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Abstract

In this paper we describe an application of weighted ab-
ductive theorem proving that is used to create a model
of students’ qualitative reasoning for the Why2-Atlas
tutoring system. The system encourages a student to
write an essay in natural language so that the essay
provides both an explanation as well as an answer to
a qualitative mechanics problem. The student’s essay
is first mapped into a first-order predicate logic repre-
sentation, which the abductive theorem prover treats as
a goal (observation) in order to generate a proof that
explains the essay. The resulting proof (1) provides an
evaluation of the correctness of the student’s essay, and,
in the event the essay contains errors, (2) provides a di-
agnosis of the observed errors that help identify possible
tutoring actions. We describe the knowledge represen-
tation, rules and weighted abductive theorem proving
framework, outline previous and upcoming evaluations,
and discuss possible future directions.

Introduction

Qualitative physics problems help reveal deep mis-
conceptions in both novices and experienced students
(Ploetzner, Fehse, Kneser, & Spada, 1999). The Why2-
Atlas tutoring system is designed to encourage students
to write their answers to qualitative mechanics prob-
lems along with detailed explanations supporting their
arguments (VanLehn, Jordan, Rosé, Bhembe, Bottner,
Gaydos, Makatchev, Pappuswamy, Ringenberg, Roque,
Siler, & Srivastava, 2002). To provide relevant tutoring
feedback a deep understanding of student essays is nec-
essary. Consider, for example, the qualitative physics
problem shown in Figure 1 along with an actual student
explanation. An informal example of a possible chain of
reasoning that the student used to arrive at the state-
ment “The keys would be pressed against the ceiling of
the elevator” is shown in Figure 2.

In an earlier paper (Jordan, Makatchev, & VanLehn,
2003) we argued that statistical text classification ap-
proaches that treat text as an unordered bag of words,
e.g. (Landauer, Foltz, & Laham, 1998; McCallum &
Nigam, 1998), do not provide a sufficient degree of un-
derstanding of the logical structure of a student’s essay.
Formal approaches to natural language understanding,
however, face challenges of their own. Included among
the challenges are the need to account for various degrees
of formalism and for commonsense knowledge (Dahlgren,
McDowell, & Stabler, 1989); and the fact that uncon-
strained natural language will inevitably exceed the cov-

Question: Suppose a man is in a free-falling elevator and
is holding his keys motionless right in front of his face. He
then lets go. What will be the position of the keys relative
to the man’s face as time passes? Explain.

Explanation: The keys are affected by gravity which
pulls them to the elevator floor, because the keys then have
a combined velocity of the freefall and the effect of gravity.
If the elevator has enough speed the keys along with my
head would be pressed against the ceiling of the elevator,
because the acceleration of the elevator car along with me
and the keys would overwhelm the gravitational pull.

Figure 1: The statement of the problem and a verbatim
student explanation.

erage of the knowledge representation (KR) and knowl-
edge base.

Understanding natural language statements in the do-
main of mechanics has been previously addressed in such
physics problem solvers as ISAAC (Novak, 1976) and
BEATRIX (Novak & Bulko, 1990). These applications
aim at understanding word problems in mechanics and
use more constrained language than that of a typical ex-
planation. The task of analyzing students’ explanations
also differs from the task of problem solving in that there
is no need to generate a correct solution. Rather, given
a candidate solution, our goals are to evaluate its cor-
rectness (validation) and to diagnose possible errors in
reasoning (diagnosis). The results from validation and
diagnosis determine the tutor’s response to the student’s
essay.

We have chosen to address the goals of validation and
diagnosis by treating the student’s essay as an obser-
vation and generating an abductive diagnosis (Poole,
Goebel, & Aleliunas, 1987). A weighted abductive the-
orem prover (Hobbs, Stickel, Martin, & Edwards, 1988)
generates an explanation, a proof, possibly making a
number of assumptions along the way. The weights for
the antecedent atoms of each rule provide a facility for
computing the cost of assuming any atom as true with-
out proving it. This enables us to evaluate the cost of
each candidate proof at any point during the proof search
by computing the total cost of the set of the respective
assumptions in the proof. The fact that any atom can
be assumed also alleviates the problem of limited knowl-



[ Step # | Proposition

| Justification |

the man has been in contact with the elevator

1 before the release, the keys have been in contact with the man, and

given

2 at the moment of release, velocity of the keys is equal to velocity of | bodies in contact over a time interval
the elevator have same velocities

