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Abstract

Tasks like diagnosis, failure-modes-and-effects analysis
(FMEA), and therapy proposal involve reasoning about
variables and parameters deviating from some reference state.
In model-based systems, one tries to capture this kind of
inferences by models that describe how such deviations are
emerging and propagated through a system. Several
techniques and systems have been developed that address this
issue, in particular in the area of qualitative modeling.
However, to our knowledge, a rigorous mathematical
foundation and a “recipe” for how to construct such
compositional deviation models has not been presented in the
literature, despite the widespread use of the idea and the
techniques. In this paper, we briefly revisit the concepts and
use of deviation models and related techniques. We reveal
(sometimes implicit) presumptions and limitations and present
a general mathematical formalization of deviation models.
Based on this, aspects of constructing libraries of deviation
models, their properties, and their application in consistency-
based diagnosis and prediction-based FMEA in a component-
oriented framework are analyzed.

Introduction
Several tasks which are addressed by knowledge-based
systems involve reasoning about variables and parameters
deviating from some reference state. In diagnosis, one has to
localize or identify the reasons for a device behavior that
deviates from the normal, or intended, one. Failure-mode-
and-effect analysis (FMEA) determines the behavior
deviations caused by component faults. And therapy
generation attempts to identify influences on a system that
remove or reduce deviations from a healthy state. In a
model-based approach, one tries to capture this kind of
inferences by models that describe how deviations from
some reference state or behavior are emerging and
propagated through a system. Several techniques and
systems have been developed that address this issue, in
particular in the area of qualitative modeling.

In our previous work on the theory and
applications of consistency-based diagnosis, we often
employed so-called deviation models quite successfully. In
this context, we face the requirement that the device or
system model be compositional, i.e. can be generated by
aggregating local models of the system constituents (e.g.
components) that are stored in a library. However, to our
knowledge, a rigorous mathematical foundation and a
“recipe” for how to construct such compositional deviation

models has not been presented in the literature, despite the
widespread use of the idea and the techniques.
After a brief look at related work and its underlying
assumptions, we will propose a formalization of deviation
models based on relational models in section 3 and 4 and
then analyze properties of such models in a compositional,
component-oriented modeling framework for diagnosis and
fault analysis. Section 6 discusses some issues concerning
the use of the models for predictive FMEA and consistency-
based diagnosis

Previous Work
Very early work on Incremental Qualitative Analysis (IQ
analysis) [de Kleer 79] and Differential Qualitative Analysis
(DQ), or comparative analysis [Weld 88] aimed at
expressing how a disturbance or parameter shift affects the
behavior of a single system. These techniques compare two
models that are structurally identical. Obviously, this is
different from our intention to consider deviations between
any two behaviors, including behaviors that are represented
by models of a different structure (e.g. of a normal and a
broken device).
In our own previous work, we used “qualitative deviation
models” in applications of consistency-based diagnosis. For
instance, in [Struss-Sachenbacher-Dummert 97], we based
fault localization in an anti-lock braking system (ABS) of a
car on such a model, assuming that the observations are
given as qualitative deviations from some unspecified
nominal behavior expressing statements like “The wheel
rotates faster than it should”.
The models we constructed expressed constraints on the
deviations of system variables and parameters from the
nominal behavior. For instance, the model of a valve is
given by a constraint:

[∆q] = [A] * ([∆p1] - [∆p2]) + [∆A] * ([p1] - [p2])
- [∆A] * ([∆p1] - [∆p2])

on the signs of the deviations of pressure ([∆pi]), flow
([∆q]), and area ([∆A]), where [x] means sign(x). This
constraint allows, for instance, to infer that an increase in p1

([∆p1] = +) will lead to an increase in the flow ([∆q] = +), if
p2 and the area remain unchanged ([∆p2] = 0, [∆A] = 0) and
the valve is not closed ([A] = +). We also provided a
definition and construction of such qualitative deviation
models from equation models of components. For each
system variable and parameter vi, we define the deviation as
the difference between the actual and a reference value:

