
Application of Qualitative Reasoning to Robotic Soccer

Gordon Fraser and Gerald Steinbauer and Franz Wotawa1

Technische Universität Graz (TUG)
Institute for Software Technology

Inffeldgasse 16b/II, A-8010 Graz, Austria
{fraser,steinbauer,wotawa}@ist.tu-graz.ac.at

Abstract

In this paper we focus on qualitative reasoning aspects
of knowledge representation for robotics and argue why
they are appropriate for building robust control systems.
We describe how to extract qualitative knowledge from
a numerical world model, how to use this model for com-
puting plans, and how to execute these plans. Robotic
soccer is used as a real-world example domain. Problems
might arise with regard to reactivity, unreliable sensor
data might lead to stability issues and unintended be-
haviour. These drawbacks need to be treated. However,
in general using a qualitative representation to do rea-
soning with offers several advantages such as robustness
and efficiency.

Introduction
The development of mobile and truly autonomous robots
requires a robust control system that takes the sensed
world, the internal state, and their knowledge base into
account to compute actions in order to achieve a given
goal or purpose. The focus on robustness for control
systems is very important. Here, robustness of a control
system stands for invariance of the computed output to
small deviations between input data. Obviously, we fur-
ther require a control system to be active, i.e., to come
up with actions from time to time. Without this second
requirement a control system that does nothing would
be the best choice for a robust system. The term small
in the definition of robust control systems heavily de-
pends on the situation and therefore on the underlying
knowledge. For example, in soccer it is rather unimpor-
tant whether a ball is 1 or 2 meters away from a player
providing there is no opponent which is closer to the ball.

We can distinguish between two different techniques
for robotic control systems. Reactive systems [1] are sys-
tem comprising a set of tiny control actions that are acti-
vated or deactivated directly based on the sensed inputs.
The control loop of reactive systems is very small and re-
activity is high. Hence, such systems are very promising
in situations where a fast response is required. Classical
AI control systems comprise sensing devices, a mapping
from the sensor data to the abstract representation, a
planner, and an action executor which maps the abstract
representation back to the actuators. The control loop of
AI control systems is quite large and therefore reaction
time usually is low. The advantage of classical AI sys-
tems is that they provide the knowledge in an accessible

1authors are listed in alphabetical order

format and that they usually consider more informations
which improves robustness and clarity of decision mak-
ing. A good view of the two approaches is to consider
reactive systems as an implementation of reflexive ac-
tions whereas classical AI systems are implementing the
more strategic planning approach.

In this paper we focus on qualitative reasoning aspects
of knowledge representation for robotics and argue why
they are appropriate for building robust control systems.
The underlying robotic architecture we have in mind is
a combination of the reactive system and the classical
AI approach, also known as hybrid systems. The lower
level tasks are implemented using techniques from reac-
tive systems whereas the high level tasks like developing
and executing strategies follow classical approaches. In
the paper we describe how to extract knowledge from
the world model, how to use this model for computing
plans, and how to execute these plans. The first part
of the control loop, i.e., the extraction of a world model
from the sensors and the mapping from the quantitative
world model to the qualitative world model is depicted in
Figure 1. In this figure the qualitative representation is
given as a set of ground literals which describe relation-
ships between objects and qualitative descriptions of spa-
tial information. This qualitative information together
with assigned tasks, e.g., the goalie’s task in robotic soc-
cer, is used by a planner to compute a new plan. The
plan is then executed. During plan execution the high
level actions are mapped to low level actions like navi-
gation via path planning. This mapping is implemented
via a procedure which is assigned to each high level ac-
tion.

The paper is organized as follows. In the next section
we explain why a qualitative representation is very ap-
propriate for high-level control systems. We discuss the
mapping from the qualitative world model to the quan-
titative world model and show how some problems can
be avoided (to some extent). Afterwards, we introduce
our planning framework which is followed by an exam-
ple. Finally, we discuss related research and conclude
the paper.

Qualitative Representation of the

Quantitative World

There are several techniques available for generating a
model of reality which is based on observations, i.e., the
available sensor input. These techniques include the use

T O1

O2

O3

B

inReach(B)
fieldCenter(T)
fieldCenter(B)
AHead(B)
AHead(O1)
......

