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Abstract 

A new method for qualitative shape recognition and matching 
of objects in designs is presented in this paper. The approach 
consists of a reference-points information approach of the 
qualitative description of shapes considering qualitatively 
their angles, relative side length, concavities and convexities, 
and types of curvatures of the boundary. The shapes 
recognised are regular and non-regular closed polygons that 
can have curve segments and curvilinear shapes. Moreover 
the shapes can contain holes. To describe shapes with holes, 
topological and qualitative spatial orientation aspects are 
considered in order to relate the hole with its container. Each 
object is described by a string containing its qualitative 
distinguished features (symbolic representation), which is 
used to match the object against others. The paper also 
describes how this method can be used in industrial design by 
explaining an application. Given a file with different objects 
(representing tiles) and a vectorial image design of a ceramic 
tile mosaic border, the application recognises which tile in the 
file belongs to the border design and indicates its position and 
rotational angle to place the tile in the correct position of the 
border design. This qualitative method provides several 
advantages over traditional quantitative representations. The 
main advantages are the reduction of computational costs and 
the managing of uncertainty (two manufactured tiles are not 
geometrically identical, but they represent the same tile in the 
design). 

Introduction  
Our environment is full of objects which can be described in 
terms of their shape. The shape of an object is the 
description of the properties of the boundary of the object. 
The boundary of the object is described by a set of points. A 
single point has neither dimension nor shape, but a one-
dimensional curve has a shape that can be described.  

A purely quantitative representation of figures consists of 
a set of mathematical functions of space coordinates. For 
instance a circumference can be described by the following 
mathematical function: 

x2+y2=r2 

 
For more complex shapes, it is generally difficult to find a 

numerical function for the curve or surface describing the 
boundary of the figure. Piecewise interpolation methods are 
often used as a simplification. 

This means that the object to be described is 
approximated as consisting of many small parts, for instance 
straight lines or flat surfaces, for which it is possible to find 

numerical functions. The set of functions then make up the 
quantitative description of the shape of the object. An 
alternative quantitative representation is to approximate the 
shape of the object by the pixels it occupies. Depending on 
the resolution, this gives a more or a less coarse result, since 
some pixels may be only partially filled. Furthermore, the 
description of the shape may be quite different if it is rotated 
or translated within the grid.  

In the artificial vision field it is necessary a high 
computational cost for image processing. Moreover, objects 
recognition from image processing is an unsolved problem, 
i.e. it is not possible to distinguish the same chair from 
different points of view or partially hidden by using 
quantitative image processing.  

Therefore, the definition and use of a theory for 
qualitative description of shape is important in the vision 
recognition field. The use of a qualitative theory for shape 
description and recognition will increase the efficiency in 
vision recognition because the recognition of a shape or an 
environment will be carried out by looking only for the 
distinguished features and not analysing each pixel of the 
image.  

A purely qualitative representation may describe shapes 
by linguistic terms, such as “round”, “straight” and so on. 
Figure 1 shows an example of a quantitative and a 
qualitative representation of a circumference.  
 
 
 
 
 

Figure 1.  Examples of quantitative and qualitative 
representation of a circumference. 

Most of the qualitative approaches to shape description 
can be classified as follows: 
• Axial representations: these approaches are based on a 

description of the axes of an object, describing the 
shape qualitatively by reducing it to a “skeleton” or 
“axis”. The “axis” is a planar arc reflecting some global 
or local symmetry or regularity within the shape. The 
shape can be generated from the axis by moving a 
geometric figure (named “generator”) along the axis 
and sweeping out the boundary of the shape. The 
generator is a constant shape and keeps a specified 
point (i.e. its centre) but can change its size and its 

Quantitative 
Representation: 

x2+y2=r2 

Qualitative 
Representation:  

round 



 

inclination with respect to the axis. Some works inside 
this group correspond to (Leyton, 1988; Brady, 1983). 

