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Abstract 

Self-explanatory simulators combine qualitative and 
quantitative models to produce results that have both 
numerical behaviors and explicit qualitative causal structure.  
A problem that can arise in such simulations is jitter, a back 
and forth changing of a comparison that at first glance appears 
to be an unnatural artifact of the simulation.  Jitter can be a 
serious problem because it slows simulators down and can 
even cause crashes due to memory exhaustion.  We discuss a  
technique that uses a data structure to dynamically detect and 
eliminate jitter.  

1. Introduction 
Self-explanatory simulators [Forbus & Falkenhainer, 1990; 
Amador etal 1993; Iwasaki & Low, 1993; Erignac, 2000] 
combine the explanatory power of qualitative 
representations with the power of numerical simulation.  
This makes them especially useful in education, where the 
causal explanations they provide can facilitate a student 
understanding how the principles of a domain lead to the 
behavior that they are observing [Forbus, 1996, 1997].  In 
making self-explanatory simulators for middle-school 
curricula, we discovered an interesting problem that can 
arise with such simulators that we call jitter.  Jitter 
manifests itself as a rapid switching back and forth between 
partial qualitative states.  Jitter drastically increases the size 
of the qualitative behavior description, in the worst case 
leading to a state transition every two simulator steps.   This 
is problematic for two reasons.  First, the conciseness of 
qualitative behavior summaries is lost.  Second, the extra 
memory load imposed by constructing such large qualitative 
descriptions can, and has, caused simulators to crash in 
classroom settings.  

This paper describes the jitter problem and a solution we 
have developed for it.  We begin by reviewing the relevant 
ideas of self-explanatory simulators.  Section 3 examines 
the causes and meaning of jitter.  Section 4 discusses 
solutions to problems similar to jitter.  Section 5 describes 
an approach for dynamically removing jitter during 
simulation.  Section 6 reflects on the issues involved. 

2. Review of Self-Explanatory Simulation 
Self-explanatory simulator compilers are members of a 

class of simulators and analysis tools that combine 

qualitative and quantitative information (cf. Kay, 1998 or 
Biswas et al 1997).  Self-explanatory simulator compilers 
exploit qualitative reasoning to automatically build 
simulations.  That is, the conceptual analysis provided by 
qualitative reasoning identifies the relevant phenomena for 
the system being simulated.  For each entity and process, 
mathematical models are drawn from the domain theory to 
describe it quantitatively.  The conditions under which the 
qualitative models are applicable are translated into 
conditions that govern which aspects of the potentially 
possible mathematical models are used at any particular 
time.  A major tradeoff in creating self-explanatory 
simulators is when reasoning should occur.  The 
compilation strategy [Forbus & Falkenhainer, 1994] does as 
much reasoning as possible when the simulator is being 
created, to enable the runtime systems to be as compact and 
efficient as possible.  The interpreter strategy [Amador etal 
1993; Iwasaki & Low, 1993; Erignac, 2000] dynamically 
formulates new models during simulation, to minimize the 
time from the creation of the model to running a simulation.  
We believe that the jitter problem can occur with either 
strategy, and indeed can potentially occur with any mixed 
qualitative/quantitative simulation strategy, although we 
focus in the rest of this paper on compiled self-explanatory 
simulators for concreteness. 

SIMGEN Mk3 is a self-explanatory simulator compiler 
that can produce simulators containing thousands of 
parameters in polynomial time [Forbus & Falkenhainer, 
1994].  The run-time system it produces is based on a static 
analysis of the scenario model, which has been instantiated 
from a domain theory containing both qualitative and 
quantitative model fragments.  The modeling language is 
essentially qualitative process theory [Forbus, 1984] with 
quantitative extensions.  Potential limit hypotheses are 
identified during the qualitative analysis, without qualitative 
simulation, by identifying the quantity conditions of 
instantiated model fragments.  The qualitative description of 
runtime behavior is generated from a set of concise histories 
for Boolean parameters that represent the status of the 
model fragments in the scenario model.  At any specific 
time during the simulation the set of active model fragments 
can thus be identified.  The simulator includes a structured 
explanation system [Forbus, 1997] generated from the 
qualitative analysis of the scenario model that encodes the 
dependencies between causal relationships and model 



fragments.  Thus at any simulated time the runtime system 
can ascertain the exact causal structure that held during that 
time. 

