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Abstract

Despite increasing interest in the development of intel-
ligent techniques to aid in the prevention and detection
of crime, an important issue that has not yet been ad-
dressed by existing work is the use of knowledge based
systems (KBS) to aid in the synthesis and analysis
of hypothetical scenarios in major crime investigation.
The main limitation of conventional KBS approaches
is their lack of robustness to deal with the substantial
variability of crime scenarios. This paper introduces a
method to apply model based reasoning techniques to
this problem. In particular, the existing compositional
Bayesian modelling approach is extended and adapted
to create hypothetical crime scenarios. Also, meth-
ods developed in the area of model-based diagnosis
are used to support the analysis of synthesised crime
scenarios.

1 Introduction
In the literature on major crime investigation and evaluation
of evidence, a consensus is arising that a sound methodology
should at least address the following two aspects[Jamieson,
2004; Cooket al., 1998]. First, the investigator must consider all
the events and situations that could have resulted in each indi-
vidual piece of evidence. These can eventually be combined into
hypothetical scenarios that explain the case under consideration.
Second, the investigator must carefully choose those investigat-
ive actions (e.g. what questions to ask and what forensic examin-
ations to complete) that are expected to produce the most inform-
ative evidence possible. Consequently, major crime investigation
constitutes a difficult craft that is hard to master without decades
of in-depth experience.

This paper examines the possibility of employing knowledge
based systems to support less experienced crime investigators.
This presents two important challenges: the decision support
system must be able (1) to cope with the enormous variability
of plausible crime scenarios; and (2) to measure the information
value that investigative actions are expected to yield. In order to
tackle these challenges, this paper shows a compositional model-
ling approach to synthesise and efficiently store a space of plaus-
ible scenarios within a Bayesian Network (BN) (a refinement of
the work previously given in[Keppens and Shen, 2004a]). Fur-
thermore, it presents an application of the maximum entropy re-
duction technique to determine which investigative actions are
most likely to reduce doubt.

The work presented herein provides a novel approach and ap-
plication domain for compositional modelling. It also comple-
ments recent developments on Bayesian model based diagnosis
(BMBD) [Lucas, 2001]. While the latter work constitutes a prob-
abilistic abductive reasoning method for diagnosis, it relies on a
static Bayesian network for causally explaining observations. By
generating potentially different networks with a compositional
modeller, more generally applicable BMBD systems can be sup-
ported.

The remainder of the paper is organised as follows: Section
2 presents the compositional Bayesian modelling approach, Sec-
tion 3 describes the application of the entropy reduction tech-
nique and Section 4 concludes the paper.

2 Scenario Space Synthesis
This section describes the synthesis method for creating
Bayesian scenario spaces, with Section 2.1 addressing the know-
ledge representation and Section 2.2 the synthesis algorithm.

2.1 Knowledge Representation
Variables
Bayesian Networks (BNs) are an efficient and comprehensible
means of describing the joint probability distribution over many
variables over their respective domains. The variables are cre-
ated and assigned a meaning by the compositional modeller, and
their probability distributions are calculated from the combined
response of the influences that affect them. To facilitate the in-
tegration of these features, the subject of the reasoner proposed
herein are tuples〈p,Dp, vp,⊕〉. Each such tuple corresponds to
a variable, which is identified by apredicatep, which has ado-
mainDp of values, including a default valuevp ∈ Dp, that can
be assigned to the variable, and which is associated with acom-
bination operator⊕ : Dp × Dp 7→ Dp that describes how the
effects of different influences acting upon the variable are com-
bined. For example, the tuple〈hanged-self(johndoe) ,
{never , veryfew , several }, never , max〉1 corresponds
to a variable that describes how oftenjohndoe hanged himself
prior to his death.

Most variable assignments, i.e. assignments of a value to
a variable from the variable’s domain, correspond to plausible
states and events that are part of one or more possible scen-
arios. There are also special types of variable assignment that
convey additional information that may aid in decision support.

1Here, themax operator returns the highest value of the domain
assuming that the ordering of values is as follows:never < veryfew
< several .



These concepts have been adapted from earlier work on abduct-
ive reasoning[Poole, 1989] and model based diagnosis[Ham-
scheret al., 1992]. In particular, some variable assignments
correspond toevidence. These are pieces of known information
that are considered to be observable consequences of a possible
crime2. Factsare pieces of known information that do no require
an explanation. In practice, it is often convenient to accept some
information at face value without elaborating possible justific-
ations. For instance, when a person is charged with analysing
the handwriting on the aforementioned suicide note, the status
of that person as a handwriting expert is normally deemed to be
a fact. Hypothesesare possible answers to questions that must
be addressed (by the investigators), reflecting certain important
properties of a scenario. Typical examples of such hypotheses
include the categorisation of a suspicious death into homicidal,
suicidal, accidental or natural.

Also,assumptionsare uncertain pieces of information that can
be presumed to be true for the purpose of performing hypothet-
ical reasoning. This work considers three types of assumption:
(i) Investigative actionsare assumptions that correspond to evid-
ence collection efforts made by the investigators. For example, a
variable assignment associated with the comparison of the hand-
writing on a suicide note and an identified sample of handwriting
of the victim is an investigative action. Note that each investigat-
ive actiona is associated with an exhaustive setEa of mutually
exclusive pieces of evidence that covers all possible outcomes of
a. (ii) Default assumptionsare assumptions that are presumed
true unless they are contradicted. Such assumptions are typic-
ally employed to represent the conditions that an expert produces
evaluations based upon sound methodology and understanding
of his/her field. (iii)Conjecturescorrespond to uncertain states
and events that need not be described as consequences of other
states and events.

