
Qualitative Reasoning for Software Systems with Graph Homomorphisms

Constantinos Karapoulios and Spyros Xanthakis
Technological Institute of Larissa

Computer Science and Communications Department
Larissa Greece

karapoulios@teilar.gr

Abstract
In this paper we present an ontology for the analy-
sis and the envisioning of software based systems.
We first try to identify and solve the main difficul-
ties of using qualitative reasoning in software engi-
neering. Follow some results of a qualitative ab-
straction tool and some simple application exam-
ples. We then introduce the concept of a system
qualitative graph, and the role of graph homomor-
phisms for modeling a software, and more gener-
ally a system, as a continuous phase transition map
operating on an abstract data space. We finish with
the presentation of the underlying mathematical
framework and some properties of graph homo-
morphism invariants and their use in qualitative
reasoning.

1 Introduction
As stated in [Bredeweg and Struss, 2004] Qualitative Rea-
soning (QR) research has focused on physics and engineer-
ing domains but there are many other areas of research and
application that can benefit from using QR. According to
Djikstra, programming is one of the most complex human
engineering activities. The software engineering community
has developed since many years, several (formal and infor-
mal) methods, tools and concepts to deal with the increasing
complexity and size of software based systems, and recently
with hybrid systems (software and hardware). Software reli-
ability, maintainability and portability, constitute the main
challenges for this engineering field. From the very begin-
ning, software engineering has benefited from Artificial
Intelligence (AI) contributions. And this for a very simple
reason: the people who developed AI applications was in the
same time, a software programmer himself, so he experi-
enced the difficulty of designing, developing and testing a
software program. AI concepts and ideas have therefore
been successfully applied in this field: automatic program-
ming from examples, conceptual models for software de-
sign, automatic program understanding of programmer's
intent, case based reasoning for software maintenance and
reusability, etc [Rich 1984], [Althof 2001]. With some ex-
ceptions in model based reasoning [Missier et al, 1993] and

[Mayer and Stumptner, 2003], [Trave-Massuyes et al, 1997]
QR has not been widely applied to software engineering.

The difficulty of applying QR concepts to software engi-
neering is due to the fact that algorithmic behaviour cannot
be described as a physical system governed by a simple set
of differential equations and some system parameters. Data
types are heterogeneous and are not always numerical:
strings, records, lattices, vectors, trees, etc. A lot of work
has been made in the software engineering field in order to
predict and verify software behaviour by analysing statically
(in a very detailed manner), the internal structure (i.e. the
software source code) of the software system [F. Nielson et
al, 1998], [Cousot 2005]. Those models are essentially
based on formal methods and, like any other software test-
ing method, have their own advantages and limitations due
to the inherent complexity of the software programming
process. However, static analysis approaches cannot be con-
sidered as qualitative since they are too analytic (even if a
certain level of data abstraction is operated) and do not pro-
pose an ontology that envisions software behaviour as a
whole. A software (or more generally a system) ontology
must be qualitative and, in our understanding, must respect
the following ontology specifications:

• It must propose a right level of behavioural abstraction

(for designing and debugging) applicable to a wide
range of software applications,

• It must be able to express data type heterogeneity and
software compositionality (outputs of a software module
can be used by another module),

• This ontology must be able to envision software behav-
iour when inputs change,

• It must contain the concept of continuity (even for non
ordinal inputs) that is pervasive to any QR reasoning
domain.

The paper is organised as follows. We shall expose in a

first paragraph, a motivating example of a simple piece of
software source code and its corresponding software qualita-
tive graph. This graph summarises the global behaviour of
the software system in response of its inputs. The construc-
tion of such graphs is completely automated by a tool.
Qualitative graphs must respect some constraints that are

independent of the internal structure of the system they en-
vision. Those constraints are uniquely and strictly related to
the metric properties of the input space and not necessarily
to its dimension. In other terms, qualitative graphs are
homomorphic to the equivalence classes of the input space.
This simple observation will constitute the grounds of a
qualitative ontology based on graph homomorphisms (for
oriented and not oriented graphs) that provide an elegant
formal (and visual) framework for a qualitative envisioning.
Some basic properties of graph homomorphisms and their
connection with our qualitative framework will be given in
the last section.