To ensure that this qualitative description is accurate, the 
simulator run-time checks for transitions (using the limit 
hypothesis information) at every simulation clock tick.  The 
odds of exactly hitting a transition to equality are nearly 
zero, of course.  Consequently, when the runtime system 
detects that it has stepped over a transition point, it does a 
binary search in simulated time to find the exact time of the 
transition, and makes that the next time-step.  This 
guarantees that the qualitative explanation is complete, 
without any gaps. 

The only costs of executing a self-explanatory simulator 
compared to a traditional numerical simulator are (a) the 
cost of transition-testing and the search process to find the 
exact transition time and (b) the concise history it builds up 
to enable the complete reconstruction of the causal account 
for any simulated time.  The transition-testing and searching 
are comparable to what is required for any simulator where 
the equations governing the system change over time.  The 
concise history requires allocating a new record for each 
Boolean that changes state.  In most simulations this is not 
an issue, since the number of state changes is proportional 
to the qualitative complexity of the behavior, independent of 
the particular time-step chosen for the simulation.  Jitter, as 
the next section indicates, changes things. 

3. Jitter: Its cause and meaning 
Jitter occurs when a quantity rapidly changes back and forth 
at a limit point.  Consider a quantity Q with a limit point L 
in its quantity space.  Suppose further that there are two 
processes P1 and P2 directly influencing Q.  Let us say that 
P1 is always active, and providing a negative influence on 
Q.  P2, on the other hand, is active exactly when Q < L, and 
supplies a positive influence on Q.  Consider the case where 
P1’s effect on Q is always less than P2’s effect, and Q starts 
below L.  Under the dominating influence of P2, Q will rise 
until it reaches L, at which point Q will no longer be 
influenced by P2.  Q will then begin to drop.  But once it 
drops, P2 is again active, driving Q back to L.  And the 
cycle continues, with a new transition every few simulation 
time-steps.  This is an abstract description of jitter. 

We encountered jitter periodically in building self-
explanatory simulators, but generally only when particularly 
extreme ranges of parameters were used in a small handful 
of models.  To our knowledge, it never caused problems in 
our fielded simulators1 until we attempted to field an 
ecosystem simulator for our Mars Survival Station middle-
school curriculum [Forbus et al 2004].  The idea of the Mars 
Survival Station is that students have to create an ecosystem 
that can sustain a crew of astronauts for two years, in case 
they are stranded.  They could choose from a variety of 
plants and animals, which were modeled as populations 

                                                           
1 We give them away on our web site, so we have no means of 
tracking what users do with them, except for volunteered reports. 

with particular predation relationships between them, 
caloric values of prey species, etc. in a reasonably general 
manner.2  This simulator exhibited jitter with a vengeance.  
The Java-based runtime would routinely crash by running 
out of memory, providing an intensely frustrating 
experience for students.   

The ecosystem simulation provides an excellent concrete 
example of the abstract pattern described above.  In this 
simulation, all the plants and animals live in a dome.  
Consider the case where the only animals in the dome are 
chickens, the only plants are wheat, and the chickens eat the 
wheat.  Say that, initially, the number of chickens is small 
enough so that they don’t consume many wheat plants, and 
the wheat plants soon reproduce enough to occupy the entire 
floor space of the dome.  At this point, the wheat cannot 
continue reproducing at the same rate, because they have no 
place to grow.  Those wheat plants that die do so because 
they are eaten by chickens.  As is often the case, the domain 
modeler did not know the rate at which the wheat would, in 
reality, reproduce under these conditions.  Instead, the 
equation for the reproduction rate of plants specifies that 
when there is no more space available in the dome for them 
to reproduce into, they stop reproducing.  That is, there is a 
quantity condition on reproduction that the amount of 
available area in the dome is greater than zero.  Therefore, 
the number of wheat plants will decline during the next time 
step of the simulation because they are not reproducing.  
Moreover, the negative influence of predation remains in 
effect.  This frees up floor space in the dome.  The wheat’s 
reproduction process then becomes active again, and soon 
the floor space will be entirely occupied by the wheat.  
Figure 1 shows the SIMGEN plot of the number of wheat in 
a simulation exhibiting this behavior, and Figure 2 shows a 
close-up view of a small portion of the jittering region. 