• Primitive-based representations: in these approaches 
complex objects are described as combinations of more 
primitive and simple objects. Here we can distinguish 
two schemes: 

o Generalized cylinder and geon-based 
representations, which describe an object as a 
set of primitives plus a set of spatial 
connectivity relations among them 
(Biederman, 1987; Flynn & Jain, 1991). 

o Constructive representations, which describe 
an object as the Boolean combination of 
primitive point sets (Requicha, 1980; Brisson, 
1989; Ferrucci & Paoluzzi, 1991). 

• Reference points- and Projection-based representation: 
in these approaches different aspects of the shape of an 
object are represented by either looking at it from 
different angles or by projecting it onto different axes ( 
Jungert, 1994; Schlieder, 1996; Freeman & 
Chakravarty, 1980; Chen & Freeman, 1990; Park & 
Gero, 1999; Damski & Gero, 1996). 

• Topology and logic-based representations: these 
approaches rely on topology and/or logics representing 
shapes (Cohn, 1995; Randell & Cui & Cohn, 1992; 
Clementini & Di Felice, 1997).  

• Cover-based representations: in these approaches the 
shape of an object is described by covering it with 
simple figures, as rectangles and spheres (Del Pobil & 
Serna, 1995). 

The theory proposed in this article can be classified as an 
reference points based representation due to the fact that the 
theory uses the vertices (reference points) of the objects to 
give its description, and it does not segment complex shapes 
in primitive shapes, otherwise it gives a unique and 
complete description of each shape. This theory has been 
developed to be applied in an application whose goal is the 
recognition of tiles for the automatic assembling of ceramic 
mosaic borders by a robot arm. For this application a 
qualitative approach is the most suitable one because there 
are not two manufactured tiles exactly identical, and 
working qualitatively we can manage the uncertainty. The 
application has two entries, the vectorial design of a mosaic 
border and a file which simulates the result of a vision 
system. This file consists on the reference points of the 
image of real tiles captured by the vision system, which will 
be extracted in a qualitative way. The file contains 
information about the reference points and if they belong to 
a straight or a curve segment.  This application requires a 
new complete method to be able of recognising objects with 
holes, straight and curve segments in the same model, 
including too information about the colour and the area of 
the objects to recognise. The method developed in this 
approach has been inspired by some of the approaches 
described above, and it represents a complete method for the 
application developed.  

The Reference-Points Information Approach 
to Qualitative Shape Representation and 

Matching 
Shape description using reference-points information will 
have to make use of some reference points. As reference 
points we understand these points which completely specify 
the boundary. For polygonal boundaries we have chosen the 
vertices as reference points. For circular shapes and 
curvilinear segments in a shape we have chosen three 
points: the starting and the end point and the point of  the 
curve and its point of maximum curvature.  
The qualitative description of a reference point, named j, is 
determined using the previous reference point, named i, and 
following reference point, named k. This description is 
given by a set of three elements (triple) which can differ if 
these elements are from straight segments of cruvilinear 
ones: 

• In the case of straight segments the triple is 
<Aj,Cj,Lj> where Aj means the angle for the 
reference point j, Cj means the type of convexity 
of point j and Lj means the relative length of the 
edges associated to reference point j (edge formed 
by vertices i and j versus edge formed by vertices j 
and k), where:  

 Aj ∈ {right-angled, acute, obtuse}; 
 Cj ∈  {convex, concave} and 
 Lj belongs to LRS, where LRS = {smaller, 
equal, bigger}. 

• In the case of curvilinear segments the triple 
<Curve,Cj,TCj> where the symbol Curve means 
that the node in the description string is describing 
a curve , Cj means the type of convexity of point j 
and TCj means the type of curvature of the curve 
associated to the point j, where:  

 Cj ∈  {convex, concave} and 
 TCj  ∈  {plane, semicircle, acute} 

To describe the objects with holes the topological concept of 
Completely Inside Inverse (CIi) (Isli & Museors et al., 
2000) , due to the fact that the hole is always Completely 
Inside (CI) the boundary of the object in the case of tiles. 
The cardinal reference system by Frank (Frank, 1991) is 
used in order to relate the position of the hole inside the 
object. 
As the colour is a relevant characteristic in the case of 
mosaic tiles, the colour of the shape is stored as RGB colour 
and then in the matching process the colour is considered 
qualitatively using the Delta E distance between colours.  
Moreover, the size of the tiles is also a relevant feature 
therefore this feature is also considered in a qualitative way. 