2 Motivation
Let's take a very simple piece of software source code writ-
ten in the C programming language. For illustrative pur-
poses the source code is given here, Figure 1a, but we must
stress the fact that we do not need to know the internal
structure for building the qualitative graph. All what we
need to know is the inputs and their domain. In our case we
have two integer inputs a and b, which vary, say, from -100
to +100. We suppose in the same time that our software,
when compiled and executed, produces an observable result
(given by the return statement).

An automatic abstraction tool, developed by our team
[Guiraud 2001], determines heuristically input values that
respect input domains and are situated at the frontiers of the
state space regions (i.e. the set of inputs that yield the same
output value). This is analogous to the way qualitative phase
portraits are defined in qualitative simulation; however, in
our case, only the separatrices are relevant and not the tra-
jectories (the search space dimension is lower than the map
dimension). After several executions the following two di-
mension map with four distinct regions is built (Figure 1b).
When two points belonging to different regions are found,
the tool searches heuristically the execution path that links
them. The variable a increases horizontally, and variable b
vertically. The point with coordinates, say, (20, 80) belongs
to the region numbered 3, since the execution with inputs a
= 20 and b = 80 produce the integer 3 as a return result. One
can observe that the four regions are connected and sepa-
rated by linear equations (automatically detected). This is
due to the fact that the conditions appearing in the source
code are linear functions of the inputs. It is often the case to
have connected and even convex regions when we handle
numeric parameters in software programming. This numeri-
cal abstraction mechanism adopted by the tool, is similar to
the way qualitative and aggregative models are built and
learnt [AI Magazine 2004] from quantitative data. Let's now
replace each region by a graph vertex. A vertex x will be
connected with a vertex y with an arc labelled a if there is a
point belonging to the region represented by x where an
"infinitesimal increase" (in our case all input variables are
integers so the minimal change is 1) of the input variable a
may lead the program to reach the region y. We obtain a
qualitative graph illustrated in Figure 1c wich visualizes the
nominal behaviour. Since our variables are bounded we

could draw an additional vertex (representing an infinity, an
error or an out of specifications state).

 int prem,sec;
 if (a >= b) prem = 1;
 else prem = 2;
 if (a >= 48) sec = 1;
 else sec = 2;
 if ((prem == 1)&&(sec == 1)) return 0;
 if ((prem == 1)&&(sec == 2)) return 1;
 if ((prem == 2)&&(sec == 1)) return 2;
 if ((prem == 2)&&(sec == 2)) return 3;

Figure 1a

3

2

1

0

Figure 1b

b a

1 0

2 3

b

a

a

aa

Figure 1c

This graph contains the same relevant information than

the map but in a more compact form and does not depend on
the map dimension. How this graph can be read? We can
see for instance that, when we are in region 1 we cannot join
directly the region 2: we must first visit region 3 by increas-
ing both inputs.

Sometimes we do not represent input labels on the arcs:
in a non-oriented qualitative graph only the neighbourhood
information is represented. All our graphs are reflexive (but
we do not visualise loops on the vertices) since an infini-
tesimal change permits in most cases to stay in the same
region. Regions with one isolated point do not admit loops
and so constitute an exception but we don't wish to enter to
those considerations in this presentation.

Visualising by means of a graph the closeness of the dif-
ferent software functional areas provides a sort of software
state space, which permits a global understanding of the

software behaviour (software phase transitions). In some
real time critical applications it is also important to know
how the implemented software will react to some continu-
ous modifications of its environmental inputs. But, express-
ing a sort of topological representation of input variations is
not only relevant for applications where inputs vary con-
tinuously. Functional frontiers and transitions are of para-
mount importance in software testing. One of the most re-
current sources of programming errors [Zeil et al, 1992]
resides in the fact that the programmer has badly pro-
grammed or misunderstood limit behaviour. In our example,
a common programming error would consist for instance to
write the first condition (a<=b), instead of (a>=b) or to
write a logical or instead of a logical and in a conditional
statement. This sort of defects causes the deformation and/or
the shifting of the surfaces separating the functional regions.
Limit testing [Xanthakis et al, 2000] consists in stressing the
software with input values that are close to or on the sepa-
rating surfaces.

In our qualitative terminology, limit testing means that
we shall try to increase or decrease input data in order to
visit all the vertices of our qualitative graph. Figure 2 illus-
trates another automatic analysis of a simple telecommuni-
cation protocol controller (with three control inputs). This
qualitative analysis can be derived for any arbitrary program
with ordinal parameters. The user has only to specify the
name of the input parameters, their type, and their variation
domain. Qualitative analysis is then automatically per-
formed by heuristically changing the different input values.
In that manner the analysis is completely independent on the
internal software structure. This systemic approach differs
from conventional static analysis approaches, which are
based on slices and variable dependencies. It is also inde-
pendent on the way the software has been specified, de-
signed, implemented (using UML design, object or aspect
programming languages, etc.) and can be applied at any
level of the software development life cycle, as soon as we
have an executable behaviour of our system.