Knowledge Base
The model fragments, herein called scenario fragments in order
to convey their role as parts of (crime) scenarios, describe causal
influences among types of state and event in crime scenarios.
However, the consequence of any influence is not presumed to
be deterministic, but governed by predefined probability distri-
butions. Thus, the notion of scenario fragment incorporates a
set of probability distributions, one for each combination of the
antecedent and assumption variables. As such, scenario frag-
ments are represented by:

if {p1, . . . , pk}
assuming {pl, . . . , pm}
then {pn}
distribution pn {

...

v1, . . . , vk, vl, . . . , vm-> vn1 : q1, . . . , vnjn : qjn

... }

2Note that as evidence is herein defined as “information”, it does
not equal the “exhibits” presented in court. Thus, for example, a sui-
cide note is not considered to be a piece of evidence in itself, but the
conclusions of a handwriting expert who has analysed the note are.

where {p1, . . . , pk} is the set of antecedent predicates,
{pl, . . . , pm} is the set of assumption predicates,pn is the con-
sequent predicate, eachvi is a value taken from the domainDpi

of the variable identified bypi and eachqj is a real value in
the range[0, 1]. The if , assuming and then components
of scenario fragments respectively describe the types of ante-
cedents, assumptions and consequent of a causal relation. The
domain value that a consequent has is influenced by the values
of the antecedent and assumption variables and the probability
distributions defined in thedistribution component of the
fragment. In particular, each line

v1, . . . , vk, vl, . . . , vm-> vn1 : q1, . . . , vnjn : qjn

defines a discrete probability distribution

fp1:v1,...,pk:vk,pl:vl,...,pm:vm→pn :

Dpn 7→ [0, 1] : fv1,...,vk,vl,...,vm(vni) = qni

with i = 1, . . . , jn. Note that it is not required that a probability
distribution is defined for each combination of values assigned to
the antecedent and assumption variables in a scenario fragment.
Instead, a probability distribution in which the default value of
the consequent variable has a probability 1 is presumed. Here,
the default probability distribution for those combinations of as-
signmentsp1 : v1, . . . , pk : vk, pl : vl, . . . , pm : vm for which
no probability distribution is defined, is

fp1:v1,...,pk:vk,pl:vl,...,pm:vm→pn(v) =

{
1 v = vpn

0 otherwise

Thus, the following scenario states that if a victimV has pete-
chiae on his eyes and the investigators examineV’s eyes, then
evidence of petechiae is discovered with a certain probability:
if {petechiae(eyes(V))}
assuming {examination(eyes(V))}
then {evidence(petechiae(V))}
distribution evidence(petechiae(V)) {

true, true -> true:0.99, false:0.01}

In the knowledge base, inconsistencies refer to inconsistent
combinations of variable assignments. As such, an inconsistency
denoting thatp1 : v1∧ . . .∧pk : vk is inconsistent is represented
as:

inconsistent {p1 : v1, . . . , pk : vk}

For example, the following inconsistency states that a person
can not be both killed by another person and by him/herself:
inconsistent {commits-suicide-by(V,M):true,

commits-homicide-by(P,V,M):true}

Inconsistencies are treated as a special type of scenario frag-
ment of the form:

if {p1, . . . , pk}
then {nogood }
distribution nogood {

v1, . . . , vk-> > : 1, . . . ,⊥ : 0}



wherenogood refers to a special type of boolean variable, that
remains hidden from the user and the knowledge engineer, and
is known to be false. According to this definition, any situation
wherep1 : v1, . . . , pk : vk requiresnogood to be true. Con-
sequently, the probability ofp1 : v1, . . . , pk : vk given thatno-
good is false,P (p1 : v1, . . . , pk : vk | nogood : ⊥) = 0. And
in this way, the inconsistencyp1 : v1, . . . , pk : vk is modelled as
an impossibility.

For example, the aforementioned inconsistency is treated as a
scenario fragment of the form:
if { commits-suicide-by(V,M),

commits-homicide-by(P,V,M) }
then { nogood }
distribution nogood {

true, true -> true:1, false:0 }

In addition to scenario fragments, the knowledge base also
contains prior distributions for assumed states and events. Prior
distributions are represented by

define prior p {v1 : q1, . . . , vj : qj}
where{v1, . . . , vj} is the domainDp of p andq1, . . . , qj define
a functionfp : Dp 7→ [0, 1] : fp(vi) = qi that is a probability
distribution.

For example, the definition
define prior suicidal(V) {true:0.02, false:0.98}

specifies the prior probability distribution of a variable identified
by suicidal(V) with the domain{true , false } and

fsuicidal(V) (true) = 0.02

fsuicidal(V) (false) = 0.98

Unless specified otherwise, a variable assignment represents
an uncertain state or event. However, certain variable assign-
ments can be associated with other types of information, such
as hypotheses and evidence, in the knowledge base. Predic-
ates identifying variables whose assignments correspond to hy-
potheses, facts, evidence, investigative actions and default as-
sumptions are defined by purpose built constructs that associate
certain types of predicate with one of these types of information
(and corresponding to evidence sets, in the case of investigative
actions). Conjectures contained in the knowledge base are iden-
tified in theassuming clause of the scenario fragments.

Presumptions
To enable their use in compositional modelling of BNs, it is pre-
sumed that the scenario fragments in a given knowledge base
possess the following properties:

1. Any two probability distributions taken from two scenario
fragments involving the same consequent variable are in-
dependent. Intuitively, this assumption indicates that the
outcome of an influence implied by one scenario fragment
is not affected by that of another.

2. There are no cycles in the knowledge base. This means that
there is no subset of scenario fragments in the knowledge
base that allow a participant to be affected by itself. This
assumption is required because BNs can not represent such
information as they are inherently acyclic[Pearl, 1988].

While presumption 1 is a strong assumption, and may hence
reflect a significant limitation of the present work, it is required

herein to efficiently compute the combined effect of a number of
scenario fragments on a single variable (see 2.2). Future work
will seek to relax this assumption in order to generalise further
the application of the method proposed.

Example
Appendix A presents a sample knowledge base with which
the remaining discussion will be illustrated. The knowledge
contained within it relates to cases where a person died from
hanging. To keep the example self-contained, the scope of the
knowledge base has been restricted and an imaginative reader
may be able to produce plausible scenarios that are not covered
by this knowledge base. It does, however, contain compon-
ents of a broad range of scenarios, including those where the
victim committed suicide, those where the victim was forcibly
hanged by a murderer and those where the victim died accident-
ally whilst committing an act of autoerotic asphyxiation.

2.2 Algorithm
BNs consist of two distinct features, a directed acyclic graph
(DAG) and a set of conditional probability tables. Accordingly,
this subsection is divided into two parts describing how both as-
pects can be composed automatically from a given knowledge
base.