The Qualitative Shape Theory for Polygonal 
Objects without holes 
The central idea of the qualitative shape representation 
consists in given three reference points i, j, k, which are 
consecutive, the qualitative description of the reference 
point j is determined by positioning an oriented line from 
the point i to the point k as figure 2 shows. In figure 2 i is 



 

the vertex 1, j is the vertex 2 and k is the vertex 3. In this 
figure the oriented line is placed from 1 to 3. 

 

 
Figure 2. Example of a shape figure in which we are 

determining the qualitative description of vertex 2 using 
vertex 1 and 3 by placing and oriented line between them. 

Determining the Convexity 
The convexity of the point j is determined as follows: if the 
reference point j remains on the left of the oriented line from 
i to k then the point j is a convex vertex. Otherwise if the 
point j remains on the right of the oriented line from i to k 
then the point j is concave. As a vertex appears when the 
orientation of the edge changes then it is not possible that 
the reference point j remains exactly over the oriented line 
from i to k. Formally, if Vj means vertex j, and wrt means 
the relation of the vertex j with respect to the oriented line 
from vertex i to vertex k, we can formulate: 
 

If Vj wrt ViVk ∈  left then Vj is convex. 
If Vj wrt ViVk ∈  right then Vj in concave. 

Determining the Angle 
The qualitative description of an angle is determined using a 
new concept and some topological concepts as boundary, 
interior and exterior of an entity. The new concept consist in 
given the two reference points joined by the oriented line, i 
and k, we place a circle of diameter ik between these two 
reference points. Moreover, in order to understand how the 
angle of a vertex is determined we need to give the 
definitions of the topological concepts used. 

Definition 1. The boundary of an entity h, called δh is 
defined as: 

We consider the boundary of a point-like entity to be 
always empty. 

The boundary of a linear entity is the empty set in the case 
of a circular line, or the 2 distinct endpoints otherwise. 

The boundary of an area is the circular line consisting of 
all the accumulation points of the area. 

Definition 2. The interior of an entity h, called hº is 
defined as hº=h-δh. 

Definition 3. The exterior of an entity h, called h- is 
defined as h-=ℜ 2-h, where ℜ 2 denotes the 2D Euclidian 
Space. 

Therefore, the angle is determined as follows; if the 
reference point j remains exactly in the boundary of the 
circle of diameter ik, then the vertex j is right-angled. If j 
remains in the exterior of the circle then j is acute. And if j 
remains in the interior of the circle then the vertex j is 
obtuse. Formally, if the circle with a diameter of ViVk is 
denoted as Cik, then the angle of the Vertex j (Vj) is 
calculated using the following algorithm: 

If Vj ∩ δCik ≠ ∅  then Vj is right- angled, 
Else if Vj ∩ Cikº ≠ ∅  then Vj is obtuse 

Otherwise Vj is acute. 
The part of the “otherwise” of the above algorithm occurs 

when Vj ∩ Cik- ≠ ∅ . 
Next figure shows a graphical example for each of these 

cases (figure 3). 
 

 
a) Right-angled angle 

 

 
c) Acute Angle 

Figure 3. Examples of determination of the angle of vertex 
2, using an oriented line from vertices 1 and 3and a circle of 
diameter vertex1vertex3; a) for a right – angled angle; b) for 

an obtuse angle and c) for an acute angle. 

Determining the Length 
To determine the relative length of each edge of a rectilinear 
segment between three contiguous vertices (relative length 
of edges between the edge from vertex i to vertex j and the 
edge from vertex j to vertex k) a new length model has been 
developed which has been inspired in the model by 
(Hernández & Clementini & Di Felice, 1995) and (Escrig & 
Toledo, 1998). 