World Model

Qualitative
World Model

"Reality"

Figure 1: From the real world to its qualitative repre-
sentation

of Kalman filters [2], Markov methods [3] and particle
filter [4]. All of them have in common that the resulting
model comprises object locations with a corresponding
distribution function that indicates the degree of cer-
tainty in the location. From all possible object locations
the best one, usually in terms of the one with the high-
est probability or the one with the highest degree of cer-
tainty, is chosen. Obviously, the resulting object location
is a quantitative description of the world.

The drawback of using only the quantitative values
for making a decision in a specific situation at a given
point in time becomes obvious when considering the soc-
cer situations of Figure 2. All of the three soccer situ-
ations are different with respect to their corresponding
quantitative model. However, from a high-level view sit-
uations (a) and (b) become equivalent because in both
the ball B is in reach of player T and the way to the goal
is not blocked by the opponent goalie O. Note that it
seems that (a) and (b) are different because of the dif-
ferent distances to the goal but for the player’s T view it
makes (almost) no difference. Situation (c) is a different
situation as the way to the goal is blocked.

In principle a purely quantitative model has to con-
sider an infinite number of situations in order to plan
new tasks. This is obviously not possible and usually
some sort of analysis has to performed which classifies
situations. However, this would again result in a qualita-
tive description of the world in terms of situation classes.
Hence, from a static view the qualitative description of
the world state allows to represent an infinite number of
possible situations by using a finite alphabet. The re-
maining questions to be answered regard the alphabet
in order to describe a language for representing different
situations and resulting actions, and how quantitative
information can be compiled into its qualitative repre-
sentation.

The qualitative representation language for a specific
situation comprises ground predicates P which express

basically facts about the perceived state of the world.
These facts represent the factual knowledge of the world
an agent has. This could be knowledge about the vis-
ibility of objects or relationships between objects like
reachable(A, B) stating that the objects A and B are
close together.

The interpretation I of a n-ary predicate p ∈ P de-
pends on the world model M , i.e., the quantitative de-
scription of the world, and can be formalized as follows
(where Xn represents the grounded argument vector of
size n):

I(p(Xn), M) =

{

true if CONDp(X
n, M) = true

false otherwise

The function CONDp has to be implemented for every
predicate p and uses the model M and the predicate’s ar-
gument vector as the input. For example, the predicate
inReach(X, M) may be implemented as follows:
COND inReach(X,M)

return dist(pos(X,M),pos(self,M)) < 1

In COND inReach the function dist returns the dis-
tance of two quantitative positions, pos returns the po-
sition of an object in the current world model M , and
self returns the agent itself. All functions are built-in
functions of the agent’s control system. The behavior
of COND inReach is that it returns true if the object is
within a 1 meter distance from the agent.

In practice the definition of I gives rise to problems.
One problem is due to the sharp boundary where a pred-
icate changes its truth value. For example, there is no
clear distinction whether to say inReach must be true if
an object is in a 1 or 1.1 meter distance from the agent.
However, because we are dealing with predicates this
sharp boundary cannot be avoided. Another more se-
vere problem is entailed by reality. In a real environment
the world model is not only imprecise but also unstable.
For example, small deviations in lighting conditions can
cause large changes in the perceived world which is rep-
resented by the world model. As a matter of fact these
deviations in the world model may cause a predicate to
be true at a time and false at the immediately following
point in time although there are no changes in the real
world which are of interest for the agent.

In order to retain stability we have to reformulate the
definition of the interpretation function for predicates.
The basic idea behind the reformulation is that once a
predicate evaluates to true, it should remain true un-
less a significant large change in the world model occurs.
This behavior is well known in electrical engineering as
hysteresis function. Systems whose behavior follow a
hysteresis function can be seen as systems with a state
that remembers a previously taken decision. Hence, the
extension of the interpretation function I has to consider
the logical state of the predicate. The new interpretation
function IH can be defined as follows:

IH(p(Xn), M, s) =

{

true if CONDp(X
n, M, s) = true

false otherwise

O

BT

(a)

T B

O

(b)

T B

O

(c)

Figure 2: 3 different situations in robotic soccer

In this definition the variable s represents the current
truth value of p. Obviously, the function CONDp also
has to be redefined in order to implement a hysteresis
function. For example, the inReach predicate may have
the following COND inReach function assigned to.