3 A qualitative ontology based on graph
homomorphisms
The previous qualitative graph inputs are organized in a
multidimensional grid with a natural distance. However for
more general applications, software types are not always
ordinal and, due the complexity of the input data, the com-
pleteness of the envisionment cannot be ensured (as is the
case with differential equations). Those two observations
mean that we need to work on equivalence classes where a
sort of closeness has been defined. Actually closeness rela-
tion can be defined in other data types than scalars: many
software types a poset or lattice structure or a tree structure.
Here too a closeness relation can be defined. In other cases,
before testing, software engineers partition the input domain
into separate classes (note that this a typical qualitative ag-
gregation method), choose a representative test vector in
each class, and execute the software system. Here too, we
can say that some classes are close when they share some

common attributes. Other times, software inputs are states
of FSM (or products of FSM). In that case also the closeness
between states or their products can be naturally be defined.

All those observations allow one to consider the input
domain as a graph, the input graph, with its natural close-
ness relation. We conclude that is meaningful to study what
happens when we smoothly change an input even if this in-
put are complex data types. Of course, the structure of the
equivalence classes as well as the closeness relation are do-
main (specification) dependent.

In order to illustrate our purposes let's now suppose that,
before executing our software, we have found five kinds of
input values. In Figure 3, the input graph G is transformed
in an output qualitative graph H by means of an algorithm f.
The edge (1, 2) means that we can "smoothly" change inputs
to jump from class 1 to class 2. For instance, we could de-
cide that the class 2, groups all input values that are negative
but not both zero, class 4 could group values which are posi-
tive but not both zero, class 5 could group the point (0, 0),
etc.

Sortie 4
Sortie 3

Sortie 1

Sortie 5 Sortie 2

 Figure 2

This is a sort aggregation of the bidimensional plane. Of
course, G could represent a aggregation of any input space
of any dimension. The edge (x,y) means that in an execution
of f (taking an input from input class 1) we get a result
belonging to the class x.

1

2

3

4

5

G

f

x

y

z

w

H

Figure 3

After what, we change "continuously" the input from the

class 1 to the class 2 and, in a second execution, we obtain
an output belonging to the class y. After several executions
(or physical observations) we build the output graph H. All
the executions are independent. The software system here
has no memory. The software map f, transforms an input
graph G to a qualitative one. We must stress the fact that H
represents empirically the dynamic behaviour as it is ob-
served externally by another program (as our qualitative
tool) or a human user.

H contains the equivalence classes of the input graph G.
Two vertices x and y of G are equivalent when f(x)= f(y).
This natural equivalence relation means that the output
qualitative graph H is isomorphic to the quotient graph G/f
which is homomorphic to the input graph G by the homo-
morphism naturally induced by the equivalence relation. In
other words, the qualitative H is built in such a manner, that
becomes homomorphic to G and the software f is a graph
homomorphism. Graph homomorphisms allow one to en-
dow with the concept of continuity an inherently discon-
tinuous field like software programming.

The output qualitative graph H envisions the global dy-
namic behaviour of the algorithm structure and, since it is
homomorphic to the input domain, integrates the topological
input constraints independently on the way the algorithm
has been implemented. More formally, the qualitative graph
must preserve homomorphism invariants that are present
in the input graph: they allow one to use non homomorph-
ism properties: if a graph does not respect an invariant,
some vertices, labels or edges are lacking, or are misplaced.

For example, in Figure 3, did one observe all the possible
changes of behaviour (all the edges of H)? Can one be sure
that he will never follow a forbidden transition edge, i.e. (x,
w) or (y, z)? Suppose, for instance, that x is the normal ini-
tial state of the system, w is the error state and y and z the
warning states. Can one be sure that before visiting the er-
ror state he will always visit exactly one warning state? As
we shall see in the next paragraph, graph invariants show
that H cannot be homomorphic to G since it does not respect
an important homomorphism invariant (maximal hole num-
ber). Homomorphism invariants filter the possible shapes of
qualitative graphs in an analogous manner than physical
properties (energy conservation, non intersection on phase
transitions, etc.) filter spurious behaviour in qualitative
simulation.