The length model developed compares lengths of two 
consecutive edges of the object. As we compare length at 
least two lengths are available, and as a result we find that 
one length is bigger, smaller than or equal to the other.  

Therefore the reference system named Length Reference 
System (LRS) is defined by a set of qualitative lengths 
labels. Thus, we define the LRS as:  

LRS={smaller, equal, bigger}. 
The length calculated in the reference point j is the length 

of the edge from the point i to the point j compared with the 
length of the edge from the point j to k, using this LRS. 
Therefore it is inferred as: 
• First the length of each edge is calculate using the 

Euclidean distance d between two points: 
D(Vi,Vj)=((Xvj-Xvi)2+(Yvj-Yvi)2)1/2 

• Then, both lengths are compared and the corresponding 
label of the LRS is assigned as the value of the relative 
length to the vertex j. 

b) Obtuse angle 



 

The use of the qualitative distance is enough in the 
application to distinguish shapes, therefore we do not need 
to use the Euclidean distance anymore. 

The Qualitative Shape Theory for Objects with 
Curves 
For describing an object with curves we follow the next 
steps: 
1. First of all the symbol curve is fixed to indicate that the 

next node in the qualitative description of the object 
corresponds to the description of a curve. 

2. To describe qualitatively a curve, 3 points are used: the 
initial and final points of the curve and the point of 
maximum curvature of the curve (as depicted in figure 
4a), which are obviously consecutive points. The 
description, however, is associated only to the node of 
maximum curvature.  

 
 
 
 
 
 
 
Figure 4 a) The 3 points considered for the description of 

a curve and b) the placement of the oriented line between 
them. 

The central idea of the qualitative shape representation  
for curves consists of, given the three reference points, i, j, 
k, of the curve which are consecutive, the qualitative 
description of the reference point j (the one of maximum 
curvature) is determined by positioning an oriented line 
from the points i (the previous point) to the point k (the 
following point) as figure 4b) shows. In figure 4b) the point 
1 is point i, the point number 2 is the point j and the point 
number 3 in the point k. 

Determining the Convexity 
The convexity (Cj) of the point j is determined by the 
oriented line from i to k as follows: if the reference point j 
remains on the left of the oriented line from i to k then the 
point j is a convex vertex. Otherwise if the point j remains 
on the right of the oriented line from i to k then the point j is 
concave. As j is the point of maximum curvature in a curve 
segment from i to k, then it is not possible that the reference 
point j remains exactly over the oriented line from i to k. 
Formally, if Vj means vertex j (reference point which 
belongs to the one of the maximum curvature),  and wrt 
means the relation of the vertex j with respect to the oriented 
line from vertex i to vertex k, we can formulate: 

If Vj wrt ViVk ∈  left then Vj is convex. 
              If Vj wrt ViVk ∈  right then Vj is concave 

Determining the Type of Curvature 
The type of curvature (TCj) of the point j is determined by 
calculating two distances and comparing them (figure 5). 
For calculating both distance the center point of the line 
between i and k is calculated, named point ik (Pik). The first 
distance (da) calculated is the distance between i and the 

new point, Pik, and the second distance (db) considered is 
the one between the point j and the new point (Pik). Then 
comparing both distances TCj is determined as follows: 

If da<db � TCj = acute 
If da=db � TCj = semicircle 
If da>db � TCj = plane 

 
Figure 6 shows examples of the 3 possible cases.  
 
 
 
 
 
 
 

Figure 5. Distances calculated for determining TC2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 6.  a) Point j has a TCj = plane, b) TCj = 
semicircle, and c) TCj = acute. 

The Qualitative Shape Theory for Objects with 
holes  
For describing an object with holes we follow the next 
steps: 
1. The qualitative shape description of the exterior 

boundary of the object (container) is constructed 
following the steps described in previous sections. 