 
 

Figure 1: Number of wheat in a jittering simulation. 

                                                           
2 Since students had the option of including large predators such as 
tigers in their ecosystem, we modeled the caloric value of humans.  
This had an unfortunate interaction with the modeling assumption 
that humans are omnivores, which required some special-purpose 
modeling to work around. 



 
 
Figure 2: Close-up view of a portion of Figure 1 illustrating 

the jittering of wheat. 
 

Each simulator state in Figures 1 and 2 is marked with a 
‘+’.  The states between local minima and maxima exist 
because, although the dominant process has become active 
at each of them, the derivative of the number of wheat is 
calculated using the value of reproduction rate from the 
previous time step due to the causal structure of the domain 
model.  A simplified diagram of the causal structure in the 
ecosystem domain model pertinent to the jittering wheat and 
chicken system is shown in Figure 3.  Dashed arrows point 
from processes to those quantities that appear in the quantity 
conditions of those processes, while solid arrows indicate 
influences between two quantities.  The influenced quantity 
is at the head of the arrow. 

 
 

 
 
Figure 3: Causal diagram of jittering ecosystem simulation. 

 
Is jitter an oscillation?  Yes and no.  There is a sense in 

which the description above is perfectly reasonable as an 
explanation of what is happening in the system.  However, 
that kind of explanation seems to belong to a lower level of 
abstraction that is normally implicit in the qualitative 
description of behavior since it relies on quite fine-grained 
distinctions in time. 

Comparing jitter to normal oscillation provides some 
interesting insights.  Consider a normal second-order 
system, such as a spring-block oscillator.  This is easily 
distinguishable from jitter because of the pattern of 
excursions on both sides of the limit points of the system.  A 
closer comparison is a system such as a neon bulb oscillator, 

made up of a battery, capacitor, resistor, and neon bulb.  The 
neon bulb is connected across the terminals of a capacitor, 
which in turn is hooked up in series to a battery via a 
resistor.  Neon bulbs have a voltage at which they conduct, 
Vf, and a lower voltage (the “quenching voltage”) at which 
they cease conducting, Vq.  Upon connecting the battery to 
the circuit, the capacitor conducts and begins collecting 
charge.  The bulb does not start conducting until the voltage 
across it has reached Vf.  Upon reaching that voltage, the 
bulb acts as a resistor until the capacitor is discharged to the 
point where the voltage across it is Vq.  The bulb stops 
conducting, and the cycle begins again as the capacitor 
builds up charge.  The waveform of voltage across the 
capacitor, VCAP, of such a system are shown in Figure 4.  
Sawtooth oscillators such as this more closely resemble 
jitter because of their abrupt changes.   However, unlike 
jitter, an oscillator will take a reasonable number of time-
steps for each transition.  

 
 
 

 
 

Figure 4: Neon bulb oscillator waveform. 
 
Intuitively, the distinction between jitter and true 

oscillation comes down to whether or not the changes, if 
considered as real, constitute activity at a time-scale below 
the focus of attention for the simulation.  A strong case for 
jitter not being real can be made on the basis of violation of 
continuity implied, but unfortunately, such violations are 
standard fare for systems with discontinuous effects.   

Given that jitter is a problem, how can it reliably be 
detected?  To be sure, there are particular categories of 
causal structures that result in jitter.  However, we believe 
that predicting when during a simulation jitter will occur is 
impossible. 

To see this, consider, for example, an ecosystem 
simulation in which there are relatively few wheat plants 
initially, and the wheat is soon eaten to extinction by the 
chickens.  At the start of this simulation, the state is 
qualitatively the same as the example whose results are 
shown in Figure 1.  Numerical information about the rates 
of reproduction and death for wheat and the number of 



chickens and wheat plants are needed to determine whether 
the number of wheat plants will jitter.  Even with this 
information, scenarios can be imagined that allow jitter to 
be predicted only for a very small length of time in the 
future.  Say, for example, that we added carnivores, such as 
wolves, to the simulation where the initial number of wheat 
was small.  The initial rate of wheat reproduction might still 
be small compared to its death rate, but the wolves could be 
great enough in number to eat the chickens to a large 
degree.  Consequently, the wheat could grow to occupy the 
entire floor space of the dome and then begin to jitter.  In 
other words, the initial states of two simulations may be 
qualitatively identical – the same processes and influences 
are active – and yet one will produce jitter and the other 
won’t.   