Suppose for instance that a system admits two integer in-
puts a and b and exhibits four possible classes of output
behaviour. Are all qualitative graphs with four vertices ad-
missible? Can one observe the qualitative graph of Figure
4?

Figure 4

Without delving into further details (homomorphism in-

variants for oriented software qualitative graphs are dis-
cussed in [Karapoulios 1999]) we can say, for that example,
that the region 3 must be necessarily connected with a label
a to the region 2. In fact, the qualitative graph H is homo-
morphic to a bi-dimensional oriented grid which has the
isotropy property: two vertices which are connected by a
path expression of the form an.bm must be also be connected
by a path expression bm.an. Isotropy is an homomorphism
invariant which is not the case for the regions 1 and 2. So a
label a is also lacking between the regions 3 and 2 since this
constitutes the only way to connect correctly the regions 1
and 2. We conclude that the tester must design test cases in
order to exhibit the specific output transition after an in-
crease (with a sequence of independent executions) of the
input a.

Graph homomorphisms also provide an elegant and co-
herent framework for data abstraction and system composi-
tion. Take for instance an input graph G aggregating equiva-
lent functional classes taken as inputs. Since all computer
values are discrete, the real plane is a huge grid where val-
ues are connected when there is no an intermediate value
between two decimal points (the grid vertices). We conclude
that even input graph G must be homomorphic to that origi-
nal grid. Homomorphism composition can be further used in
the case where the output graph H is an input graph of an-
other system, say f', providing a new qualitative graph H'.

The next paragraph gives a more formal flavour to those
observations with some basic properties of homomorphisms
of non-oriented graphs.

4 Mathematical framework
We adopt conventional notations for graphs G(X, U) with X
the set of vertices and U the set of edges. We note x~y the
adjacency of the two vertices. Graphs are connected and
reflexive but we do not visualize loops. We note dG(x, y)
the natural distance in a connected graph G that is, the
length of the shortest path, linking x to y. We note In as the
path of length n, Cn are the cycles of length n. Grids noted
Gm,n,p… are cartesian products of paths.

An homomorphism [Godsil and Royle, 2001], is a map
h:G→H preserving adjacency: i.e. x~y implies h(x)~h(y).

1 0

23 b

b b

a

Our graphs being reflexive, this definition is equivalent to a
non expanding map: dG(x, y) ≥ dH(h(x),h(y)).

Homomorphisms will always be onto. When G = H we
say that we have an endomorphism. Idempotent endomor-
phisms are also called retractions. So retractions are
homomorphisms which leave invariant a subgraph G’,
called a retract of G. Graph homomorphisms, as well as
retractions constitute a very active area of research in graph
theory [Hahn and Tardiff, 1997] [Hahn and MacGillivray,
2002], [Hell and Nesetril, 2004], [Imrich and Klavzar,
2000], [Brightwell and Winkler, 2000].

A contraction is an onto homomorphism h:G→H where
the inverse image of every vertex of H is a connected sub-
graph of G.

We note G/h the quotient graph induced by the kernel of
h. A partition is elementary when all the equivalence classes
contain only one element, except one class that contains
exactly two adjacent vertices. More particularly a contrac-
tion is elementary when it induces an elementary partition.

Figure 5

An elementary contraction can be viewed as gluing two

adjacent edges following their common edge which disap-
pears; the other adjacent edges follow the contracted vertex.
Figure 5 illustrates an elementary contraction h and its ker-
nel G/h.

An homomorphism invariant is a non negative real val-
ued function ∂ verifying: ∂(G)≥∂(h(G)) for any homomorph-
ism h. The number of vertices, edges as well as the diameter
are trivial invariants. It is easy to observe that any contrac-
tion is the commutative composition of elementary contrac-
tions. That means that if a property is an invariant for any
elementary contraction it is also, by induction, a contraction
invariant. An immediate property of that observation is that
contractions preserve planarity.

For a connected subgraph G' of G, we define discon(G')
as the number of connected components (possibly a single
vertex) that we obtain when we remove G'. We call it the
disconnecting capacity of G'. It is easy to prove that for any
contraction h we have: discon(G')≥discon(h(G')). This
property yields an interesting corollary (that can easily gen-
eralized for higher dimensions): any bi-dimensional grid of
an odd size m (i.e. Gm,m), with m≥3 cannot be contracted to
any path Im+1.