2. Then the qualitative shape description of the boundary 
of each hole is constructed. 

3. Each hole and the container are related by adding two 
types of information: 

3.1 The topological relation between the container and each 
hole is fixed. The holes in the case of tiles are always 
Completely Inside Inverse (CIi defined in (Isli & 
Museros et al., 2000) of the container. The CIi is the 
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inverse of the topological relation Completely Inside 
(CI), which is defined using the formal definition of 
the “in” relation as: 
(h1, in, h2)   ↔   h1 ∩ h2 = h1  ∧   h°1 ∩ h°2 ≠ ∅ .  

Given that (h1, in, h2) holds, the following algorithm 
distinguishes between the completely-inside, the touching-
from-inside, and the equal relations: 

if (h2, in, h1) then (h1, equal, h2) 
else if h1 ∩ δh2 ≠ ∅  then (h1, touching-from-inside, 
h2) 
else (h1, completely-inside, h2) 
Therefore, CIi is defined as: 
(h1, completely-insidei, h2)   ↔   (h2, completely-
inside, h1) 
 

3.2 The orientation of each hole inside the container is 
determined (this is necessary because we can have 
objects with a hole which the boundaries of containers 
are equal and boundaries of the holes too, but the hole 
is placed in other position of the container and then 
they are not the same object). The orientation is fixed 
using Frank’s Cardinal Reference System (CRF), 
which divides space into eight or more cones (which 
allows working with different levels of granularity) as 
figure 7 shows. The CRF is defined by placing its 
origin into the centroid calculated with the definition of 
the centroid of a close non regular polygon given in 
(Steger, 1996). In the case of curvilinear shapes or 
shapes which contain curve segments, these shapes are 
approximated to polygonal shapes which vertices are 
the reference points considered for the qualitative 
description of the shape and these vertices are joined 
by rectilinear segments. (Steger, 1996) calculates the 
centroid (α1,0 is the x coordinate and α0,1 is the y 
coordinate) in basis of the area (α) as: 
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We call center (C ) to the orientation occurred when the 
hole is placed environ the centroid, and all orientations hold.  

When several orientations hold for a given hole, then the 
orientation is fixed to a set of all the orientations (figure 7). 

Then once the CRF is placed in the object, the orientation 
of the hole with respect to the object is calculated. For 
instance, figure 7 calculates the orientation of the hole with 
respect to the container, obtaining that the hole is [NE,E,SE] 
oriented inside the container.  

 

 
Figure 7. Example of the Orientation Calculation of a hole 

with respect to its container.  

The Complete Description of a Shape 
Given a shape its complete description is defined with the 
following tuple: [holes_type, curves_type, [Colour, 
[A1,C1,L1 | Curve, C1, TC1]…[An,Cn,Ln | Curve, Cn, 
TCn]],(CIi,Orientation,[curves_type,[AH1,CH1,LH1|Curve,
CH1,TCH1]…[AHj,CHj,LHj |Curve,CHj,TCHj]])m], where 
n is the number of vertices (reference points) of the 
container and j is the number of vertices of the holes 
(reference points). The holes_type belongs to the set 
[without-holes, with-holes], the curves_type belongs to the 
set [without-curves, with-curves, only-curves], both 
symbols are introduced to speed up the matching process. 
Colour is the RGB colour of the piece described by a triple 
as the set [R,G,B] for the Red, Green and Blue coordinates. 
Each set , [A1,C1,L1 | Curve, C1, TC1] represents a node of 
the qualitative description which can be the description of a 
vertex of a rectilinear segment, and then A1,…,An, 
C1,…,Cn and L1,…,Ln are the qualitative angle, convexity 
type, and relative length of the vertices of rectilinear 
segments of the container respectively, or ( represented by 
the symbol | ) it can represent a node of the qualitative 
description of a curvilinear segment and then it is formed by 
the symbol Curve to indicate that it is a curvilinear segment. 
C1, …, Cn, and TC1, …, TCn are the qualitative description 
of the convexity type and curvature type respectively. The 
same happens with the container of the hole: AH1,..AHj, 
CH1,…,CHj and LH1,…LHj, are the qualitative angle, 
convexity type, and relative length of the vertices of 
rectilinear segments of the hole and CH1,…, CHj, and 
TCH1,…, TCHj are the convexity type and curvature type 
of the curvilinear segments of the hole. The string CIi, 
Orientation, [[AH1,CH1,LH1]… [AHj,CHj,LHj]] is 
repeated for each hole inside the container. CIi is the 
topological relation relating the hole with its container. 
Finally Orientation is the set of orientation relations given 
by the CRF in order to give the orientation of the hole in the 
container. 