COND inReach(X,M,s)

if s then

return dist(pos(X,M),pos(self,M)) < 1.3

else

return dist(pos(X,M),pos(self,M)) < 1.0

With this hysteresis the predicate inReach remains
true unless the distance between the agent and an ob-
ject X is greater than 1.3 meters. Hence, the hysteresis
introduces safety with respect to world model changes
that are caused by exogenous events like changes in illu-
mination and sporadic misinterpretation of features. An
alternative approach to modeling uncertain data is the
use of probabilistic methods. However, this causes the
disadvantage of having to deal with probabilities in the
reasoning process.

Figure 3 depicts an example for the evaluation of the
predicate inReach using the prior hysteresis function.
In Situation (a) the ball B lies within 1 m distance to
player T . In Situation (b) the ball B did not move but
the world-model reports a wrong position for the ball
B′. In Situation (c) the ball B has moved. In (d) the
evaluation sequence of the predicate inReach is shown.

The introduction of hysteresis functions is always a
trade-off between the stability of a predicate and its re-
activity. Consider a hysteresis function for a predicate
that always returns false. This function is optimal with
regard to stability in terms of the number of undesired
changes of the truth value (jitter) but aside of this it is
useless for qualitative modeling.

From the engineering perspective the following actions
have to performed for developing a qualitative represen-
tation as explained in this section:

1. Identify a set of predicates. The predicates are used to
represent spatial knowledge and relationships between
objects and agents.

2. Write a function CONDp for every predicate p which
implements a hysteresis function if necessary.

3. Adapt the hysteresis function in order to gain stability.

Predicates Constants

Knowledge Base

Planning Action Execution

Position EvaluationObservations
Update

Execute

Calculate

Query

Figure 4: Abstracting numerical data to symbolic data,
performing qualitative reasoning on this symbolic data,
and grounding the resulting actions to create numerical
motion commands.

In the following section the planning system including
the actuator part of the control system is explained.

Planning Framework using Qualitative

Reasoning

Robot controllers receive information about the world
in a numeric form from sensors, and they must supply
precise numeric information in order to position and con-
trol actuators. As they act in the physical world, also
for data processing some form of spatial representation is
necessary. Vision systems, for example, need an explicit
spatial representation since they operate on a two dimen-
sional projection of the physical subject. Robots using
multiple sensors to gather data need a common spatial
representation that can be used to fuse data to a unified
world model. However, this representation does not nec-
essarily need to be the same used for reasoning. Explicit
data can be mapped to a qualitative, symbolic represen-
tation usable for planning, and vice versa for plan execu-
tion. As depicted in Figure 4, observations made by the
robot are used to calculate the truth value of predicates
that describe the state of the observed world. Predi-
cates and constants contained in a qualitative knowledge
base are used by a planning module. The resulting plan
contains actions that are not directly executable by the
robot’s actuators, first the qualitative symbols need to
be mapped to an explicit representation again.

Planning tasks are particularly appropriate for the ap-
plication of qualitative techniques. Several advantages
are gained by performing planning with a qualitative
representation.

T

1.0 m

1.3 m

B

(a)

T

1.0 m

1.3 m

B’B

(b)

T

1.0 m

1.3 m
B

(c)

F

1.0 m 1.3 m
T

a b

c

(d)

Figure 3: Evaluation of the predicate inReach using a hysteresis function.

Figure 5: Example robotic soccer situation. Image is a
screen-shot of Simsrv [5], a Middle-Size league simulator.
Connected agents are running the implementation of the
described planning framework.

• Graceful degradation is achieved, as even in situations
where the robot encounters errors in its data it should
be able to continue operating.

• High-level robot programming is greatly simplified for
human operators.

• The size of the search space for the planning problem
is cut down significantly.

• Qualitative models are able to cope with uncertain
and incomplete knowledge.