In Figure 6 we illustrate this: the path I3 cannot be con-
tracted to the grid G2,2. To have an idea of the general dem-
onstration note, in Figure 6, that the central vertex c has a
disconnecting capacity of 1 since its removal does not dis-

connect the graph. At the same time it is at a maximal dis-
tance of 2 from all the other vertices, so it cannot be homo-
morphically mapped to the two outer vertices of I3. So, if a
contraction exists, its image h(c) is necessarily a vertex in
the middle of I3, which disconnects I3, thus increasing its
disconnecting capacity, which is impossible.

The maximal disconnecting capacity of a graph, mdc(G),
is the maximum discon(G') that we can obtain from a sub-
graph G'. Since discon(G') does not increase, mdc(G) is a
contraction invariant. In Figure 7, we have mdc(G)=2 and
mdc(H)=3. A cycle contains a chord when two not subse-
quent vertices of the cycle are connected. Chordless cycles
that are also retracts are called holes. For instance, in Figure
3, the cycle [1, 2, 4, 3] is a chordless cycle since opposite
vertices (like 1 and 4) are not adjacent, but is not a hole,
since there is no possible retraction on this cycle. Let
hole(G) be the greatest length of a hole in G. For instance,
the only holes of grids are the cycles of length 4. So the hole
number of any grid, of any dimension, is 4. It can be proved
by induction that elementary contractions do not increase
the hole number, so hole(G) is also a contraction invariant. h H ≈ G /h

A n
equivalence

class

c

I3

h

G2,2

Figure 6

Error
h

missing
transition?

G H

Figure 7

As we said in the previous sections, if we assume the

connectivity of functional regions, contraction invariants
can be used to constraint qualitative graphs. For instance, in
Figure 6, the non homomorphism property based on the
disconnecting capacity invariant says that if we observe a
software with two integer inputs partitioned in 9 classes of a
bidimensional plane (combination of negatives and positive
coordinates) it is impossible to observe a completely linear
behaviour. The mdc(G) invariant, in Figure 7, permits to
say that when inputs of a software system follow a cyclic
finite state machine with a central error state, then the ob-
served output region transitions cannot have a star-like to-
pology. A transition edge is missing. The hole number per-
mits to conclude that any system with any number of scalar
inputs cannot exhibit a 5-cycle behaviour without a missing
transition among the states of the cycle.

Moreover, contraction invariants can also be used to de-
duce some important properties of the input graph. Let's
take an interesting example. Suppose one has a system (like
a robot) that he controls with two integer variables forming

a planar input graph. Suppose now that this robot exhibits a
good behaviour (this is a vertex of the output qualitative
graph H). One wants to be sure that small perturbations on
input variables (the graph G) will not suddenly change ro-
bot's behaviour. That is, we want to be sure that whatever
would be the output behaviour, there is the possibility of
maintaining the robot in the same configuration while
smoothly changing its control variables (a sort of controlla-
bility). That simply implies that all the control surfaces of
our system must be connected since we wish to visit all the
points of a region without jumping into another. In other
words there must be a contraction between G and H. Sup-
pose now that, during the testing of our robot, we observe a
graph H containing a 5-cycle hole, or, a graph with so many
transitions that make it no planar. In both cases, we can con-
clude that there is no possibility of contraction. Thus, in-
verse images are not connected and the system is not con-
trollable.

Conclusion
Qualitative reasoning has been applied for the testing of
protocol oriented software components and proved to be
very beneficial. Software designing, programming, testing
and debugging are very complex and error prone human
activities. Conventional software engineering methods and
tools are very powerful but lack of a global qualitative on-
tology to help the engineer to understand the system behav-
iour. An ontology based on graph homomorphisms has been
presented. Software is viewed as a sort of continuous map
transformation between two abstract data spaces likewise a
phase transition system. The qualitative graph envisions the
global of the software system and respects some constraints
that are independent of its internal structure. Those con-
straints, called invariants, express topological properties of
graph homomorphisms. They can be used to infer the possi-
ble shapes of the qualitative graph. An automatic abstraction
tool has been presented. Many questions may arise: can we
abstract all common input data structures with a proximity
relation? Is it possible to express more quantitative informa-
tion in the qualitative graph labels? How do we handle state
machines, time and memory? How this ontology can be
extended to physical and/or artificial systems? Do endomor-
phisms or retractions express some specific classes of soft-
ware behaviour? Can we classify software applications ac-
cording to the properties of their endomorphisms (that is,
the properties of the generated monoid)? How the composi-
tion of homomorphisms can express system integration? Is
it possible to express some software errors as the composi-
tion of the correct map with an error map that one could
study in more details? All those questions are open but we
think that the main contribution if our ontology resides in
the fact that it proposes a bridge between qualitative reason-
ing and a very seminal area of applied mathematics.