Therefore, in order to describe completely a shape, first 
we have to repeat the process of giving the qualitative 
description of each vertex to describe the boundary of the 
container and the boundary of each hole (if they appear). 
Then colour is stored as RGB coordinates. The orientation 
relations between the container and each hole is calculated 
using the CRF. And the final set (string) with the 
characteristics of the shape is constructed.  

Figure 8 shows an example of a shape with a hole, 
rectilinear and curvilinear segments and its qualitative shape 



 

description, formally named QualShape(S), being S the 
reference to the object described.  
 
 
 
 
 

 

Figure 8. Example of a black (RGB = 0R,0G,0B) shape with 
a hole, curvilinear and rectilinear segments. 

The Matching Process  
The matching process is made as follows, first the 
qualitative description of the object taken as reference is 
constructed as defined in previous sections, and then the 
qualitative description of the other object to match is 
constructed up to the description of the container, it means 
that the holes are not yet described. With this two strings we 
compare if both are of the same type (with or without 
holes), same colour and the containers are equal. For 
comparing the colour qualitatively, as the colour in tiles will 
be always solid colours, the Delta E distance between 
colours is used. The Delta E distance using RGB colour 
systems is calculated as: 

Given two colours in RGB, named C1 determined by 
(R1,G1,B1) and C2 determined by (R2,G2,B2), then the 
Delta E distance between colours is calculated as the 
Euclidian distance between the RGB coordinates of each 
colour as: 

Delta_E(C1,C2)=((R1-R2)2+(G1-G2)2+(B1-B2)2)1/2 
If the Delta_E is less than 0,2 it is because an 

experimented human eye in the recognising of colours field 
cannot differentiate between the two colours. 

Due to implementation reasons the vertices of containers 
and holes of each shape are numbered in a counter 
clockwise way, being the first vertex (number 1) the 
uppermost (left) vertex of the shape. 

To compare the containers the algorithm 
ComparingVertices is applied, which is a cyclical ordering 
matching algorithm which given two set of vertices, returns 
if both strings are equal cyclically and the vertex in the 
second object which corresponds to the vertex number 1 in 
the first one. If both sets are not equal the vertex in the 
second set is not found, therefore a –1 value is assigned.   
Algorithm ComparingVertices (INPUTS: SetVertices1, SetVertices2, 
OUTPUTS: vertex02, equal){ 
  N=Calculus size SetVertices1 
  M=Calculus size SetVertices2 
  If N == M then { 
 //Both sets have the same number of vertices 
 For (I=0;I<N-1;I++) { 
     For (J=0;J<N-1;J++){ //cyclic comparison 

//Compare Vertex1(0) of SetVertices1 with Vertex2(j) of 
//setVertices2 

       If Vertex1(0) == Vertex2(j) { 
  Num=0 //Init a counter 
  For (K=1;K<N-1;K++){ 

  If (Vertex1(K)==Vertex2(J+1%N)) then { 
        NUM++;} 

If (NUM==N){ 

     Return equal=true; 
                                  Return vertex02= j; 
     Break } 
              } //For K 
       } // If Vertex1(0) ==Vertex2(j) 
    } //For J. 
 } //For I 
 If (NUM<>N) { 
    Return equal=false; 
                   Return vertex02= -1;} 
  } //If N==M 
else { 
 Return false;} 
} //End Algorithm 

If the objects have no holes the process finishes here. 
This way to start the matching process is motivated due to 

the objects with holes that are found rotated with respect to 
the reference object to compare will describe the holes in 
other orientation to the one given to the reference object 
being both the same object. Then once we obtain that both 
objects are equal up to the container, and both contains 
holes, the string describing the holes of the second object 
(not the reference object already completely described) is 
constructed by following next steps: 
4. Each hole in the object is numbered as being the vertex 

number 1 the one closest to the vertex which 
corresponds to the vertex 1 in the reference object, 
calculated when the cyclic comparison has been made.  