3 after the release, nothing is touching the keys given

1 after the release, the keys are in freefall if there is no any contact then the body

is in freefall

5 keys” mass is smaller than mass of the elevator commonsense knowledge

6 after the release, the keys” acceleration is less than the elevator’s ac- | *A Tighter body has a smaller accelera-
celeration tion of freefall

7 after the release, the keys” velocity is less than the elevator’s velocity | if initial downward velocities are the

same, then a body with smaller down-
ward acceleration will have smaller
downward velocity

8 the keys touch the ceiling of the elevator

if the keys’ velocity is smaller than the
elevator’s velocity, the keys touch the
ceiling

Figure 2: An informal proof of the excerpt “The keys would be pressed against the ceiling of the elevator” (From
the essay in Figure 1). The buggy rule is preceded by an asterisk.

edge base coverage, by allowing for evaluation of proofs
of observations even in cases when the knowledge base is
insufficient to explain all observed atoms. The cheapest
proof found within thresholds on cost and time is chosen
as a plausible model of the student’s reasoning that ex-
plains the statements of the essay. The validation task
is then reduced to checking if the proof contains any
false assumptions. The diagnosis is the set of the false
assumptions in the proof. This approach resembles the
diagnostic application proposed for model builders like
MISQ (Richards, Kraan, & Kuipers, 1992), but differs
in the fact that the input in our application includes not
only the behavior of a system but also an explanation of
the behavior.

The theorem prover we use, called Tacitus-lite+, is
a derivative of SRI’s Tacitus-lite (Hobbs et al., 1988,
p. 102) that incorporates a number of extensions, in-
cluding sorts and proof search heuristics. To account
for different degrees of formalism that students use in
solutions and explanations of textbook qualitative me-
chanics problems, the rule base has to include both
qualitative physics rules in the domain of mechanics as
well as rules for translating commonsense knowledge into
proper physics representations (defined as idealization
rules in the next section). To support the task of valida-
tion, qualitative rules should be precise enough to ensure
soundness of the theory (so that erroneous essays do not
get good abductive explanations). In the section on rules
we discuss these issues in more detail.

In the following section we address the knowledge rep-
resentation and rules for reasoning in the domain of qual-
itative mechanics. We then present an overview of the
abductive theorem proving framework and proof search
heuristics. Next, we summarize previous evaluations of
the Why2-Atlas system (VanLehn et al., 2002) and of an
early version of the abductive reasoning engine (Jordan
et al., 2003). Finally, we conclude with a summary of
the results and an outline of future directions.

Knowledge Representation for Students’
Reasoning about Qualitative Physics

Envisionment and idealization

Generating an internal (mental) representation plays a
key role for both novice and expert problem solving
(Ploetzner et al., 1999; Reimann & Chi, 1989). In
(Reimann & Chi, 1989) the internal representation is de-
scribed in terms of “objects, operators, and constraints,
as well as initial and final states.” This notion of internal
representation overlaps with the notion of a path in an
envisionment (de Kleer, 1990), i.e. a particular behavior
from the set of all possible behaviors of the system. We
refer to a further step, that translates a path in the en-
visionment into the domain terminology (bodies, forces,
motion properties), as an idealization (Makatchev, Jor-
dan, & VanLehn, 2004a).

For the problem in Figure 1, for example, a possible
path in the envisionment is as follows: (1) the man is
holding the keys (elevator is falling); (2) the man releases
the keys; (3) the keys move up with respect to the man
and hit the ceiling of the elevator. The idealization of
this path would be:

Bodies: Keys, Man, Elevator, Earth.
Forces: Gravity, Man holding keys

Motion: Keys’ downward velocity is smaller than the
velocity of the man and the elevator.

Many misconceptions that students have are rooted
in envisionment and idealization (Ploetzner et al., 1999).
To make the task of representing possible correct and er-
roneous paths in envisionments feasible, we restrict our-
selves to problems where envisionments have few plau-
sible paths. The correct and buggy rules of mechanics
(which rely mostly on the formal domain terminology)
are augmented by correct and buggy rules for reasoning
about idealization (which translate loose language into
formal terms). Further we describe our approach to rep-
resenting the statements and rules. A more complete



coverage of this material can be found in (Makatchev
et al., 2004a).