�v := vact - vref



Then algebraic expressions in an equation can be
transformed to deviation models according to rules such as

a + b = c � �a + �b = �c
a - b = c � �a - �b = �c

a * b = c � aact * �b + bact * �a - �a * �b = �c
a / b = c � (bact * �a - aact * �b) / (bact * (bact * �b )) = �c

Furthermore, for any monotonically growing (section of a)
function y = f(x), we obtain [�y] = [�x] as an element of a
qualitative deviation model. This way, the deviation model
of the valve stated above has been obtained by a well-
defined transformation from the respective equation
describing the behavior of a valve in absolute terms terms
(with a positive constant c)

q = sign(p1 – p2)*c*A*√ �p1 – p2� .
It is quite convenient that such model fragments often state
direct relationships among deviations, independently of
actual and reference values. In other cases (such as
multiplication and division) we need information about the
actual values (but possibly only their qualitative abstraction
for qualitative deviation models).
We used the same kind of models in order to capture
different intuitions which correspond to a different choice of
the reference. In [Malik-Struss 96], we chose the
equilibrium of a system (a controlled electric motor) to
define the reference. Furthermore, we exploited deviation
models to express constraints on changes over time. This
means, we can select a previous (or future) state of a system
as the reference. Then the deviation model of the valve can
be interpreted like “if the pressure pi has increased while p2

and A are identical, then the flow must have increased, as
well”. This corresponds to the perspective of IQ analysis at
a global level. In fact, if a (numerical) model contains
monotonic functions only, then the local results of IQ
analysis carry over to the entire domain, and the resulting
models are identical to deviation models.
In contrast to IQ and DQ analysis, deviation models reflect
the idea to compare two arbitrary behaviors. However, we
never provided a general formal definition of such models,
and it turns out that the way we constructed them (as
indicated above) was based on some assumptions that limit
their applicability. A simple example can illustrate this: We
claimed that, from a constraint

(1) a + b = c
over the absolute values, we would derive the deviation
equation

(2) ∆a + ∆b = ∆c .
But what is the basis for obtaining (2) from (1)? We find
that

∆a + ∆b = (aact – aref) + (bact – bref)
= (aact + bact) - (aref + bref) =cact – cref = ∆c

exploits the assumption that both the actual and the
reference values satisfy the same constraint (1). More
generally and more formally: if R is a model relation over a
vector of variables v, then the respective deviation model is
given by the relation

(3) ∆R := { ∆v | ∆v:= vact – vref ∧ vact,vref ∈R }
However, it is “self-referential” in the sense that it captures
deviations w.r.t. the same model, and, hence, definition (3)
does not properly reflect our intention to describe behavior
deviations in comparison to the nominal model.

A simple example illustrates the consequences: The OK
model of a closed valve states a zero flow:

(4) f = 0
which leads to the sign-based deviation model

(5) [�f] = 0
This expresses the fact that, for a properly working closed
valve, any deviation in the pressure drop does not cause a
deviation in the flow, it remains 0. However, (4) also
models a clogged pipe. But, in this case, the sign-based
deviation model should be

(6) [�f] = -[fref ]
stating that the zero flow represents a deviation which is
opposite to the flow under the reference conditions.
The example shows that

• the same equation may lead to different deviation
models.

• it may be impossible to determine the deviation
locally: (6) does not fix the deviation of the flow;
rather, this depends on other components in the
device.

Of course, having given definition (3), it is obvious how to
correct the bug. We will do this in the next section and then
discuss the consequences.

Formalizing Deviation Models
In general, it is straightforward to provide a proper
definition for deviation models. For this purpose, we
consider behavior models to be represented by a relation
over a vector v = (v1, …, vn) of system variables with the
domain

Dom(v) = Dom(v1) × … × Dom(vn),
i.e. R ⊂ Dom(v), which may be implemented as a set of
constraints. At this stage, we do not restrict the domains.
They may be real numbers, intervals, signs, etc. The only
condition is that distances

di: Dom(vi) × Dom(vi) → Dom(�vi)
are defined, e.g. as subtraction “-” on the domains
mentioned above, and their composition

d = (d1, …, dn): Dom(v) × Dom(v) → Dom(�v).
A deviation model has to characterize the possible distances
of the tuples w.r.t. a reference model relation, Rref.
As the example at the end of section 2 shows that
determination of a deviation may require an explicit
specification of a reference value, we include the reference
in one version of the definition.