5. Include the string CIi in the qualitative description of 
the object for the first hole and calculate the orientation 
of the first hole with respect to the container placing the 
NW of the RS oriented to the vertex which corresponds 
to the vertex 1 in the reference object, and include it in 
the qualitative description of the object. 

6. Calculate the qualitative description of the boundary of 
the first hole ([[AH1,CH1,LH1]…[AHj,CHj,LHj]]) and 
include this description in the qualitative description of 
the object. 

7. Repeat steps 2,3, and 4 for each hole inside the object. 
Once the qualitative description of the second object is 

completed, then first we compare the number of holes, if 
both objects have the same number of holes we continue 
comparing, and we compare each hole of the reference 
object with the holes of the other object by doing a non 
cyclic comparison, in order to allow that cases as figure 9 
are considered as not equal as it is the case, because 
following a cyclic comparison for the holes they will be 
classified as equals. If all the holes in the reference object 
have a matching hole in the second object both objects are 
equal.  
 
 

Figure 9. Two different objects with identical holes in 
different positions. 

Applications  
The theory here presented has been applied inside an 
application whose main objective is the automatic and 
intelligent recognition of mosaic tiles to be matched against 
a border design, in order to be able to assembly them 

QualShape(S)=[with-holes, with-curves, [[0,0,0],
[right-angle,convex,bigger], [curve, convex,
acute], [right-angle, convex,bigger],  [right-angle, 
convex, smaller], [right-angle, 
convex,bigger]],CIi,C,[[right-angle, convex,
smaller], [right-angle, convex, bigger],[right-
angle, convex, smaller], [right-angle, convex,
bigger]]]. 

 

 



 

automatically for creating mosaic borders of different 
designs. Later the reasoning process implemented will be 
used by a robot arm in the ceramic industry to assembly the 
mosaic tiles. A mosaic border is made from different tiles of 
different shapes, colours and sizes that once they are 
assembled they create a unique border with high added 
value (figure 10). 

 

Figure 10. Example  of a mosaic border design. 

The theory has been implemented such that given as entry 
a file with the reference points and type of segment to which 
they belong, which will be extracted in a qualitative way 
from an image with different tiles (from now we call it as 
image) and a vectorial image of the design of the mosaic 
border (design), the application has to recognise which tile 
in the image appears in the design and match it against one 
representation of the tile in the design. Moreover, as the 
application has to allow a robot arm to place the tile in its 
correct place and orientation, and the tile can appear in a 
different orientation in the image and the design, then the 
angle of rotation to place the tile in the correct orientation 
according to the design is calculated. The angle of rotation δ 
is calculated using the mathematical concept of centroid 
explained above, as figure 11 shows graphically by 
following the steps detailed below. 

 

 

Figure 11. Angles for calculating the rotation angle 

1. Find the vertex (vertex I) of the object in the design 
which corresponds to the upper-most left vertex of the 
tile in the image (vertex 0). If the object has a hole it is 
necessary to find the vertex I of the boundary of the 
container designed (vertex IC) with respect to the 
vertex 0 of the boundary of the container in the image, 
and the vertex I of the boundary of the hole (vertex IH) 
in the design with respect to the vertex 0 of the hole in 
the image.  