Structure
The procedure to synthesise the structure of a Bayesian scenario
space involves a sequence of three stages. In the first stage, a
hypergraph, which is similar to an ATMS network, is constructed
for a given knowledge baseK, a setS of available evidence and
a setF of known facts with the following algorithm:

Algorithm 2.1: GENERATEHYPERGRAPH(K, T, F )

comment: Initialisation:

N ← new set; J ← new table;
for eachp ∈ S ∪ F, N ← N ∪ {p}, A← A ∪ {p};
comment:Backward chaining:

for eachsubstitution(σ),
〈if Pantecent then Passumptions then {pc}distribution D〉 ∈ K,
σpn ∈ N

do




E ← new set;
for eachpi ∈ Pantecedent∪ Passumptions

do




if σpi 6∈ G

then




p← instantiate(σpi);
N ← N ∪ {p};
if pi ∈ Passumptions

then A← A ∪ {p};
E ← E ∪ {p};

elseE ← E ∪ {σpi};
J(σpc)← J(σpc){E};

comment:Forward chaining:

for eachsubstitution(σ),
〈if Pantecent then Passumptions then {pc}distribution D〉 ∈ K,
{σpi | pi ∈ Pantecedent} ⊂ N

do




if σpc 6∈ N

then




p′ ← instantiate(σpc);
N ← N ∪ {p′)};
E ← new set;
for eachpi ∈ Pantecedent

do E ← E ∪ {σpi};
for eachpi ∈ Passumptions

do




if σpi 6∈ N

then




p← instantiate(σpi);
N ← N ∪ {p}; A← A ∪ {p}
E ← E ∪ {p};

elseE ← E ∪ {σpi};
J(p′)← J(p′) ∪ {E};

The initialisation part creates two data structures to store the
generated inferences temporarily.N is a set that will contain all
the variables in the DAG andA is a set that will contain all the



assumptions and facts. These sets are initialised with the given
evidence and facts.J is a table that denotes a collection of sets
with each setJ(p) itself containing sets of antecedents and as-
sumptions that justify a variable identified byp, with the cardin-
ality of the collection being the number of variables considered.

The backward chainingpart generates all possible explana-
tions of the available symptoms, i.e. observed evidence, by in-
stantiating scenario fragments inK. For each scenario fragment,
whose consequent variable matches a node inN , the predicates
describing the antecedent and assumption variables are instanti-
ated and added toN if these instances do not already exist. A set
E containing the antecedent and assumption instances is added
to the set of justifications associated with the consequent. Note
that the matching of those predicates specifying variables inN
with the predicates in the scenario fragment is accomplished with
a set of substitutionsσ. For the example, the node correspond-
ing tocommits-homicide-by( 1,johndoe,hanging)
matches the predicate identifying the consequent variable of the
scenario fragment
assuming {is-killer(P,V), chooses-homicide-method(P,M)}
then {commits-homicide-by(P,V,M)}
distribution commits-homicide-by(P,V,M) {

true -> true:1, false:0}

with substitution σ = {P\ 1, V\johndoe , M\hanging }.
Therefore, the backward chaining phase will add two new
predicates is-killer( 1,johndoe) and chooses-
homicide-method( 1,hanging) to N and a justification
{is-killer( 1,johndoe) , chooses-homicide-
method( 1,hanging) } to the set J(commits-
homicide-by( 1,johndoe,hanging) ).

The forward chaining part generates all possible con-
sequences of the explanations created in the previous phase. For
each scenario fragment, whose antecedent variables match in-
stances inN , the predicates describing the assumption and con-
sequent variables are instantiated and added toN if they do not
already exist. As in the previous phase, a setE containing the
antecedent and assumption instances is added to the set of justi-
fications associated with the consequent. For the example, based
on the predicatepetechiae(eyes(johndoe)) in N and
the scenario fragment
if {petechiae(eyes(V))}
assuming {examination(eyes(V))}
then {evidence(petechiae(V))}
distribution evidence(petechiae(V)) {

true, true -> true:0.99, false:0.01}

new predicates examination(eyes(johndoe))
and evidence(petechiae(V) are added toN and
the justification {examination(eyes(johndoe)) ,
petechiae(eyes(johndoe)) } is added to
J(evidence(petechiae(johndoe)) ). In forward
chaining, inconsistencies are processed in the same manner as
scenario fragments, but they all have the same nogood node
as their consequent, which will be identified byn⊥ in what
follows.

To illustrate the application of these ideas, consider a
case where a person identified asjohndoe is found
dead hanging from a rope, and let this piece of evid-
ence be identified by the variable assignmentevid-
ence(hanging(body(johndoe))) :true . By applying
Algorithm 2.1 to this given piece of evidence and the knowledge
base shown in Appendix A, the hypergraph shown in Figure 1 is
produced.

In the second stage, spurious nodes and justifications are re-
moved from the hypergraph. During the backward chaining
phase, sets of minimal sufficient causal justifications are gener-
ated incrementally to form plausible explanations for the avail-
able evidence. Starting from the individual pieces of evidence,
conjunctions of states and events justifying the pieces of evid-
ence are created by instantiating scenario fragments, and these
states and events are in turn justified by instantiating certain
other scenario fragments, and so forth. Ultimately, the states
and events in the justification must themselves be justified by as-
sumptions and/or facts. As explained in Section 2.1, assumptions
and facts are the only types of information that require no further
explanation. Their role as so-called root nodes in the scenario
space is extended in the Bayesian scenario space as they repres-
ent the only types of information which is associated with a prior
distribution. In particular, assumptions have a prior distribution
as defined in the knowledge base and the prior distribution of a
fact corresponding to a variable assignmentp : v is defined by:

P (p : x) =
{

1 if x = v

0 otherwise

wherex ∈ Dp. Therefore, each root node in the hypergraph gen-
erated by this procedure must be either a fact or an assumption.
However, the backward chaining phase can not guarantee this.
Hence, when the procedure terminates, all those nodes, which
were originally regarded as root nodes and which are not a fact
or assumption and all the justifications including these nodes are
deemed spurious. As the hypergraph of Figure 1 does not contain
any spurious nodes, consider the following scenario fragment as
a means of illustration:
if {victim(Victim)}
assuming {

suspect(Perpetrator),
fight(Perpetrator,Victim),
fight(Victim,Perpetrator)}

then {transfer(fibres,Victim,Perpetrator)}

if {victim(Victim)}
assuming {

suspect(Perpetrator),
fight(Perpetrator,Victim),
fight(Victim,Perpetrator)}

then {transfer(fibres,Perpetrator,Victim)}

Given evidencetransfer(fibres, 1, johndoe) ,
the symbolic scenario space generator will create the following
information: victim(johndoe) , suspect(johndoe) ,
victim( 1) , suspect( 1) , fight( 1, johndoe) and
fight(johndoe, 1) . Here, victim(johndoe) :
> is a fact. Furthermore,suspect(johndoe) and
suspect( 1) correspond to assumption nodes, where
suspect(johndoe) : > should be rendered impossible by
means of an inconsistency.victim( 1) is neither fact nor
assumption, and it is not further justified. Therefore, the node
containingvictim( 1) is spurious and must be removed.

Spurious nodes are ignored in an ATMS. However, if the be-
lief propagation algorithm of a BN attempts to take them into
account, incorrect results or errors will be produced as spuri-
ous nodes have no prior probability distribution. Therefore, all
spurious nodes and justifications must be removed from the hy-
pergraph. The following procedure recursively removes from a
given hypergraph〈N,A, J〉 all root nodes that do not corres-
pond to a fact/assumption and the justifications in which these
nodes occur. The procedure terminates when each root node in
〈N,A, J〉 corresponds to either a fact or an assumption. In ef-
fect, this procedure deletes all spurious nodes and justifications
from the hypergraph.
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Figure 1: Sample scenario subspace structure

Algorithm 2.2: SPURIOUSNODEREMOVAL(〈N, A, J〉, K)

for eachn ∈ N,
[
(@substitution(σ), J(n) = ∅, n 6∈ A

do




N ← N\{n};
for eachn′, E ∈ J(n′), (n ∈ E) ∧ (n′ ∈ N)

do J(n′)← J(n′)\E;

Finally, in the third stage, the hypergraph〈N,A, J〉 is col-
lapsed into a DAG by means of the following procedure:

Algorithm 2.3: CREATEDAG(〈N, A, J〉)
G← new DAG;
for eachn ∈ N

do




add(G, n);
for eachn′ ∈ (⋃E∈J(n) E

)
do add(G, arc(n′, n));

The resulting DAG forms the structure of a BN that is exten-
ded with conditional probability tables as described in the next
section.

Conditional Probability Tables
A BN also requires a complete specification of the conditional
probability tables to be of any practical use. Letm be the number
of states of each node in the BN andq be the number of parents
of each non-root node. Then, a total ofmq × (m − 1) probab-
ilities must be assigned to each non-root node. In an abductive
diagnosis application,q may become large, thereby inhibiting
the manual specification of the conditional probabilities. For ex-
ample, the probability distribution of the amount of a particular
anaesthetic in the blood of a victim’s body can be affected by
self-medication, consumption of a spiked drink, surgery, etc.

Using the proposed method to derive the structure of a BN
from knowledge, a setJ(pn) = {J1, . . . , Jr}, containing sets of
justifying variables is constructed for each predicatepn, where

each set of justifying variables,Ji ∈ J(pn), is associated an
instantiated scenario fragmentCi. EachCi contains a set of
probability distributions describing how the value of the variable
identified bypn is affected by assignments to the variables inJi.
Let A be a set of value assignments to the variables inJi or a
superset thereof. Then, the probability thatCi causespn to take

valuev ∈ Dpn
is denoted byP (A Ci→ pn : v).

The setP = {p1, . . . , ps} of immediate parent variables in
the generated DAG is derived by computingJ1 ∪ . . . ∪ Jr. Let
A be a set of assignments{p1 : v1, . . . , ps : vs}, where each
vi ∈ Dpi

, to the parent variables ofpn in the DAG. It is clear
pn will be assignedc, with c ∈ Dpn

, whenever the causal in-
fluences described by the scenario fragmentsC1, . . . , Ck result
in a collection of outcomesc1, . . . , ck whose combined effect
c1 ⊕ . . .⊕ ck equalsc. Thus, the probability thatpn : c givenA
is specified by:

P (pn : c | A) = P

[ ∨
c1⊕...⊕ck=c

( ∧
i=1,...,k

(
A

Ci→ pn : ci

))]
(1)

According to (1), computingP (pn : c | A) involves calculat-
ing the likelihood of a combination of events described by a dis-
junctive normal form (DNF) expression. Because the occurrence
of different combinations of outcomesc1, . . . , ck of the scen-
ario fragmentsC1, . . . , Ck involves mutually exclusive events,
the calculation can be resolved by adding the probabilities of the
conjuncts in (1):

P (pn : c | A) =
∑

c1⊕...⊕ck=c

P

( ∧
i=1,...,k

(
A

Ci→ pn : ci

))
(2)



From presumption 1, the outcomes of different scenario frag-
ments (with the same consequent), in case of a given set of as-
signments of the antecedent and assumption variables, corres-
pond to independent events. Therefore, the probability of the
conjunctions in (2) is equal to the product of the probabilities of
their conjuncts, and (2) is calculated as follows:

P (pn : c | A) =
∑

c1⊕...⊕ck=c

( ∏
i=1,...,k

P
(
A

Ci→ pn : ci

))
(3)

Consider, for example, the following two scenario fragments,
which are part of the probabilistic knowledge base from which its
symbolic counterpart as presented in Figure 1 can be generated:

if { autoerotic-hanging-habit(V) }
then { previous-hanging(V) }
distribution previous-hanging(V) {

true -> never:0.1, veryfew:0.4, several:0.5 }

if { previous-suicide-attempts(V) }
then { previous-hanging(V) }
distribution previous-hanging(V) {

true -> never:0.7, veryfew:0.29, several:0.01 }

where autoerotic-hanging-habit(V) and
previous-suicide-attempts(V) correspond to
boolean variables, andprevious-hanging(V) to a variable
taking values from the domain{never , veryfew , several }
defined over combination operatormax. Then, the probabilities
of assignments toprevious-hanging(V) , given that
autoerotic-hanging-habit(V) and previous-
suicide-attempts(V) are assigned>, can be computed
as follows:

For notational convenience, letp1, p2 and p3 respectively
denote autoerotic-hanging-habit(johndoe) ,
previous-suicide-attempts(johndoe) , and
previous-hanging(johndoe) , and let the above
two scenario fragments be namedC1 and C2. Then, the
probabilities in the scenario fragments involved are assigned as:

P (p1 : > C1→ p3 : never ) = 0.1

P (p1 : > C1→ p3 : veryfew ) = 0.4

P (p1 : > C1→ p3 : several ) = 0.5

P (p2 : > C2→ p3 : never ) = 0.7

P (p2 : > C2→ p3 : veryfew ) = 0.29

P (p2 : > C2→ p3 : several ) = 0.01

According to (3), all combinations of outcomes
c1 and c2 of scenario fragmentsC1 and C2, with
c1, c2 ∈ {never , veryfew , several } and
never ¡veryfew ¡several , and such thatmax(c1, c2) =
veryfew , must be considered. There are three such combin-
ations: {c1 : veryfew , c2 : veryfew }, {c1 : never , c2 :
veryfew } and {c1 : veryfew , c2 : never }. Hence,
P (p3 : veryfew |p1 : >, p2 : >) can be computed as follows:

P (p3 :veryfew |p1 : >, p2 : >)

=P (p1 : > C1→ p3 : veryfew )× P (p2 : > C2→ p3 : veryfew )+

P (p1 : > C1→ p3 : never )× P (p2 : > C2→ p3 : veryfew )+

P (p1 : > C1→ p3 : veryfew )× P (p2 : > C2→ p3 : never )

=0.4× 0.29 + 0.1× 0.29 + 0.4× 0.7 = 0.425

Similarly, it can be shown that

P (p3 : never |p1 : >, p2 : >) = 0.07

P (p3 : several |p1 : >, p2 : >) = 0.505

3 Scenario Space Analysis
Once constructed, the Bayesian scenario space can be analysed
in conjunction with the symbolic one to compute effective evid-
ence collection strategies. The concepts of evidence, hypotheses,
assumptions and facts are still employed in the Bayesian scen-
ario space, but they now refer to variable assignments instead
of predicates. For implementational simplicity, hypotheses and
investigative actions are assumed to be represented by (truth) as-
signments to boolean variables (although this will be extended
in future work).

While the likelihood ratio approach can be extended to deal
with more than two hypotheses (for example by computing mul-
tiple likelihood ratios or a likelihood ratio comparing combin-
ations of hypotheses)[Aitken and Taroni, 2004], it is not clear
how these extensions can employed to compute a metric of doubt
over multiple positions. The benefit of such a metric is that it en-
ables a decision support system to order different evidence col-
lection strategies in order of their effectiveness in reducing doubt
between multiple hypotheses. An alternative approach based on
information theory is proposed here.

The work will be illustrated by means of probabilities derived
from a BN which has been generated by means of the the tech-
niques of Section 2 using the knowledge base of Appendix A
(and which is a Bayesian representation of the symbolic scen-
ario space given in Figure 1).

3.1 Hypothesis sets and query types
Instead of two hypotheses, the approach aims to evaluate evid-
ence in relation to a setH of hypotheses. This set must be ex-
haustive and the hypotheses within it mutually exclusive.H is
exhaustiveif one of the hypotheses in the set is guaranteed to be
true, ensuring that the approach will evaluate the scenario space
entirely, without ignoring any plausible scenarios. The hypo-
theses in a set aremutually exclusiveif no pair of hypotheses
taken from the set can be true simultaneously. This property en-
sures that the approach is not biased.

In this work, hypothesis sets are predefined in the knowledge
base along with a precompiled taxonomy ofquery types. Query
types represent important questions that the investigators need
to address, such as the type of death of victim in a suspicious
death case, or the killer of a victim in a homicide case. Query
types are identified with a predicate describing it and they may
be associated with a set of predicates identifying the hypothesis
variables. For example, the following two query type definitions



define query type {
unifiable = type-of-death(P),
hypotheses = {homicidal-death(P),suicidal-death(P),

accidental-death(P),natural-death(P)}}

define query type {
unifiable = killer-of(P),
hypotheses = {killed(Q,P)}}

are respectively associated with the following hypothesis sets:

H1 = {homicidal-death(johndoe) : >,

suicidal-death(johndoe) : >,

accidental-death(johndoe) : >,

natural-death(johndoe) : >}
H2 = {killed(mr-hyde,mary-kelly) : >,

killed(jack-the-ripper,mary-kelly) : >,

killed( 1,mary-kelly) : >,

killed(none,mary-kelly) : >}

It is the responsibility of the knowledge engineer to ensure that
the hypotheses sets generated in this way meet the exhaustive-
ness and mutual exclusivity criteria. These criteria can be satis-
fied for any given setP = {p1, . . . , pn} of predicates identifying
hypotheses variables. Exhaustiveness can be assured by extend-
ing P with an additional predicatepn+1 and adding a probabil-
istic scenario fragment that enforcespn+1 : > with likelihood 1
if p1 : ⊥, . . . , pn : ⊥, andpn+1 : ⊥ with likelihood1 otherwise:

if {p1, . . . , pn}
then {pn+1}
distribution pn+1 {⊥, . . . ,⊥-> > : 1,⊥ : 0}

The mutual exclusivity criterion can be easily attained by
adding inconsistencies for each pair of hypotheses:

inconsistent {pi : >, pj : >}

3.2 Entropy
The work here employs an information theory based approach,
which is widely used in areas such as machine learning
[Mitchell, 1997] and model based diagnosis[Hamscheret al.,
1992]. Information theory utilises a measurement of doubt over
a range of choices, called entropy. Applied to the present prob-
lem, theentropyover an exhaustive set of mutually exclusive
hypothesesH = {h1, . . . , hm} is given by:

ε(H) = −
∑
h∈H

P (h) log P (h)

where the valuesP (h) can be computed by means of conven-
tional BN inference techniques. Intuitively, entropy can be in-
terpreted as lack of information. Under the exhaustiveness and
mutual exclusivity conditions, it can be shown thatε(H) reaches
its highest value (which corresponds to a total lack of inform-
ation) whenP (h1) = . . . = P (hm) = 1

m andε(H) reaches0
(which corresponds to a totally certain situation) when allP (hi),
with i = 1, . . . , m, equal0 or 1.