In some cases, it may be possible to rewrite small portions 
of either or both of the qualitative and quantitative models 
and at least lessen the frequency with which jitter occurs, 
while still remaining faithful to the system’s true behavior.  
However, while in some simulations jitter may not represent 
a desired behavior of the system, it is a product of the 
domain theory.  Therefore, any technique for lessening the 
drawbacks of jitter should be careful to retain this fidelity. 

4. Related solutions 
While we know of no previous attempts to analyze or solve 
the jitter problem, solutions to related problems exist. 

 
Some researchers of hybrid systems have described a 

problem closely related to related to jitter called the Zeno 
phenomenon, in which an infinite number of transitions 
between qualitative states can occur in a finite amount of 
time [Johansson, 1999].  Johansson etal proposed a 
regularization technique, which involves adding a small 
perturbation to the hybrid automata representing the system, 
that makes the system non-Zeno.  This perturbation can take 
spatial, temporal, or dynamical forms.  Qualitative 
simulators such as SIMGEN are alleviated from having to 
deal with the problem of Zeno phenomena, which may be 
present in the domain models they simulate, because they 
impose a finite time step on the calculation of the values of 
model variables.  Only when a limit point is skipped in the 
evolution of the system does the simulator roll back the 
clock and create a new simulator state at a time earlier than 
that dictated by the step size.  

Another related problem is that of chatter, which is 
intractable branching of qualitative states.  Chatter arises 
because a variable is constrained only by continuity of its 
derivative [Fouché and Kuipers, 1991]; when the qualitative 
value is unknown, chatter occurs.  Solutions to the chatter 
problem have included chatter box abstraction [Clancy and 
Kuipers, 1993] and dynamic chatter abstraction [Clancy and 
Kuipers, 1997], among others.  Both chatter box abstraction 
and dynamic chatter abstraction involved the creation of a 
new qualitative state, which would be an attractive solution 
to the jitter problem.  However, jitter seems to be harder to 
detect, as discussed in Section 5, as the problem with jitter 

is not a lack of constraints on variables; both the qualitative 
and quantitative states are known when jitter occurs.  
Therefore, determining when the system would enter and 
exit such a state is problematic. 

The next section describes a solution to the problem of 
jitter. 

5. Dynamic correction of jitter 
The most direct solution to jitter is to detect it during a 
simulation and filter it out.  The algorithm we present here 
monitors all quantities involved in limit hypotheses, i.e. 
those quantities that may exhibit jitter. It does this by 
instantiating a jitter filter data structure, call it JQ, for each 
quantity Q involved in a comparison in the simulation.  For 
example, in the ecosystem simulation there will be a JQ for 
tracking  the number of chickens, since it is compared to 
zero.  Even if a parameter participates in multiple 
comparisons, only one JQ will be instantiated for it.  After 
observing the quantity for the time necessary to detect jitter, 
it updates the elements of the concise history for the time 
period it has observed.  By postponing the creation of the 
concise history until the jitter detector has finished 
analyzing a given time period, we preclude ourselves from 
having to modify the same period later because of jitter. 

As the simulation runs, the transition finder detects new 
limit hypotheses.  These limit hypotheses are passed as 
input to the appropriate JQ, which stores the new limit 
hypothesis it has just received from the transition finder, the 
current limit hypothesis, and the limit hypothesis it 
previously held.  The JQ’s determine that a comparison is 
jittering after recording a pattern of a comparison changing 
values between two limit hypotheses for several times.  The 
new, current, and previous limit hypotheses of a JQ 
themselves form, conceptually, a queue; a new limit 
hypothesis is pushed onto the new slot of this queue only if 
it is different from the current one.  Therefore, the current 
limit hypothesis will always be different from the new and 
previous ones.  