Definition 3.1 (Deviation Model) Let Rm, Rref ⊂ Dom(v)
be two behavior models.

∆c(Rm, Rref) := {(d(vm, vref), vref) | vm ∈Rm ∧ vref ∈Rref}
⊂ Dom(�v) × Dom(v)

is called the complete deviation model of Rm w.r.t. Rref .
∆p(Rm, Rref) := {d(vm, vref) | vm ∈Rm ∧ vref ∈Rref}

= ∏�v (∆c(Rm, Rref) ) ⊂ Dom(�v),
where ∏�v denotes the projection to the distance vector, is
called the pure deviation model of Rm w.r.t. Rref .
A complete deviation model ∆c(Rm, Rref) is called redundant
if ∆c(Rm, Rref) = ∆p(Rm, Rref) × Dom(v).

The redundancy property expresses that the deviation
constraints do not depend on the reference value; the pure



deviation model produces the same distance predictions as
the complete model, as for the addition relation over the real
numbers ℜ:

Rm = Rref = R+ = {(a, b, a + b) | a, b ∈ ℜ}
∆c(R+, R+) = {(∆a, ∆b, ∆a + ∆b) | ∆a, ∆b ∈ ℜ} × ℜ

In other words, the deviations of a and b sum up to give the
deviation of c regardless of the specific value of a and b.
Although Def. 3.1 is very general, it still contains an
important presumption, namely that both relations are
defined over the same variables (and domains). This is
really a restriction, if you consider, for instance, process-
oriented diagnosis and therapy proposal as described in
[Struss et al. 03]. In that framework, the normal process of
water treatment and the one resulting from some disturbance
may lead to the different models that include different sets
of processes, objects, and, hence, variables.
But even in a component-oriented model, the presumption
of Def. 3.1 may be violated. The OK model of a pipe may
refer to pressure and flow only, whereas its fault models
may include parameters such as the size of a leakage, the
resistance due to partial clogging, etc. In this case, we can
project both relations to the set of variables they have in
common and apply the analysis to the resulting relations.
Therefore, in order keep different problem dimension
separate, we maintain this presumption for the investigation
in this paper. Also, we continue to talk about model
relations in general to avoid mixing the general problem of
defining, constructing, and exploiting deviation models with
the problem of generating appropriate qualitative deviation
models. Finally, we restrict the following investigations to
component-oriented models for tasks like (consistency-
based) diagnosis, diagnosability analysis, and FMEA.

Deviation Models for Component-oriented
Fault Analysis Deviation Models

More formally, we can characterize the interesting class of
models in the following way. A model of the entire device is
composed of its components’ behavior models. Each model
fragment Rij describes the behavior of a component Ci under
a mode

mij ∈ modes(Ci) = {OK, Fi1, …, Fik}

which is the (unique) correct mode or a particular fault. For
easier reading, we will denote the model relation for the OK
mode by Ri,OK.Thus, for each mode assignment

MA := { mij | mij ∈ modes(Ci)}

which assigns a unique mode to each component, we obtain
the model relation as the join of the respective component
model relations

RMA = Rij
mij ∈ MA

The class of tasks we want to consider can simply be
characterized by the choice of Rref which is given by the
behavior relation of the assignment of the mode OK to all
components:

Rref = ROK := Ri,OK
i

This is different from other possible uses of component
models. For instance, in model-based design, the reference
is given by some behavior specification rather than the
correct behavior of the components of the design at a certain
stage. We just mention that even the “natural” choice of ROK

as the reference is based on some assumptions that restrict
the scope of the respective problem solvers: it assumes that
the intended behavior is achieved if all components work
properly. This means w.r.t. the device that it is well-
designed, and w.r.t. the task that no structural faults that
introduce additional interactions (such as bridge faults) can
be diagnosed explicitly.