References
 [Althoff 2001] Althoff K.-D. Case-Based Reasoning. In

Handbook on Software Engineering and Knowledge En-

gineering. Vol. 1 "Fundamentals", Chang, S. K., Editor,
World Scientific. pages 549-588, 2001.

[AI Magazine 2004] AI Magazine, Winter 2004. , pages 47
and 107.

[Bredeweg and Struss, 2004] Bert Bredeweg and Peter
Struss. Current Topics in Qualitative Reasoning. AI Ma-
gazine, Winter 2004.

[Brightwell and Winkler, 2000] G. R. Brightwell and P.
Winkler, Gibbs measures and dismantlable graphs, J.
Graph Theory 11 (1987) 71-79.

[Cousot 2005] Patrick Cousot. Proving Program Invariance
and Termination by Parametric Abstraction, Lagrangian
Relaxation and Semidefinite Programming. In Sixth In-
ternational Conference on Verification, Model Checking
and Abstract Interpretation (VMCAI'05), Paris, France,
January 2005. LNCS 3385, (c) Springer, Berlin, pages 1-
24.

[Guiraud 2003] Virginie Guiraud. Visualisation du compor-
tement dynamique des logiciels numériques. Rappot de
stage, société SOPRA, 2001-2003.

[Godsil and Royle, 2001] Chris Godsil and Gordon Royle.
Algebraic Graph Theory. Springer Verlag, No 207,
2001.

[Hahn and Tardif, 1997] Gena Hahn and Claude Tardif in.
Graph homomorphisms structure and symmetry, in
Graph Symmetry (eds. Hahn and G. Sabidussi)., Kluwer
Academic Publishers, 1997.

[Hahn and MacGillivray, 2002] Gena Hahn and Gary
MacGillivray. Graph homomorphisms: computational
aspects and infinite graphs. Research report, Université
de Montreal, June 2002.

[Hell and Nesetril, 2004] Pavoll Hell and Jaroslav Nesetril.
Graph and Homomorphisms. Oxford Lecture Series in
Mathematics and its Applications, Oxford University
Press, 2004.

[Imrich and Klavzar, 2000] Wilfried Imrich and Sandi
Klavzar, Product Graphs, structure and recognition,
Wiley Interscience Series in Discrete Mathematics,
2000.

[Mayer and Stumptner, 2003] Wolfgang Mayer and Markus
Stumptner. Model-Based Debugging using Multiple Ab-
stract Models. In Proceedings of the 5th International
Workshop on Automated and Algorithmic Debugging,
pages 55-70.

[Missier et al., 1994] Antoine Missier, Spyros Xanthakis
and Louise Trave-Massuyes. Qualitative Algorithmics
using Order of Growth Reasoning. In Proceedings ECAI
94, pages 750-754, 1994.

[Nielson et al., 1998] Flemming Nielson, Hanne Riis
Nielson and Chris Hankin. Principles of Program Analy-
sis, Springer, 1998.

[Karapoulios 1999] Constantinos Karapoulios. Raisonne-
ment Qualitatif Appliqué au Test Evolutif des Logiciels.

Thèse de Doctorat, I.R.I.T, Université Paul Sabatier,
Toulouse, France, Juillet 1999.

[Rich 1984] Charles Rich. Artificial intelligence and soft-
ware engineering: the programmer's apprentice project.
In Proceedings of the 1984 annual conference of the
ACM, 1984.

[Trave-Massuyes et al., 1997] Louise Travé-Massuyès,
Phillipe Dague and Francois Guerrin. Le raisonnement
qualitatif pour les sciences de l'ingénieur (coll.
diagnostic et maintenance), chapter 12. Editions Hermès,
France, 1997.

[Xanthakis et al., 2000] Spyros Xanthakis, Pascal Régnier
and Constantinos Karapoulios. Le test des logiciels,
Etudes et logiciels informatiques. Editions Hermès,
France, 2000.

[Zeil et al., 1992] Steven J. Zeil Faten H. Afifi Lee J. White.
Detection of linear errors via domain testing. ACM
Press, New York, NY, USA, 1992.