Each JQ also records the amount of simulated time it has 
held a particular limit hypothesis.  If the JQ has the same 
limit hypothesis for more than some amount of time, the 
jitter detection algorithm declares that the comparison is not 
jittering.  This amount of time is a parmeter, which we shall 
call tLH-max, that can be set.  In practice, we think that tLH-
max should be some small multiple of the time step.  When 
the dominant influence on a jittering parameter is relatively 
large, the parameter will quickly re-establish the quantity 
condition that de-activated the dominant process.  The 
dominant process will then, in these cases, be inactive for 
only one or two time steps before the parameter returns.  
The number of times a comparison must switch from one 
limit hypothesis to another before being declared jittering is 
dictated by another system parameter, which we shall refer 
to as NJmin.  A sequence of Limit Hypothesis A, Limit 
Hypothesis B, Limit Hypothesis A can be seen as a jitter 
wave, and NJmin is the minimum number of transitions, or 
half waves. 



The jitter detecting algorithm is run on each JQ at every 
iteration of the simulator, including those inserted by the 
transition finder.  The psuedocode for the algorithm is given 
in Listing 1.  The algorithm works as follows.  First, it 
checks that the JQ has not gone from equality with one limit 
point to equality with another, regardless of whether the 
parameter spent time in the space inbetween.  It is possible 
for the parameter to skip the space inbetween two limit 
points, because, from the perspective of any individual 
comparison, no transition has been skipped.  For example, 
say that we have a JQ for the voltage across the capacitor in 
a simulator for the neon bulb oscillator.  The limit 
hypotheses found by the transition finder as the voltage 
across the bulb reaches Vf, and then drops to Vq, will be: 
(voltageCAP, <, =, Vq), (voltageCAP, =, <, Vq), (voltageCAP, >, 
=, Vf).  The first of these indicates, for example, that the 
voltage across the capacitor was less than but is now equal 
to the quenching voltage.  Note that the second and third of 
these could occur at the same instant, or, if the rate of 
voltage drop were small enough, at different time steps.  If 
they occur at the same instant, the function calling 
Jitter-Detector will set the new limit hypothesis of 
the JQ to the one in which a transition to equality occurs, so 
that equality-to-equality transitions can be detected.  
Regardless, the jitter detecting algorithm sees that 
voltageCAP has gone from equality with Vq to equality with 
Vf, and that these limit points are not the same.  At that 
point it determines that the parameter is not jittering.  The 
tcorrect field of the JQ is set here so that a record of when the 
JQ started jittering is kept; this variable is set in anticipation 
of jittering.  It would be more difficult to set it after it were 
known that the parameter were jittering. 

If the test for an equality-to-equality transition fails, the 
jitter detector algorithm then tests that the new limit 
hypothesis is equal to the previous limit hypothesis, i.e. that 
before the current one, and different from the current one.  
These three limit hypotheses constitute one wavelength of 
the jitter cycle.  The time-at-switch field of the JQ indicates 
when the JQ switched to its current limit hypothesis, and is 
used to verify that the JQ has not had that same limit 
hypothesis for greater than the maximum amount of time, 
tLH-max.  The JQ records, in NJ, the number of transitions of 
limit hypotheses consistent with a jittering pattern it has 
seen.  Once NJmin have been seen, the comparison is said to 
be jittering.  Note that NJ is compared with NJmin – 1 in this 
first “else if” block.  This is because NJmin is updated after, 
rather than before, the conditions are checked.  Finally, the 
return variable LH is set to the new limit hypothesis of the 
JQ to indicate to the calling function what the jittering limit 
hypothesis is.   

The second “else if” block corresponds to the case where 
the pattern of limit hypothesis transitions seen so far is 
consistent with a jittering comparison, but fewer than NJmin 
transitions have been seen.  This includes the case where the 
first limit hypothesis “wave” has just been seen.  In this 
case, it may be true that there is no previous limit hypothesis 
in the JQ, in which case the NJ of the JQ will be 0.  For this 

condition, the function returning-LH checks that the current 
and new limit hypotheses of the JQ are symmetric (as are 
(voltageCAP, <, =, Vq) and (voltageCAP, =, <, Vq), for 
example).  The jitter detector is able to determine which 
quantity condition causes the dominant process(es) to be 
deactivated for any given jitter cycle; it is simply the one 
that is true at the center of the first wavelength.  We will call 
this the dominant quantity condition.  Upon seeing the first 
wave, we know that the dominant quantity condition is the 
one that is true in the “after” statement of the current limit 
hypothesis of the JQ.  In the chicken and wheat example, the 
dominant process, wheat reproduction, is deactivated when 
the available space in the dome equals 0, therefore, equality 
of the available space in the dome with 0 is the dominant 
quantity condition. 

