Reasoning, Brasilia.

Harte, J. 1988. Consider a spherical cow: A course in
environmental problem solving, University Science
Books, Sausalito, CA.

Larkin, J. H., Frederick R., Carbonell, J. and Gugliotta, A.
1988. FERMI: A Flexible Expert Reasoner with Multi-
Domain Inferencing, Cognitive Science, 12(1), 101-
138.

Linder, B.M. 1999. Understanding estimation and its
relation to engineering education, Ph.D. Thesis,
Department of Mechanical Engineering, Massachusetts
Institute of Technology.

Minton, S. 1988. Learning Search Control Knowledge.
Kluwer Academic Publishers.

Nayak, P.P. 1994. Causal Approximations, Artificial
Intelligence, 70, 1-58.

Nilsson, N. 1994. Principles of Artificial Intelligence,
Morgan Kaufman.

O’Connor, M.P., and Spotila, J.M. (1992). Consider a
spherical lizard: Animals, models and approximations,
American Zoologist, 32, pp 179-193.

Paritosh, P. K. 2003. A Sketch of a Theory of Quantity, In
Proceedings of the 16th International Workshop on
Qualitative Reasoning, Brasilia.

Paritosh, P.K. 2004. Symbolizing Quantity, To appear in
Proceedings of the 26th Annual Meeting of Cognitive
Science Society, Chicago.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