In crime investigation, additional information is created
through evidence collection. Thus, the entropy metric of interest

for the purpose of generating evidence collection strategies is
the entropy over a set of hypothesesH, given a setE = {e1 :
v1, . . . , en : vn} of pieces of evidence:

ε(H | E) = −
∑
h∈H

P (h | E) log P (h | E) (4)

where the valuesP (h | E) can, again, be computed by
means of conventional BN inference techniques. For the
example problem from the sample scenario space, the fol-
lowing probabilities can be computed, withE1 containing
hanging-dead-body(johndoe) : > andnogood : ⊥:

P (homicidal-death(johndoe) | E1) = 0.22

P (suicidal-death(johndoe) | E1) = 0.33

P (accidental-death(johndoe) | E1) = 0.45

Thus, as an instance,

P (H1 | E1) = −(0.22 log 0.22+0.33 log 0.33+0.45 log 0.45) = 0.46

A useful evidence collection strategy involves selecting invest-
igative actions from a given setA according to the following cri-
terion:

min
a∈A

E(ε(H | E), a) (5)

Note that the entropy values calculated by equation (4) are af-
fected by the prior distributions assigned to assumptions, as de-
scribed in 2.1. Within the context of evidence evaluation (which
is the conventional application of the likelihood ratio approach),
this is a controversial issue as decisions regarding the likelihood
of priors, such as the probability that a victim had autoerotic
hanging habits, are a matter for the courts to decide on. In the
context of an investigation, however, these prior distributions
may provide helpful information often ignored by less experi-
enced investigators. For example, the probability of suicides or
autoerotic deaths are often underestimated. As such, decision
criterion (5) is a useful means of deciding on what evidence to
collect next. Yet, the minimal entropy decision rule does not
yield information that should be used for evidence evaluation in
court.

3.3 Minimal entropy-based evidence collection
Let a denote an investigative action andEa be a set of the vari-
able assignments corresponding to different possible outcomes
of a (i.e. the pieces of evidence that may result from the invest-
igative action). The expected posterior entropy (EPE) after per-
forminga can then be computed by calculating the average of the
posterior entropies under different outcomese ∈ Ea, weighted
by the likelihood of obtaining each outcomee (given the avail-
able evidence):

E(ε(H | E), a) =
∑

e∈Ea

P (e | a : >, E)ε(H | E ∪ {a : >, e}) (6)

The ongoing example contains an investigative action
a =test-toxicology(johndoe) : >, representing a



toxicology test of johndoe searching for traces of an-
aesthetics and a corresponding set of outcomesEa =
{toxscreen(johndoe) : >, toxscreen (johndoe) :
⊥}, respectively denoting a positive toxscreen and a negat-
ive one. LetE2 be a set containinghanging-dead-body
(johndoe) : >, text-toxicology(johndoe) : > and
nogood : ⊥. Then, through exploiting the Bayesian scenario
space the following can be computed:

P (toxscreen(johndoe) : > | E2) = 0.17

P (toxscreen(johndoe) : ⊥ | E2) = 0.83

P (homicidal-death(johndoe) |
E2 ∪ {toxscreen(johndoe) : >}) = 0.40

P (suicidal-death(johndoe) |
E2 ∪ {toxscreen(johndoe) : >}) = 0.49

P (accidental-death(johndoe) |
E2 ∪ {toxscreen(johndoe) : >}) = 0.11

P (homicidal-death(johndoe) |
E2 ∪ {toxscreen(johndoe) : ⊥}) = 0.19

P (suicidal-death(johndoe) |
E2 ∪ {toxscreen(johndoe) : ⊥}) = 0.44

P (accidental-death(johndoe) |
E2 ∪ {toxscreen(johndoe) : ⊥}) = 0.38

Intuitively, these probabilities can be explained as follows. In
a homicide situation, anaesthetics may have been used by the
murderer to gain control overjohndoe , and in a suicide case,
johndoe may have used anaesthetics as part of the suicide pro-
cess. In the accidental (autoerotic) death case, there is no par-
ticular reason forjohndoe to be anaesthetised. Therefore, the
discovery of traces of anaesthetics injohndoe ’s body supports
both the homicidal and suicidal death hypotheses whilst disaf-
firming the accidental death hypothesis. By means of these prob-
abilities, the EPEs can be computed as the following instance:

E(ε(H | E1), a) = 0.17× 0.41 + 0.83× 0.45 = 0.45

The investigative action that is expected to provide the most
information is the one that minimises the corresponding EPE.
For example, Table 1 shows a number of possible investigative
actions that can be undertaken (in column 1) and the correspond-
ing EPEs in the sample Bayesian scenario space (in column 2)
computed on the assumption that the aforementioned toxicology
screen yielded a positive result. The most effective investigative
actions in this case are a knot analysis and an examination of
the body. This result can be intuitively explained by the fact that
these investigative actions are effective at differentiating between
homicidal and suicidal deaths, the most likely hypotheses if an-
aesthetics have been discovered in the body.

3.4 Extensions

While the approach presented above is itself a useful extension
of the likelihood ratio approach, several further improvements
are proposed.