Qualitative mechanics ontology

The ontology for the subset of qualitative mechanics that
the system addresses builds upon (Ploetzner & VanLehn,
1997) and consists of bodies (e.g., keys, man), agents
(air), phenomena (e.g., gravity, friction), and physical
quantities (e. g., force, velocity, position). To adequately
represent justifications, we also have representations for
references to physics laws (Newton’s First Law) and to
basic algebraic expressions (F' = ma). While internally
the reasoning is done within a coordinate system that
is fixed for each problem (for example, horizontal axis
x directed to the right and vertical axis y directed up),
a student’s reasoning can be independent of coordinate
system choice, operating instead in relative terms (up,
down, in front of). The representation and correspond-
ing idealization rules are described in the following sec-
tion.

Statements about the student’s beliefs about a physi-
cal model are represented in a first-order predicate lan-
guage. Logical constants and variables, that correspond
to bodies, agents, and quantities, are “typed,” that is,
associated with a sort. Sorts are partially ordered by a
natural subset order. Domains of the arguments of the
predicate symbols are restricted to certain sorts. These
associations and constraints constitute an order-sorted
signature (Walther, 1987).

Time is represented using time instants as basic prim-
itives. Time intervals are denoted as a pair (t;,t;) of
instants. This representation, together with the relation
before on time instants, allows us to implement the se-
mantics of open time intervals. We do not currently im-
plement the semantics of limits corresponding to “just
before” and “just after.”

Argument slots and an order-sorted signature for a
predicate representing a vector quantity that involves a
single body (for example velocity, total-force) are
shown in Table 1. Thus, the statement “The keys’ verti-
cal acceleration is constant and negative” is represented
as a single atom augmented with its order-sorted signa-
ture as follows:

((acceleration al keys vertical constant 7d-mag-num

?mag-z ?mag-num neg 7dir-num ?7d-dir 7tl 7t2)
(Quantitylb Id Body Axial Constant D-mag-num

Mag-zero Mag-num Dir Dir-num D-dir Time Time))

A number of relation predicates are used to specify
various algebraic and logical relations between physical
quantities (see Table 2). Two bodies can also be related
via a state of contact with possible fillers of detached,
attached, and moving-contact (for the case of relative
motion between bodies in contact).

The atoms can be cross-referenced via shared vari-
ables, as in the representation of the equality of positions
shown in Figure 3. Another example of cross-referencing
is the representation of the statement “Force of gravity
acting on the keys is constant and nonzero”:

Description Sort

quantity Quantitylb
identifier Id

body Body

axial component or not Comp
qualitative derivative of the magnitude D-mag
quantitative derivative of the magnitude | D-mag-num
zero or non-zero magnitude Mag-zero
quantitative magnitude Mag-num

sign for axial component Dir

quantitative direction Dir-num
qualitative derivative of the direction D-dir
beginning of time interval Time
end of time interval Time

Table 1: Slots of a vector quantity of sort Quantity1b.

((force f1 7bodyl keys 7comp constant ?d-mag-num
nonzero 7mag-num ?7dir ?dir-num ?d-dir 7tl ?t2)

(Quantity2b Id Body Body Comp Constant D-mag-num
Mag-zero Mag-num Dir Dir-num D-dir Time Time))

((due-to d1 f1 ph1l) (Due-to Id Id Id))

((phenomenon phl gravity)

(Phenomenon Id Field-interaction))

In the example above, the predicate due-to is used to
refer to the phenomenon responsible for the force. Roles
of the forces, such as centripetal, reaction and weight are
represented using the predicate role.

To account for the fact that the qualitative problems
can often be solved with or without an explicit definition
of a coordinate system, the direction of vector quantities
can be specified in two ways: (1) in terms of a fixed co-
ordinate system of the problem, i.e. “vertical velocity
is negative”, and (2) in a loose language, e.g. “velocity
is down.” Similarly, “keys are moving down” is repre-
sented as a motion atom, equivalent to “keys’ motion
is downward”, and an idealization rule translates it into
a more formal velocity atom, namely “vertical veloc-
ity is negative,” which introduces assumptions about the
student’s understanding of the respective inferences.