Regarding the entire device, we can easily define the
appropriate deviation model

Definition 4.1 (Diagnostic Deviation Model)

A complete diagnostic deviation model of a mode
assignment MA is defined as

∆c(MA) := ∆c(RMA, ROK)
and a pure diagnostic deviation model by

∆p(MA) := ∆p(RMA, ROK) .
.
While this definition is straightforward, it does not directly
provide a satisfactory way to construct the desired deviation
model. We can certainly (automatically) construct the
behavior relations RMA and ROK and then compute the
deviation model (automatically) according to definition 3.1.
Even if this is feasible (considering the potentially large
number of variables and tuples in the relation), it would not
be convenient for another reason: the requirement of
compositional modeling. What we would like to do is to
compose the deviation model of the entire device from local
component models the same way we compose the absolute
model, RMA. This is what we actually did in the applications
referenced above. Formally, we constructed deviation
models locally for each component Ci according to
definitions 4.1 and 3.1

∆c(mij) := {(d(vi, viOK), viOK) | vi∈Rij ∧ viOK∈ RiOK}

and then combined them to establish a device model for a
mode assignment MA

∆’c (MA) := ∆c(mij)
mij ∈ MA

Actually, we often constructed pure deviation models:

∆’p (MA) := {d(vi, viOK)| vi ∈Rij ∧ viOK ∈ RiOK}
mij ∈ MA

The question to be answered is how this model relates to
the diagnostic deviation model given by definitions
3.1/4.1. We have to compare the compositional deviation
model

∆’c (MA) := {(d(vi, viOK), vi OK) | vi ∈Rij ∧ viOK ∈ RiOK}
mij ∈ MA

with the global one:
∆c (MA) = {(d(v, vOK), vOK) | v ∈ Rij ∧ vOK∈ RiOK}

mij ∈ MA i



Intuitively, ∆’c (MA) appears weaker, because it combines
the OK relations in a join, whereas the local restrictions Rij

are not explicitly joined, but only via the distance d. More
precisely,

(d(v, vOK), vOK) ∈ ∆c (MA)

if and only if

v ∈ Rij ∧ vOK ∈ RiOK .
mij ∈ MA i

If we denote the restriction of v and vOK to the local
variables of Ci by v⏐i and vOK⏐i, respectively, then this is
equivalent to

i (v⏐i ∈Rij ∧ vOK⏐i ∈ Ri OK) .

This implies

i (d(v⏐i ,vOK⏐i), vOK⏐i) ∈ ∆c (mij)

which means
(d(v, vOK), vOK)∈ ∆c (mij)

mij ∈ MA

This proves

Lemma 4.1 The global diagnostic deviation model ∆c

(MA) is stronger than the compositional diagnostic
deviation model ∆’c (MA):

∆c (MA) ⊂ ∆’c (MA).

Are they equal? In the above sketch of the proof, we have
implications in both directions, except for the one that is
highlighted. Can we reverse this inference, as well? Not in
general: if, for di ∈ Dom(∆vi),

i (di, viOK) ∈ ∆c (mij)

then, locally, there exists a vi that is consistent with di and
viOK:

i ∃ vi ∈ Rij di = d(vi, viOK) .

However, it is not guaranteed that these local tuples vi can
be combined to form a global one, v, that is consistent with
MA, i.e. it is not guaranteed that there is a v∈RMA such that
for all i

vi = v⏐i

holds. The simplest counterexample is the following:
assume the normal behavior includes two components C1,
C2 that both fix a variable x to be positive. Over the sign
domain, this means

R1 OK = R2 OK = { (+) } ∈ Dom(x) = { -, 0 , + } .

Furthermore, assume a fault of C1 makes x zero, while a
fault in C2 would turn x negative:

R1 1 = { (0) }, R21 = { (-) } .

Then in both components, the deviation models determine
the deviation of x to be negative:

∆c (mk1) = { (-, +) } , k=1,2,

and, hence,

∆’c ({m11, m21}) = { (-, +) } .

However, since {m11, m21} is inconsistent, we have

∆c ({m11, m21}) = ∅ .

This shows

Lemma 4.2 In general, global and compositional
diagnostic deviation models are not equivalent:

∆c (MA) ≠ ∆’c (MA).