Local optima and action sequences
Although the minimum EPE evidence collection technique guar-
antees to return an effective investigative action, it does not en-
sure globally optimal evidence collection. This limitation is in-
herent to any one step lookahead optimisation approach. The
likelihood of obtaining poor quality locally optimal evidence col-
lection strategies can be reduced by considering the EPEs after
performing a sequence of actionsa1, . . . , av (of course, with in-
curred overheads over computation):

E(ε(H | E), a1, . . . , av)

=
∑

e1∈Ea1

. . .
∑

ev∈Eav

P (e1, . . . , ev | a1 : >, . . . , av : >, E) (7)

ε(H | e1, a1 : >, . . . , ev, av : >, E)

In order to determineE(ε(H | E), a1, . . . , av), equation (7)
can be simplified as follows:

E(ε(H | E), a1, . . . , av)

=
∑

e1∈Ea1

. . .
∑

ev∈Eav

P (e1, . . . , ev, a1 : >, . . . , av : >, E)

a1 : >, . . . , av : >, E

ε(H | E ∪ {e1, a1 : >, . . . , ev, av : >})

=
∑

e1∈Ea1

. . .
∑

ev∈Eav

( v∏
i=1

P (ei, a1 : >, . . . , av : >, E)

a1 : >, . . . , av : >, E

)
ε(H | E ∪ {e1, a1 : >, . . . , ev, av : >})

=
∑

e1∈Ea1

. . .
∑

ev∈Eav

( v∏
i=1

P (ei | a1 : >, . . . , av : >, E)
)

ε(H | E ∪ {e1, a1 : >, . . . , ev, av : >})

Multiple evidence sets
Certain investigative actions may be associated with multiple
sets of evidence. For example, a careful examination of the body
of a man found hanging may yield various observations such as
petechiae on the eyes, defensive wounds on the hands and lower
arms and various types of discolouration of the body. The con-
sequences of some types of investigative action, e.g. the exam-
ination of a dead body, are better modelled by multiple evidence
sets since the resulting symptoms may occur in any combination
of such pieces of evidence. The above approach can be readily
extended to account for this by computing the EPEs after per-
forming actiona with associated evidence setsEa,1, . . . , Ea,w:

E(ε(H | E), a)

=
∑

e1∈Ea,1

. . .
∑

ew∈Ea,w

P (e1, . . . , ew | a : >, E)

ε(H | e1, . . . , ew, a : >, E)

=
∑

e1∈Ea,1

. . .
∑

ew∈Ea,w

( w∏
i=1

P (ei | a : >, E)
)

ε(H | E ∪ {e1, . . . , ew, a : >})



Investigative action EPE NEER REER
Knot analysis 0.30 26% 29%
Examine body 0.33 17% 19%
Search for cutting instrument 0.36 13% 14%
Search for signs of previous hangings0.41 1.3% 1.5%
Check eyes for petechiae 0.46 0% 0%

Table 1: Evaluation of investigative actions

Multiple hypothesis sets
Finally, it may also be useful to consider multiple hypothesis sets
instead of just one. This enables the decision support system
(DSS) to propose evidence collection strategies that are effective
at answering multiple queries. To consider multiple hypothesis
setsH1, . . . , Ht by measuring entropy over these sets, given a
set of pieces of evidenceE:

ε(H1, . . . , Ht | E)

= −
∑

h1∈H1

. . .
∑

ht∈Ht

P (h1, . . . , ht | E) log P (h1, . . . , ht | E)

= −
∑

h1∈H1

. . .
∑

ht∈Ht

( t∏
i=1

P (hi | E)
)
log
( t∏

i=1

P (hi | E)
)

3.5 User interface
While a detailed discussion of the user interface developed for
the present DSS system is beyond the scope of this paper, it is
important to point out that a mere representation of the outcomes
of the decision rules is inadequate for the objectives of the DSS.
Investigators may have a number of considerations that are bey-
ond the scope of the current DSS. These include perishability of
evidence, legal restrictions, limitations on resources and overall
workload. Therefore, the DSS is devised to list alternative evid-
ence collection strategies in increasing order of EPEs.

The benefits of each strategy is indicated by either thenormal-
ised expected entropy reduction(NEER) or therelative expected
entropy reduction(REER). The NEER represents the reduction
in EPE, as a consequence of performing an investigative actiona
(i.e. ε(H | E)−E(ε(H | E), a)) as a proportion of the maximal
entropy under total lack of information, and as such, it provides
a means of assessing case progress:

NEER(H | E, a) =
ε(H | E)− E(ε(H | E), a)

ε(H)

The REER represents EPE reduction as a proportion of the
entropy under the current set of available evidence, and as such,
it focuses on the relative benefits of each alternative investigative
action possible:

REER(H | E, a) =
ε(H | E)− E(ε(H | E), a)

ε(H | E)

These calculations are illustrated in Table 1 for the running
example. As mentioned previously, this table presents the eval-
uation of a number of investigative actions after traces of anaes-
thetics have been discovered injohndoe ’s body. The second
column of this table displays the EPEs for investigative ac-
tion while the third and fourth columns show the corresponding
NEER and REER values respectively.

4 Conclusions and Future Work
This paper has presented a novel application of model based
reasoning techniques to crime investigation. By means of a
refinement of a compositional modelling approach for generat-
ing Bayesian Networks (BNs), the work allows for the creation
of a BN that represents a space of plausible scenarios which
can explain the available evidence. This use of compositional
modelling enables the resulting decision support system to deal
with widely varying circumstances without having to rely on an
overly large knowledge base. The information contained in the
BN is exploited to produce suitable evidence collection strategies
that are expected to yield the most valuable information regard-
ing significant hypotheses about the case at hand. The system
provides a useful tool for aiding inexperienced major crime in-
vestigators in speculating about all plausible causes of the evid-
ence available in a case, and in devising useful strategies to con-
tinue the investigation.

While the proposed approach presented herein offers very use-
ful functionalities for DSS, a number of further improvements
are possible. As the probability distributions in the scenario frag-
ments refer to subjective assessments by experts of the likely
outcomes, which are described in terms of vague concepts, the
use of numeric probabilities conveys an inappropriate degree of
precision. It would be more appropriate to incorporate a meas-
urement of imprecision within the probability distributions. A
number of approaches can provide a means of representing and
reasoning with such imprecision, such as second-order probab-
ility theory [de Cooman, 2002; Goodman and Nguyen, 1999;
Walley, 1997] and linguistic probability theory[Halliwell et al.,
2003]. Investigation into the use of symbolic probabilities forms
an interesting immediate future work.

Another important consideration is that typical applications
of this work involve reasoning about hypothetical scenarios that
occur in time and space. The likelihood of such scenarios is not
only affected by the observed symptoms or evidence, but also
by constraints on the time and space in which the events in the
scenarios occur. Therefore, further research into incorporating
temporal and spatial reasoning in this framework is of significant
relevance to this work.