The third “else if” block corresponds to those cases where 
a limit hypothesis transition has not occurred, but the pattern 
of limit hypotheses seen so far may or may not be consistent 
with a jittering parameter.  In these cases, no action should 
be taken.  The final “else” block corresponds to the case 
where the parameter is definitely not jittering.  Here, we 
reset the NJ, previous limit hypothesis, and tcorrect fields.  
Finally, a separate “if” block updates the time-at-switch, 
previous-LH, and current-LH fields of the JQ if necessary. 
 
Jitter-Detector(JQ, time) 
LH := none 
 
if equality-to-equality(JQ) 

previous-LH(JQ) := none 
NJ(JQ) := 0 
tcorrect(JQ) := time 

else if (new-LH(JQ) ≠ current-LH(JQ) and  
new-LH(JQ) = previous-LH(JQ) and 
time – time-at-switch(JQ) ≤ tLH-max and 
NJ(JQ) ≥ NJmin – 1) 

LH := new-LH(JQ) 
else if (new-LH(JQ) ≠ current-LH(JQ) and  

time – time-at-switch(JQ) ≤ tLH-max  and  
(new-LH(JQ) = previous-LH(JQ) or 

(NJ(JQ) = 0 and returning-LH(JQ))) 
if NJ(JQ) = 0 

dominant-LH(JQ) := current-LH 
NJ(JQ) := 2 

else 
NJ(JQ) := NJ(JQ) + 1 

else if (new-LH(JQ) = current-LH(JQ) and 
time – time-at-switch(JQ) ≤ tLH-max) 

else 
NJ(JQ) := 0 
previous-LH(JQ) := none 
tcorrect(JQ) := time 

 
if new-LH(JQ) ≠ current-LH(JQ) 
     time-at-switch(JQ) := time 
     previous-LH(JQ) := current-LH(JQ) 
     current-LH(JQ) := new-LH(JQ) 
 
return(LH) 
 

Listing 1: Jitter-Detector psuedocode. 
 
Each boolean episode is predicated on zero or more 

quantity conditions.  In our implementation, there is a queue 
of values for each of these quantity conditions.  At each 



iteration of the simulation, the values of the quantity 
conditions upon which boolean episodes are predicated are 
calculated and put onto queues, independently of the 
operation of the jitter-detector.  Each value in a queue 
represents the value of the quantity condition at a particular 
time during the simulation.  These queues allow the jitter 
detector to observe a jittering comparison for the longest 
amount of time it might take to detect a jittering 
comparison, (tLH-max · NJmin), before calculating the final 
value of the boolean episode.  When the jitter detector 
indicates that a comparison is jittering, the system finds all 
of those queues for quantity conditions that are derived from 
that comparison.  The jitter detector has, in tcorrect(JQ), the 
time of the oldest value in the queue that was calculated 
while the parameter jittered.  Another queue contains the 
simulated times at which all of the values in all of the 
queues were calculated.  Since a new value is pushed onto 
every queue at every step of the simulator, and only then, all 
queues are the same length, and every element of any queue 
was calculated at the same time as any other element in the 
same position of any other queue.  Therefore, the system has 
all of the information it needs to re-calculate the appropriate 
values in the queues of quantity conditions whose 
comparisons are jittering.  The re-calculation is simple; 
those quantity conditions equal to the dominant quantity 
condition are given the value true, and the others are given 
the value false. 

After the amount of time governed by tLH-max and NJmin 
has passed, the front of each queue of values is removed and 
the value of the episode is calculated.  The most recent 
process episode of the history is extended if the two values 
are the same, or a new episode is created if they are 
different. 