• A qualitative model equals an infinite number of nu-
meric models

Example

This section shows a simplified scenario in robotic soccer.
The soccer robot in Figure 5 depicted by the hexagon is
the planning agent, there are two opponent robots to the
right. Simplified, the agent has the following model of
the current world state:

(Left(OwnGoal)∧ Ball(Ball)∧Ahead(OpponentGoal)∧
Attacker()∧Ahead(Ball)∧Goal(OwnGoal)∧
NextTo(OwnGoal)∧ Left(OpponentGoal)∧Goal(OpponentGoal)∧
Left(Ball)∧ Behind(OwnGoal)∧Heading(OpponentGoal))

Knowledge Representation Constants used in this
context are the main objects involved in playing soccer:

Ball

OpponentGoal

OwnGoal

Ball(x) and Goal(x) are static predicates describing
objects. Left(x), Right(x), Ahead(x), Behind(x) are
relative disposition predicates that are used to choose
appropriate goals.

BallSensed indicates whether the ball is placed in front
of the robot’s ball control device, and is set by a sensor.

InReach(x) Indicates that object x is within a certain
distance to the robot, i.e., its focus of attention.

LinedUp(x,y) Indicates whether two objects are in
line with the agent.

Reachable(x) is defined as
∀x(InReach(x)∧LinedUp(Ball, x)∧BallSensed() ↔
Reachable(x))

IsAt(x,y) Indicates whether the object x is at the po-
sition y.

Distinct positions are labeled and can be used for qual-
itative reasoning as well. For example, strategic posi-
tions such as a good defense position for a robotic soccer
robot can be used just like any other symbol. A descrip-
tion for such a position could look like so:
IsAt(Self, DefensePosition) ↔
Blocked(OwnGoal, Ball)∧ InReach(OwnGoal).
In this sentence Self stands for the planning agent. Such
positions need to be somehow mapped back to explicit
spatial information in order to execute actions appropri-
ately. This mapping is implemented via the potential
field method proposed in [6].

Actions This section lists actions that are relevant for
finding a solution to the given example. Action descrip-
tions are given in STRIPS-like form [7], i.e., they consist
of a precondition that has to be fulfilled in order to exe-
cute the action, and an effect that will be fulfilled after
executing the action.

Aim:

Parameter: target

Precondition: ¬BallSensed()∧ InReach(Ball)

Effect: LinedUp(Ball, target)

DribbleTowards:

Parameter: target

Precondition: BallSensed()∧LinedUp(Ball, target)

Effect: Reachable(Ball, target)

GoTowards:

Parameter: target

Precondition: ¬BallSensed()

Effect: InReach(target)

GrabBall:

Precondition: LinedUp(Ball, OpponentGoal)∧
InReach(Ball)

Effect: BallSensed()

Kick:

Parameter: target

Precondition: Reachable(target)

Effect: IsAt(Ball, target)

Planning Algorithm The application of qualitative
reasoning greatly simplifies the domain description.
Lower level tasks such as path-planning or precise action
execution are performed by a separate action execution
module that does not need to do symbolic reasoning. It
has to map symbolic target descriptions to real coordi-
nates, however. The greatly reduced average plan length
and the small number of objects to be considered as ac-
tion parameters cuts down the size of the search space
considerably. In fact, a simple state space regression
planner [8] was used in the first implementation:

Iterative deepening search is used, the stack nodes
consist of an open condition and a plan. At each it-
eration, all actions that fulfill the current condition are
prepended to the current plan and added to the open
search nodes.

The opponent’s actions do not need to be consid-
ered by the planning algorithm. Instead, plan invari-
ants [9] are used to monitor plan execution. These invari-
ants observe changes in the environment, e.g. opponent’s
counter actions, and cause re-planning if necessary.

Example Plan Considering the initial state descrip-
tion given at the beginning of this section and the do-
main theory stated in a previous section, the only thing
that is necessary to describe a classical planning prob-
lem (consisting of initial state, domain theory and goal)
is a goal description. As the robot in the example is
a soccer playing agent, a worthwhile goal would be to
score a goal. This could for example be expressed as:
IsAt(Ball, OpponentGoal)

After a few milliseconds of thinking, the agent comes
up with the following plan:

1. GoTowards: Ball

2. Aim: OpponentGoal

3. GrabBall

4. DribbleTowards: OpponentGoal

5. Kick: OpponentGoal

Related Work and Conclusion

In [10] [11] hybrid systems for controlling robots of a
RoboCup MSL Team were presented. Both use Golog
for the representation of the qualitative model and the
derivation of plans. Furthermore, they use the qualita-
tive model and decision trees to evaluate the most appro-
priate action in a certain situation. This action is used
if no plan is available in that situation. The used action
might not be the best but keeps the robot reactive even
the planning take some time. However, the problems
arising from noise and jitter in the quantitative model
were not accounted in those approaches.