This means, in general, that we have to trade an important
practical requirement, compositionality of the model,
against another practically relevant feature, its
completeness, i.e. its ability to detect all inconsistencies.

Fortunately, we can recover at least partially from this
dilemma, if we impose a restriction on the distances di. The
idea is that, if a given reference value vref and distance tuple
d0 determine a unique v0 such that d(vo, vref) = d0, then each
globally consistent tuple (d0, vref) corresponds to a unique
vector vo which must also be globally consistent. This
property is satisfied for real numbers, if we define d(x, y) :=
x – y, but not for the sign domain or, more generally, for
interval domains. So we can state

Lemma 4.3 If for all i and for all yi ∈ Dom(vi) the
distance d(x, yi) determines x uniquely, i.e. the function

d yi (x) := d(x, yi)
is injective, then the compositional diagnostic deviation
model is equivalent to the global one:

∆’c (MA) = ∆c (MA).
In particular, this holds for Dom(v) = ℜ n and

d (x, y) := x – y .

Before we discuss the practical consequences of this result,
we complete the analysis by investigating the strength of
pure deviation models, i.e. models that comprise only
constraints on deviations, ignoring the reference values. The
question is whether complete deviation models can be
redundant in the sense of Def. 3.1.
Obviously, if all local deviation models are redundant then
so are the compositional deviation models. This yields

Lemma 4.4 A compositional complete diagnostic
deviation model is redundant if all local deviation models
are redundant.

However, if any local deviation model is not redundant, we
must expect that dropping the reference values from the
model makes the overall model strictly weaker. For
instance, a multiplicative constraint a * b = c yields a
complete deviation model specified by �a * �b + bref * �a +
aref * �b = �c, which does not allow to drop the reference
values. The reference values have to be determined for this
local model which means the complete deviations models
also have to be used for the other local models even though
they might be redundant. To give again the simplest
example, assume there is a component enforcing an equality
constraint a = b connected to the multiplication component.
Then its deviation model is redundant, and the qualitative
pure deviation model states [�a] = [�b]. However, the
multiplicative deviation model cannot restrict the sign of
[�c] from [�a] = [�b]= + alone, but it could, for instance,



infer [�c] = +, if [a] = [b]= + is known from the complete
deviation model of the equality constraint.

Practical Consequences of the Analysis
The theoretical analysis above may appear fairly abstract.
However, the results have a tremendous impact on the use
of deviation models in practice which we discuss in this
section in a fundamental way, before we turn to specific
issues that are related to the exploitation of deviation
models in consistency based diagnosis.

The step from self-referential to diagnostic deviation
models sacrifices a lot of the simplicity of the models. As
an abstract example, consider b = k*a with 0<k<1 constant
as the fault model that is compared to the OK model b = a.

Note that the resulting deviation model �b = �a + (k-
1)*aok does not only contain a reference to aok. It also implies
that determining the sign of �b requires determining
whether �a > (k-1)*aok which can only be done at the
numerical level. Because the result depends on aok, there
exists no finite set of landmarks for �a that would allow
determining the sign of �b. A sign-based deviation model
would be totally ambiguous in this case as indicated by
Table 1.
The example at the end of section 4 shows that we usually
have to use complete deviation models, i.e. include and
determine reference values in the deviation model. To
clearly emphasize the practical impact: when we work with
a compositional model, even if only a single local model
�c(mij), is not redundant, all local models must be used in
their complete form, even if they are redundant. This is
because they may be required to restrict vi,ok which in turn
is needed to derive a conclusion from �c(mij). In other
words, Rok has to be computed globally in addition to, and
for enabling the computation of deviations.

Table 1. (Part of) the deviation model for the abstract
example

�a �b aok bok

- - + +
0 + + +
+ + + +
+ 0 + +
+ - + +
+ + 0 0
0 0 0 0
… … … …

Let us discuss this from another perspective. In the above
definitions and analysis, we included the reference, Rok , in
the deviation model. Of course, due to the anti-symmetry of
the distances di,

di(vi,viok) = - di(vi ok,vi)
we obtain the respective definitions and results for deviation
models that include the mode assignment model, RMA,
instead of ROK, in the deviation model. Then the above
results imply that one has to apply the absolute behavior
model of the mode assignment and additionally compute the

deviations. But this means: reasoning about deviations does
not substitute the use of the absolute model as we had
hoped, but is simply additional effort to derive a convenient
and intuitive description, e.g. for interpreting FMEA results.