Rules

As we mentioned above, we would like the system to rea-
son about an idealized model as well as about the process
of idealization. In fact, the ideal solutions produced by
our physics experts are broken into two stages: (1) defin-
ing relevant bodies, motion, and forces in physics terms
(a model), and (2) applying physics principles within the
model to derive the answer. To support the task of rea-
soning about these stages, we have three classes of rules:
givens, idealization rules, and rules of qualitative me-
chanics. The correct idealization of the problem state-
ment is represented as a set of givens for the theorem
prover, namely as rules of the form — a. An idealiza-
tion atom b that allows for the buggy counterpart b’ is
represented by a pair of the rules — b and bug b — V',
where atom bug_b is not in the head of any rule (i.e. it
has to be assumed).

Similarly rules that have buggy counterparts are rep-
resented by the pair a — b and bug_ab A a’ — b'. Note
that since atoms in the head of a rule can include vari-



Relation Ist and 2nd arguments

3rd argument | 4th argument

non-equal any terms

before Time

rel-position | Body Rel-location

compare Mag-num or D-mag-num of any scalar or vector quantity Ratio Difference
compare-dir Dir-num of any vector quantity Rel-dir

dependency any terms Rel-type time interval

Table 2: Relations.

ables, the rule or the given can be used to prove different
goals. Since, even within the same essay, a rule can be
used both correctly and incorrectly, we do not declare
all pairs of such rules as mutually exclusive. Instead
we enforce the exclusiveness of rules selectively at the
meta-level of the prover. When the application of a rule
would generate a new goal atom that is inconsistent with
an atom that has already been proven (due to functional
properties of predicate arguments), it is excluded due to
the consistency constraints (see the following section).

Examples of idealization rules have been discussed in
the previous section. This class of rules covers such in-
ferences as “Distance between two bodies is decreasing
— the bodies are said to be ’closer’,” “A body’s vertical
velocity is positive and vertical axis is directed upwards
— the body’s velocity is directed upward.”

Mechanics rules cover correct and buggy reasoning at
the level of an idealized model of the problem, for exam-
ple, “Zero acceleration — constant velocity,” and “Zero
force — decreasing velocity”. Many physics problems
that are qualitative in nature require reasoning about
quantitative proportionalities, e.g. “Twice as much total
force on a body —twice as much acceleration.” Although
our KR allows us to represent such rules, currently we
limit our problems to those that require only qualitative
proportionalities, e.g. “More total force on a body —
more acceleration.”

The rules are represented as extended Horn clauses,
namely the head of the rule is an atom or a conjunction
of multiple atoms. An example of a correct rule, stating
that “if the velocity of a body is zero over a time interval
then its initial position is equal to its final position”, is
shown in Figure 3.

As we mentioned in the Introduction, we would like to
ensure that the set of correct solutions and explanations
of the mechanics problems is covered by a sound rule
base, i.e. while a correct essay should be provable by at
least one correct abductive proof, it should be impossi-
ble for an erroneous essay to be diagnosed as correct un-
less assumptions are made. In some domains, it appears
that only using sound qualitative rules is not sufficient to
cover the commonsense conclusions that arise (Forbus,
1997). In the case of the textbook mechanics problems
that we have chosen to address, our experts’ solutions
share a common feature: Once the idealization is per-
formed, most of the inferences are carried out within the
realm of the idealized model by sound qualitative ver-
sions of physics principles. Therefore, at least as far as
the coverage of the reasoning within the idealized model
is concerned, we can limit ourselves to using sound rules.

At the time of the evaluation presented in this pa-

((velocity vl 7body 7comp 7d-mag ?7d-mag-num
0 7mag-num ?7dir ?dir-num ?d-dir 7tl 7t2)
(Quantitylb Id Body Comp D-mag D-mag-num
Mag-zero Mag-num Dir Dir-num D-dir Time Time))
-
((position pl ?body ?7comp 7d-magl ?d-mag-numl
?mag-z1 7mag-numl ?dirl ?dir-numl ?d-dirl ?7tl1 7t1)
(Quantitylb Id Body Comp D-mag D-mag-num
Mag-zero Mag-num Dir Dir-num D-dir Time Time))
((position p2 7body 7comp ?d-magl ?d-mag-numi
?mag-z1 7mag-numl ?7dirl ?dir-numl ?d-dirl 7t2 7t2)
(Quantitylb Id Body Comp D-mag D-mag-num
Mag-zero Mag-num Dir Dir-num D-dir Time Time))

Figure 3: Representation for the rule “If the velocity of a
body is zero over a time interval then its initial position
is equal to its final position.” Atoms are augmented with
their respective sorted signatures.

per (Summer 2003), the knowledge base consisted of 24
idealization rules (excluding problem-specific givens that
are assumed to be shared knowledge), 24 buggy rules,
and 57 rules of qualitative Newtonian mechanics.