There is other work in the MBR/DX community for
compiling quantitative models into qualitative models,
e.g. AQUA[12]. In contrast to our work, [12] requires
the complete knowledge of the quantitative model. We
do not require such a quantitative model because we
only map quantitative observations to qualitative obser-
vations.

We have shown how qualitative knowledge-
representation can be applied to real-world robotic
agents. Classical AI-Planning is suited very well to per-
form reasoning with this knowledge. We have pointed
out the major problems this approach has and proposed
solutions. This approach is clearly qualitative where
quantitative information is mapped to their symbolic
equivalent. Problems arising with this mapping, e.g.,
jitter phenomena due to unreliable sensor data, can be
avoided using hysteresis functions.

We believe our approach offers a lot of potential. How-
ever, the problems that were pointed out in this pa-
per show that further research is necessary. In partic-
ular empirical evaluation is required in order to compare
the mapping from quantitative to qualitative informa-
tion with and without hysteresis. Another issue is due
to the cognitive aspects of intelligent agents. It might be
of interest not to formalize the actions but to formalize
knowledge about the physical world and its rules. With
such a knowledge representation it should be possible to
derive actions directly. Hence the physical world model
can be seen as meta knowledge. For example, passing a
ball obeys the laws of physics.

References

[1] Rodney A. Brooks. Intelligence without reason. In
John Myopoulos and Ray Reiter, editors, Proceed-
ings of the 12th International Joint Conference on
Artificial Intelligence (IJCAI-91), pages 569–595,
Sydney, Australia, 1991. Morgan Kaufmann pub-
lishers Inc.: San Mateo, CA, USA.

[2] P. S. Maybeck. The Kalman filter, An introduction
to concepts. In Autonomous Robot Vehicles, pages
194–204, 1990.

[3] D. Fox, W. Burgard, and S. Thrun. Markov local-
ization for mobile robots in dynamic environments.
Journal of Artificial Intelligence Research, 11:391–
427, 1999.

[4] S. Thrun, D. Fox, W. Burgard, and F. Dellaert.
Robust monte carlo localization for mobile robots.
Artificial Intelligence, 128(1-2), 2001.

[5] A. Kleiner and T. Buchheim. A Plugin-Based Archi-
tecture for Simulation in the F2000 League. In Proc.
of the International RoboCup Symposium, 2003.

[6] T. Weigel, A. Kleiner, F. Diesch, M. Dietl, J.-
S. Gutmann, B. Nebel, P. Stiegeler, and B. Szer-
bakowski. Cs Freiburg 2001. In RoboCup 2001:
Robot Soccer World Cup V, volume 2377 of Lecture
Notes in Computer Science. Springer, 2002.

[7] Richard. E. Fikes and Nils J. Nilsson. Strips: A new
approach to the application of theorem proving to
problem solving. Artificial Intelligence, 2(3-4):189–
208, 1972.

[8] Daniel S. Weld. An Introduction to Least Commit-
ment Planning. AI Magazine, 15(4):27–61, 1994.

[9] Gordon Fraser and Franz Wotawa. Cooperative
Planning and Plan Execution in Partially Observ-
able Dynamic Domains. In Proc. of the Interna-
tional RoboCup Symposium, 2004.

[10] F. Dylla, A. Ferrein, and G. Lakemeyer. Acting
and Deliberating using Golog in Robotic Soccer -
A Hybrid Architecture. In The Third International
Workshop on Cognitive Robotics. AAAI, 2003.

[11] Vasco Pires, Miguel Arroz, and Luis Custodio.
Logic Based Hybrid Decision System for a Multi-
robot Team. In Proceedings of the 8th Conference
on Intelligent Autonomous Systems, 2004.

[12] M. Sachenbacher and P. Struss. AQUA: A Frame-
work for Automated Qualitative Abstraction. In
Working Papers of the 15th International Workshop
on Qualitative Reasoning (QR-01), 2001.