Furthermore, compositional qualitative deviation models
usually generate weaker results than global ones. This
means that besides the usual incompleteness of the
qualitative (interval-based) calculus, there is an additional
loss of completeness in the step of constructing the
qualitative deviation model.

Finally, because the difference of qualitative values
introduces ambiguity, the qualitative deviation models
should be constructed by abstraction from numerical
deviation models (left-hand path in Fig. 1) rather than as
deviation models of the qualitative abstractions of the
numerical models (right-hand path).

Figure 1. Deviation models of qualitative models are
weaker than the qualitative versions of numerical deviation

models.

So far, we analyzed properties of the relations representing
deviation models, especially under the aspect of
compositionality. In the next section, we discuss their use in
(consistency-based) problem solvers for fault analysis.

Using Deviation Models in Model-based
Systems

Sometimes, the entire model relation is used to compute a
solution (e.g. the diagnosability analysis, see [Dressler-
Struss 03]). In most systems, the model is applied to derive
a more complete description of a situation or scenario based
on a partial description and/or check the consistency
practical description with the model.
For instance, in FMEA, a scenario is described in terms of
external conditions and a particular state of a device. Then,
for each mode assignment corresponding to a (single)
component fault, the respective model can be exploited to
restrict the value of other variables with a focus on effects
that represent a deviation from the function the device is
supposed to perform. It is often quite natural to express both
the fault and the relevant effects as deviations from the
nominal state (“pressure lower than nominal”, “extension of
the landing gear too slow”), which makes deviation models
attractive for model-based FMEA generation.

RMA, Rok

�
q
c(MA) ⊂ �q’

c(MA)

�c(MA) qual(RMA), qual(Rok)

dev

qual

qual

dev



In our relational formalism, a scenario is also expressed as a
relation on the variables and parameters that define it and
usually contains a single tuple. It specifies a context in
which the resulting device behaviors in the nominal mode
and under a (single) component fault have to be compared.
This implies the assumption that the scenario relation is
consistent with both behaviors. Otherwise, there would be a
modelling bug w.r.t to the scenario or the behaviors. This is
plausible because the scenario is supposed to describe
exogenous variables and a given state of the system, and
the behavior models are only correct if they cover the device
response to any physically possible situation (We mention
this because we face a different situation in diagnosis, as
discussed below).
We may ask the question which kind of deviation model is
more appropriate for the task, the one containing the
reference model or the one containing the model of the
mode assignment under consideration. If we use numerical
models, it does not matter, because either one can be
deduced from the other one using the deviations. However,
if we apply qualitative deviation models, there might be
reasons to use the one that includes RMA. This is because it
might allow stronger conclusions. For instance, a valve
being stuck closed would be described by

State = OPEN A = 0 �A = –
State = CLOSED A = 0 �A = 0

and, thus, distinguishable from a fault mode where the valve
is open but not enough:

State = OPEN A = + �A = –
State = CLOSED A = 0 �A = 0

In reference to the Ok mode, they would both map to

State = OPEN Aref = + �A = –
State = CLOSED Aref = 0 �A = 0

A consideration of computational cost may lead to a
different choice, because in this case, the model computes
the absolute values for each fault plus the deviations. The
alternative is to compute the absolute values for the OK
mode only and deviations for each fault.
The deviation model is then used in the following way:
• The scenario is described as a relation on absolute

values of exogenous and state variables and deviation
0 for all of them. This reflects the fact that the scenario
applies to both the OK and the faulty mode.

• The model of the faulty device, RMA, specifies
parameters and their deviations which are non-zero
only for (some) parameters in the model(s) of the faulty
component(s) and 0 for all others.