Consider, for example, the wheat and chicken ecosystem 
simulation.  The wheat reproduction process is represented 
by a boolean episode, and associated with that episode is a 
queue representing the value of the quantity condition 
“available space in the dome is greater than 0”, as well as a 
queue for the quantity condition “number of wheat is greater 
than 1”.  Say that, after new values are added onto the 
queue, the jitter detector indicates that the comparison 
between available space in the dome and 0 is jittering.  
Figure 5 illustrates the steps of the calculation of the value 
of the boolean episode for this example.  In this case, NJmin 
of the JQ is 5, in other words, once 5 appropriately-formed 
half wavelengths have been seen, the jitter detector declares 
the comparison to be jittering.  Remember that, in the case 
that the wheat has grown to the full capacity of the dome 
and the chicken are eating it, the dominant condition is 
“available space in the dome is equal to 0”.  Therefore, the 
new value for this “available space” quantity condition is 
“false”.  The jitter filter replaces the existing values in the 
queue with this new value for the time over which the 
jittering pattern was observed, which happens to include the 
entire queue.  Finally, the value of the episode at time 10.0 
is calculated using the first items in the two queues and 
stored in the history.   

Note that it may be more intuitive to the user to give the 
boolean episode a special value, rather than true or false, 
indicating that an equilibrium had been reached.  This 
change could be quite easily implemented. 

 

 
 

Figure 5: Example sequence of steps taken in calculating 
values for the boolean episode of the wheat reproduction 

process. 
 

Empirically, we have found that this jitter filter does 
indeed produce a more accurate record of events during a 
simulation.   In simulators where jitter occurs, jitter filtering 
improves performance as well as explanation clarity, since 
many fewer Boolean episodes are created.  For example, in 
the chicken and wheat simulation, the jitter filter 
successfully replaces all of the boolean episodes for the 
wheat reproduction process in the plateau region of Figure 
1, of which there were originally 80, with two episodes.  
The latter of these two is simply an “edge effect” and exists 



only for the final time step.  In simulators where jitter does 
not occur, the jitter filter incurs a slight runtime penalty and 
an extra storage cost, dependent on the size and number of 
the queues.  These, in turn, depend on the tLH-max and NJmin 
parameters, and on the number of times new states are 
introduced before regularly scheduled time steps by the 
transition finder. 

Another drawback of our solution is the fact that it relies 
on two parameters to identify jitter.  Recall that one of these, 
tLH-max, indicates the maximum amount of time a jittering 
comparison can stay at a given limit hypothesis.  We have 
seen that tLH-max can vary across simulations.  If these 
parameters are set incorrectly, our system will incorrectly 
identify a jittering system as not jittering, or a system that is 
not jittering as jittering.  

Jitter is such a slippery problem that it can at times be 
difficult to judge when a parameter is jittering and when it is 
not.  If the influence exerted by the subordinate process 
increases, it may cause the jittering parameter to take longer 
to return to the limit point around which it jitters.  For 
example, we ran a simulation similar to the one having only 
chicken and wheat, in which the number of wheat jitters 
after fully occupying the floor space of the dome.  We 
increased the maximum allowable density of chickens per 
square meter so that the chickens are able to eat the wheat 
until there are no more of them, at which point the chickens 
rapidly die off.  A close-up view showing the region where 
the number of wheat was dislodged from the jittering state is 
shown in Figure 6.  Notice that the amount of time during 
which the number of wheat is less than the maximum 
allowed by the available space in the dome increases with 
time, thereby making it difficult to say at what point the 
jitter stops.  Because the time a jittering comparison stays at 
any limit hypothesis can vary, tLH-max is valuable as a 
maximum threshold beyond which the person running the 
simulation is willing to allow the simulation to run unaltered 
by the jitter filter. 

 

 
 

Figure 6: Number of wheat dislodged from the jittering 
state. 

6. Discussion 
Ultimately, jitter seems to be an undesirable consequence of 
making simulation models that are more explicit that usual.  
The ability to make intricate distinctions unfortunately 
sometimes leads to them being made inappropriately.  In 
some cases, the jitter filtering algorithm we developed can 
eliminate it dynamically.  This work suggests three open 
questions: 
1. Is there some general, well-grounded guidance for how 

to set the jitter filter parameters? 
2. Is there a formal method for always identifying via 

static analysis or by a parameter-free method at 
runtime, when jitter will occur? 

3. While jitter arises in the context of self-explanatory 
simulators, we suspect that the problem is more general 
than that, and can affect any hybrid 
qualitative/quantitative simulation scheme that has 
conditionally applicable models.  This is of course an 
empirical question. 
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