Weighted Abductive Theorem Proving

Order-sorted abductive logic programming
framework

Similar to (Kakas, Kowalski, & Toni, 1998) we define
the abductive logic programming framework as a triple
(T, A, I), where T is the set of givens and rules, A is
the set of abducible atoms (potential assumptions) and
I is a set of integrity constraints. Then an abductive
explanation of a given set of sentences G (goals) is (a)
a subset A of abducibles A such that T U A F G and
T U A satisfies I, and (b) the corresponding proof of G.
The set A is assumptions that explain the goals G. Since
an abductive explanation is generally not unique, various
criteria can be considered for choosing the most suitable
explanation (see Section “Proof search heuristics”).

An order-sorted abductive logic programming frame-
work (T',A’,I'} is an abductive logic programming
framework with all atoms augmented with the sorts of
their argument terms (so that they are sorted atoms)
(Makatchev et al., 2004a). Assume the following no-
tation: a sorted atom is of the form p(zq,...,z,)
(T1,...,7n), where the term x; is of the sort 7;. Then, in
terms of unsorted predicate logic, formula 3z p(z) : (1)



can be written as 3z p(x) A7(x). For our domain we re-
strict the sort hierarchy to a tree structure that is natu-
rally imposed by set semantics and that has the property
dz 7 (x) A7j(x) — (1, < 75) V (15 < 73) where 7; < 75 is
equivalent to Vz ;(x) — 7;(z).

Tacitus-lite+ uses backward chaining with the order-
sorted version of modus ponens:

I 2 g, 2) (75, 76)

Vo, 23y p(x,y) : (11,72) «— q(x,2) : (13, 74)
T5 XT3, T6 = T4

3z’ y" p(’,y') : (min(rs, 1), 72)

Proof search heuristics

The aim of the proof search heuristics is to quickly find
a proof that optimizes a combination of a measure of
utility of the proof for tutoring applications and a mea-
sure of plausibility of the proof as a model of a student’s
reasoning. A highly plausible proof has a high value for
its utility measure since it potentially allows the tutoring
system to generate feedback that is more relevant to the
student’s actual mental state. However a less plausible
proof could have the same utility measure if it results in
the same tutoring action as a more plausible proof. In
fact, we would prefer a less plausible proof over the more
plausible proof, their utility measures being same, if the
former takes less time to compute.

The plausibility measure is based on two cognitive as-
sumptions. The first assumption, cognitive economy, can
be interpreted in the context of the abductive proofs
as a preference for a simpler proof structure (for exam-
ple a smaller proof) and a smaller cost for the proposi-
tions that have to be assumed. The second assumption,
concept-level consistency, is based on the fact that even
young children are unlikely to make mistakes in tasks in-
volving taxonomic categories (Chi & Ceci, 1987). Thus
we assume that, while proofs can have errors, errors in
categorical and taxonomic reasoning are less plausible.
For example, the consistency constraints that we enforce
for proofs prevent propositions such as “velocity of the
keys is increasing” and “velocity of the keys is constant”
from appearing within the same proof.

A proof is considered sufficiently cheap if the total cost
of its assumed atoms is below a certain threshold. The
cost is computed for each proposition of the proof via the
following procedure. First, costs are uniformly assigned
to the goal atoms (observations), namely the proposi-
tional representation of the student’s essay. Conjunct
atoms p; in the body of a rule have pre-assigned weights
w; (Stickel, 1988):

PITA AP = T A ATy,

m

If this rule is used to prove a goal g by unifying it
with atom 7;, then the cost of assuming p;, 1 < i < m,
is computed according to the following cost propagation
formula: cost(p;) = cost(g) - w;. The cost of the proof is
the total cost of all assumed atoms.

A weighted abductive proof for the student’s state-
ment “The keys would be pressed against the ceiling of
the elevator” is shown in Figure 4. Total cost of the proof

is 0.22, the cost of its two assumptions. Incidentally, the
proof indicates a possible application of the buggy rule
“A lighter body has a smaller acceleration of freefall,”
which is a common misconception.

Since the cost of a proposition is a penalty for assum-
ing it without a proof, it can also be interpreted as a
degree of disbelief in the proposition. This interpreta-
tion suggests that more general existentially quantified
propositions should be cheaper to assume than more spe-
cific propositions. The mechanism for such cost adjust-
ment is implemented in the most recent version of the
theorem prover.