2. Calculation of the angle α between the straight line 
following the direction vector along the x axes and 
crossing the centroid and the straight line crossing the 
vertex 0 of the tile and the centroid. If the object has 
holes it is necessary to calculate this angle α (called αc) 
for the container, and the angle α for the hole using the 
centroid of one of the holes (αh) and the vertex 0 of the 
hole selected (figure 11a). 

3. Calculation of the same angles in the object in the 
design as it has be done in step 2, called βc (container) 
and βh (hole in the design corresponding to the one 
selected in 2) (figure 11b). 

4. Calculus of the angle of rotation δ as: 
If the object do not has a hole then: 
    if (β-α)>0 then δ=(β-α) else δ=(360+(β-α)) 
Else  
    If (βh-αh)> (βc-αc) then  
 if (βh-αh)>0 then δ=(βh-αh) else δ=(360+(βh-αh)) 
 //The angle is determined by the holes 
   Else  
 if (βc-αc)>0 then δ=(βc-αc) else δ=(360+(βc-αc)) 
 //The angle is determined by the containers 

Therefore, the tile in the image has to be rotated δ from its 
centroid to obtain the final orientation determined by design.  

Moreover, as in this application the size of the objects is 
an important feature (for instance two squares of very 
different size are not the same piece), then the area of the 
shapes is considered. The area is needed too for the 
calculation of the centroid of the shapes, therefore we do not 
add more computational cost. The area once more is 
compared in a qualitative way. The limit to determine two 
tiles as the same is given by the joint (space leaved between 
two tiles when they are assembled). As the joint differs from 
one type of design to another it is given by the user of the 
application. Then if the difference between the areas of the 
tiles is less than the joint size the shapes represent the same 
object, otherwise they do not represent the same object. 

Finally, for this application the qualitative model 
developed, including the colour and the size, is the one 
necessary and enough because there are not two exactly 
equal tiles. 

Conclusions 
A straightforward Qualitative Theory of Shape description 
is defined in this article. It will allow us to reason about 
shape in a qualitative way as human beings do. Most of the 
qualitative approaches developed up to now are used for 
reasoning about object position. The theory presented here 
allow us to use the same method to reason not only about 
position but also about shape. The theory proposed here 
provides a simple example for representing shapes without 
and with holes and with curves. The interest of this 
qualitative shape description relies in the fact that it is less 
constrained than metrical information but more constrained 
than topological information, which will not allow us to 
determine the convexity or concavity of the shape, neither 
the length of edges, nor the angle types. 

The proposed theory has been applied to the recognition 
of tiles in a mosaic border design in order to allow the 
automatic and intelligent assembling of mosaic borders in 
the ceramic industry. This software will be applied in the 
future to a robot arm who places the tiles in the correct 
position to create the final ceramic mosaic strip designed. 
Moreover, for this application the theory presented gives a 
unique complete description of a shape. 

αc 

αh 

βc 
βh 



 

Actually we are working in obtaining the file of the 
application which contains the reference points and the type 
of segment to which they belong. This file will be 
constructed in a qualitative way from an image taken by a 
vision system. Following a discrimination process only 
some points of the image are considered (therefore we 
reduce the computational cost). The granularity of the 
number of points considered varies in function of the design 
depending on the size of the curves. The qualitative slope 
associated to each point will be compared between points, 
and depending on the result of this comparison and using 
the bisection method the point is characterised as a reference 
point (a vertex, a point of maximum curvature or an 
inflection point, which will be a starting or ending point of a 
curve) or not. 

An interesting future work will be the application of this 
theory to solve the problem of classification of objects, and 
then it could be used to the recognition and matching of 
objects partially occluded in the scene using the matching 
process for the visible part and the colour and texture of the 
objects. 

Finally, another interesting application of the theory, that 
is being developed actually, is to apply it to determine the 
shape of the objects (obstacles) and the shape of the 
environment in which an autonomous robot is navigating. 
Taking into account this idea the theory has been described 
in order to work interactively with the reasoning process for 
robot navigation defined in (Felip & Escrig, 2003) and the 
concepts of the reasoning process defined in (Museros & 
Escrig, 2003).  
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