The model (if strong enough) will compute the absolute
behavior under this scenario and the deviations w.r.t. to the
nominal mode. This illustrates again what was discussed in
the previous section, namely that computing the deviations
is only an additional effort that serves convenience. In other
systems, this is done outside the model by comparing the
results of two behavior predictions.

We now turn to the exploitation of deviation models in
consistency-based diagnosis. Its basic task is to check
whether a model of some behavior mode is consistent
with a set of given observations in order to determine
those modes that might describe the observed situation.
In what way can a deviation model be exploited in this
framework?

To answer this question, we first look at the
construction of such models which corresponds to first
joining three relations, ROK, RMA, and Rdev which
contains the definitional relations for all distances di, and
then projecting the result to (∆v, v):

∆c(MA) = ∏�v,v (Rdev RMA ROK)

The available observations relate to the current situation,
and the goal is to check whether MA can consistently be
assumed to be present in this situation. It is not the
purpose to check whether or not the nominal mode is
consistent. This has been done before with the result that
it is inconsistent with the given observations (because
otherwise there would be no reason to investigate the
fault corresponding to MA). Hence, ROK relates to a
different situation and therefore has to be considered
consistent with the observations. Furthermore, Rdev is just
a collection of definitions which are not related to any
situation and, hence, consistent with the observations.
Therefore, if ∆c(MA) is inconsistent with observations,
the origin must lie in RMA. If we use the form of
deviation model that includes RMA, then we notice again
that the deviation part of the model is just a convenient
supplement and does not contribute to the core part of the
problem solving.
However, it can be an important one, if the available
observations are stated in terms of deviations, as is
illustrated by the example of diagnosis of the ABS
system based on qualitative driver observations.
If the deviation model including the OK model is used,
we face a problem: as already stated above, we must
assume that the given set of observations cannot be
related to this model, and the problem arises how to enter
the observations in order to trigger predictions. Either
observations contain absolute values and deviations; then
the reference values could be computed (or, at least
restricted). But in this case, we would probably use the
model including RMA. Otherwise, we have to express
properly the idea that the deviations should express a
comparison between different device responses to the
same situation.
In order to allow the detection of inconsistencies, the
observations cannot be restricted to exogenous variables,
but have to include at least some dependent variables. The
respective observations relate to the actual behavior and
must be considered as potentially deviating from the values
expected under nominal behavior. They will only be useful
if there is some agent able to provide a deviation value for
them which allows computing a reference value which is
then added to the observations. Similar to the FMEA case,
the exogenous (independent) variables can be considered as
values for the OK model with their deviations being 0.



Discussion
We proposed a rigorous way of formalizing the definition
and use of models that capture how faults create a
deviation of a behavior from a nominal behavior and
analyzed properties of these models (particularly in a
compositional modeling framework) and the benefits
they might promise. The result of this analysis is
somewhat conflicting with expectations or claims we
had, the major problems being that
• the models expressing the deviations between two

different model behaviors are more complicated than
the “self-referential” ones, and

• pure deviation models (which do not include the
prediction of either the absolute OK or fault mode
behavior) will often be too weak,

• which means that computation at the deviation level is
just additional effort, though one that may be
convenient or even necessary.

When we consider process-oriented diagnosis (as in
[Heller-Struss 02]), the problems become even harder. In
this case, there is no notion of a fault model. We just
have two different models, say of the actual and the
normal situation. So far, the process models we use
include a ∆–version for each positive or negative
influence. This is correct, but not enough. If a process is
active in, say, the actual model which is not active in the
normal model, then this should also imply a ∆-influence
for each of the newly introduced influences. In the same
way, de-activated processes should result in a ∆-
influence of opposite sign for each eliminated influence.
Including this in the theory and system is not
straightforward, because it involves reasoning about the
changed activity of processes. We could obtain a solution
by applying Definition 3.1 to relations that include
discrete variables like variables that represent the activity
of processes and by introducing an appropriate definition
of deviations for such variables which is a useful
extension in general. But this involves an explicit
comparison of the process structures, and we are far from
having worked this out in detail.
Although this may be considered a fairly negative result, we
reckon that such models will remain useful for many
applications and expect that the foundation given here
allows determining the preconditions for such applications
and the expected gain.
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