Various rule choice heuristics have the aim of finding
a sufficiently cheap proof of a small size. Generally, if
atoms in the head of the rule are unifiable with a sub-
set of goals then application of such a rule will result in
achieving those goals. On the other hand, if a rule has
atoms in its body that are unifiable with the goals, then
the new subgoals from the body will be factored (com-
bined via unification) with the unifiable goals, namely
only the most specific of the unifiable atoms will be left
on the goal list. These nuances imply that proving via
rules that have heads and bodies that are unifiable with
larger subsets of goals lead to a faster reduction of the
goal list and consequently a smaller resultant proof.

In addition, a set of atoms in a rule or in the goal
list can be cross-referenced via shared variables (see the
section on qualitative mechanics ontology). One of the
rule choice heuristics currently being evaluated in the
theorem prover is based on the similarity between the
graph of cross-references between the atoms in a candi-
date rule and the graph of cross-references between the
atoms on the goal list. The metric for the match be-
tween two labeled graphs is computed as the size of the
largest common subgraph using the decision-tree-based
algorithm proposed in (Shearer, Bunke, & Venkatesh,
2001). For further details on the proof search heuristics
we refer the reader to (Makatchev, Jordan, & VanLehn,
2004b).

Evaluation

Although students in a baseline evaluation of the Why?2-
Atlas system showed significant learning gains (VanLehn
et al., 2002), the first-order predicate logic representa-
tion of the students’ essays produced by the system, that
are the input to Tacitus-lite+, were too sparse for any
misconceptions to be correctly identified. To evaluate
Tacitus-lite+ we developed a test suite of 45 student-
generated essays in which we manually corrected and
completed the input to Tacitus-lite+ and annotated the
misconceptions expressed in each essay that Tacitus-
lite+ should identify. The student essays were randomly
selected from those collected during the pilot studies
with human tutors. In the 45 essays of the test suite,
three essays have two misconceptions each, eight essays
have one misconception each, and the rest of the essays
have none of the misconceptions from the list of 54 mis-
conceptions that could arise for the training problems,
according to our physics experts.

There are two types of evaluations of interest to us



Student said: ’ keysand ceiling arein contact (1) ‘ 8

i Bodies in same positions arein contact

y final pos(keys) = final pos(ceiling) (1) \

If v of keysislessthan v of elevator,
then keys will be at the same position as the ceiling

[ vel(keys) after release < vel(elevator) (1) | 7

\h;vilzviz and al < a2, then Vf1 < vi2 (all same dir)

[ acc(keys) after release < acc(dlevator) (05) | 6

| initial vel(keys) = initial vel(elevator) (0.5) | 2

If fixed contact, then same vel ocity

*Alighter body has a smaller
acceleration of freefall

| elevator isin freefall (0.14)

initially, man, keys, 1
elevator arein contact (0.5)

(given)

| keysarein freefall (0.14) | 4
If no contact, then freefall

(givery [ bug_mass affects freefall (0.14) |

(assumed)

| after release, keys are not in contact with anything (0.14) | 3

[ mass of keys < mass of elevator (0.08) | 5

(giveny

(assumed)

Figure 4: A weighted abductive proof of the proposition representing the excerpt “The keys would be pressed against
the ceiling of the elevator.” Rule names are in italics; the buggy rule is preceded by an asterisk; arrows are in the
direction of abductive inference; costs of the propositions are in parenthesis; the references to the steps in Figure 2

are in bold. Total cost of the proof is 0.22.

for the abductive theorem prover: (1) the accuracy of
the misconceptions revealed by the proofs and (2) the
accuracy of the proofs as models of the students. We
summarize here the results of both for an earlier version
of Tacitus-lite+, as described in (Jordan et al., 2003),
and plan to repeat both in the near future for the newer
version described in this paper.

To assess the accuracy of the misconceptions identified
by the theorem prover, we compare the misconceptions
revealed by the proofs of each essay to those annotated
for each test suite essay. We accumulated the number
of true positives TP, false positives FP, true negatives
TN, and false negatives FN for each essay; and from this
computed recall TP/(TP+FN), precision TP/(TP+FP),
and positive false alarm rate FP/(FP+TN). In addition,
we calculated these measures for the theorem prover’s
results at various proof cost thresholds to see how the
performance changes as we move closer toward building
a complete proof. The results are shown in Figure 5.

The recall increases from 0 at a proof cost of 1 (where
everything is assumed without proof) to 62% at a proof
cost threshold of 0.2. As the recall increases, the pre-
cision degrades but then levels off. These results mean
that the earlier theorem prover can help to reveal up to
62% of the misconceptions that a human would recog-
nize, but at the cost of identifying some misconceptions
that are not justified by the essays. We consider recall to
be the more important measure for misconceptions since
it is important to find and address the misconceptions
that are expected to be obvious to a human tutor. The

1—

* \ Recall

B
*« Precision

0.8 - o *. Positive False
- Alarms

Proof Cost Threshold

Figure 5: Recall, precision and false alarm measures as
proof cost threshold decreases.

positive false alarms are quite low and although our goal
is to reduce this value as close to 0 as possible, we con-
sider a high recall to be a higher priority as we expect
that it is more important not to miss misconceptions.
On the other hand, some possible drawbacks of not also
trying to lower the positive false alarms are inadvertently
strengthening the reasoning that leads to a misconcep-



| Threshold || 0.8 [ 0.6 0.4 [0.2 |

good 7 7 10 | 11
satisfactory || 4 4 4 4
bad 4 4 1 0

Table 3: Evaluation of the accuracy of the proof struc-
tures generated for different proof cost thresholds.

tion and a loss of student motivation and cooperation if
the student perceives the system is too frequently giving
inappropriate feedback.

While these results are encouraging, we expect that
the recent improvements we’ve made to Tacitus-lite+,
along with additional testing and fine-tuning of rules,
will further improve the results. In addition, an evalua-
tion with misconceptions is only a coarse measure of the
quality of the proofs generated. A more refined mea-
sure of the plausibility of proofs as models of the stu-
dents should take into account the accuracy of the proof
structure generated. Assessing the accuracy of the proof
structure is more difficult because the proofs must be
hand verified. It is difficult to create a reliable gold stan-
dard against which to evaluate the accuracy of proofs for
essays and the reasons for any inaccuracy. This is be-
cause, in general, language in context gives rise to many
inferences (Austin, 1962; Searle, 1975). For this assess-
ment we judged whether the lowest cost proofs generated
for 15 of the test suite essays was a plausibly good, sat-
isfactory or bad model of the student essay. As shown
in Table 3, as the proof cost threshold decreased and
consequently the number of assumptions made fell, the
number of good proofs increased and the number of bad
ones fell to 0.

Conclusions and Future work

In this paper we described an approach to modeling a
student’s reasoning about qualitative physics problems
by treating the student’s essay as an observation, the
problem statement as a set of given facts, and using
an abductive proof of this observation as a plausible
approximation of the student’s reasoning. Abductive
proofs provide an intuitively natural representation for
the logical relations between the arguments of the es-
say. The problems of insufficient coverage of the domain
and of common-sense knowledge—two difficulties that
formal methods face when applied to natural language
text analysis—were alleviated by allowing proofs to in-
clude assumptions, namely propositions that cannot be
proven. Weighted abduction provides a facility to rate
such proofs by assigning costs to their respective sets
of assumptions. This facility can also be viewed as a
soft closed-world constraint: cheaper proofs are gener-
ally preferred. The challenge of mixed usage of formal
physics terminology and loose language in natural lan-
guage explanations was addressed via idealization rules
that translate representations of the latter into represen-
tations of the former. Finally we described the adapta-
tions we made to the weighted abductive theorem prover

and evaluated the plausibility of the proofs it generated
as models of students’ reasoning.

The challenges are, however, far from having been con-
quered. Consider the following situation: If a student
says “throw,” the current representation that is input to
Tacitus-lite+ is “apply a force.” But the student’s actual
lexical choices need additional reasoning relative to the
model of the student in order to determine whether the
correct formal representation is plausible for the student.
Otherwise, the student is credited with understanding
more about physics than may be plausible. This im-
plies that more natural language semantics interpreta-
tion should be postponed and done within the context
of the student model. However, doing such processing
via idealization rules raises the problems of reasoning at
this level that we tried to avoid in our system: (1) ex-
plicit representation of large amounts of commonsense
knowledge, and (2) the difficulty of providing a set of
sound qualitative rules that cover commonsense conclu-

sions (Forbus, 1997).
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