Other important future work concerns relaxing two important
assumptions made within this work: 1) probability distributions
governing the outcomes of different causal influences (and hence
represented in distinct scenario fragments) that affect the same
variable must be independent, and 2) the effects of all causal in-
fluences affecting the same variable must be combinable using
a single composition operator. It has been argued in this paper
that these issues can be overcome by adding appropriate vari-
ables to the scenario fragments in question and that the incon-
venience posed by these additional variables is far outweighed
by the benefits of compositionality of scenario fragments. How-
ever, the knowledge representation scheme adopted seems to al-
low the aforementioned assumptions to be relaxed. For example,
information on the correlation between causal influences, spe-
cified by scenario fragments, could be added to the knowledge
base, thereby explicitly representing how influences are interde-
pendent. Yet, exactly how this may be implemented requires
considerable further studies. Also, multiple composition oper-
ators can be allowed by defining rules of composition, as in the
work on compositional model repositories[Keppens and Shen,
2004b].
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A Sample Knowledge Base
assuming {suicidal(V)}
then {attempted-suicide(V)}
distribution attempted-suicide(V) {

true -> true:0.8, false 0.2}

if {attempted-suicide(V)}
then {previous-hangings-occurred(V)}
distribution previous-hangings-occurred(V) {

true -> never:0.7, veryfew:0.29, several:0.01}

assuming {suicidal(V), chooses-suicide-method(V,M)}
then {commits-suicide-by(V,M)}
distribution commits-suicide-by(V,M) {

true, true -> true:1, false:0}

if {commits-suicide-by(V,hanging)}
then {drugged-self(V)}
distribution drugged-self(V) {

true -> true:0.15, false:0.85}

if {other-cause-of-anaesthetics(V)}
then {was-anaesthetised(V)}
distribution was-anaesthetised(V) {

true -> true:1, false:0}

if {drugged-self(V)}
then {was-anaesthetised(V)}
distribution was-anaesthetised(V) {

true -> true:1, false:0}

if {commits-suicide-by(V,M)}
then {died-from(V,M)}
distribution died-from(V,M) {

true -> true:1, false:0}

assuming {is-killer(P,V), chooses-homicide-method(P,M)}
then {commits-homicide-by(P,V,M)}
distribution commits-homicide-by(P,V,M) {

true, true -> true:1, false:0}

if {commits-homicide-by(P,V,M)}
then {died-from(V,M)}
distribution died-from(V,M) {

true -> true:1, false:0}

if {commits-homicide-by(P,V,hanging)}
then {overpowers(P,V)}
distribution overpowers(P,V) {

true -> true:0.95, false:0.05}

if {overpowers(P,V)}
then {was-anaesthetised(V)}
distribution was-anaesthetised(V) {

true -> true:0.3, false:0.7}

if {overpowers(P,V)}
then {head-injury(V)}
distribution head-injury(V) {

true -> true:0.3, false:0.7}

if {other-cause-of-head-injury(V)}
then {head-injury(V)}
distribution head-injury(V)

true -> true:0.3, false:0.7}

if {overpowers(P,V)}
then {was-forced(V)}
distribution was-forced(V) {

true -> true:0.334, false:0.666}

assuming {autoerotic-asphyxiation-habit(V),
fatal-autoerotic-asphyxiation-method(V,hanging)}

then {accidental-autoerotic-hanging(V)
} distribution accidental-autoerotic-hanging(V) {

true, true -> true:1, false:0
false, true -> true:0.05, false:0.95}

if {accidental-autoerotic-hanging(V)}
then {died-from(V,hanging)}
distribution died-from(V,hanging) {

true -> true:1, false:0}

if {commits-homicide-by(P,V,M),
accidental-autoerotic-hanging(V)}

assuming {choice-of-autoerotic-hanging-method(V),
evaluate-knot(V)}

then {knot-analysis(V)}
distribution knot-analysis(V) {

true, false, detachable, true ->
not-self-made:1, detachable:0, cutable:0, undetermined:0

true, false, cutable, true ->
not-self-made:1, detachable:0, cutable:0, undetermined:0

false, true, detachable, true ->
not-self-made:0, detachable:1, cutable:0, undetermined:0

false, true, cutable, true ->
not-self-made:0, detachable:0, cutable:1, undetermined:0}

assuming {choice-of-autoerotic-hanging-method(V)}
then {cutting-instrument-near(V)}
distribution cutting-instrument-near(V) {

cutting-instrument -> true:1, false:0}

assuming {cutting-instrument-was-at-crime-scene(V)}
then {cutting-instrument-near(V)}
distribution cutting-instrument-near(V) {

true -> true:1, false:0}

if {commits-suicide-by(P,V,hanging)}
assuming {leaves-cutting-instrument-near(P,V)}
then {cutting-instrument-near(V)}
distribution cutting-instrument-near(V) {

true -> true:1, false:0}

if {autoerotic-asphyxiation-habit(V)}
then {previous-hangings-occurred(V)}
distribution previous-hangings-occurred(V) {

true -> never:0.1, veryfew:0.4, several:0.5}

if {died-from(V,hanging)}
then {cause-of-death(V,asphyxiation)}
distribution cause-of-death(V,asphyxiation) {

true -> true:1, false:0}

if {died-from(V,hanging)}
then {evidence(hanging(body(V)))}
distribution evidence(hanging(body(V))) {

true -> true:1, false:0}

if {cause-of-death(V,asphyxiation)}
then {petechiae(eyes(V))}



distribution petechiae(eyes(V)) {
true -> true:0.99, false:0.01}

if {petechiae(eyes(V))}
assuming {examination(eyes(V))}
then {evidence(petechiae(V))}
distribution evidence(petechiae(V)) {

true, true -> true:0.99, false:0.01}

if {was-anaesthetised(V)}
assuming {toxscreen(V)}
then {evidence(anaesthetics(V))}
distribution evidence(anaesthetics(V)) {

true, true -> true:0.95, false:0.05
false, true -> true:0.01, false:0.99}

if {head-injury(V)}
assuming {examine(body(V))}
then {evidence(head-injury(V))}
distribution evidence(head-injury(V)) {

true, true -> true:1, false:0
false, true -> true:0.1, false:0.9}

if {was-forced(V)}
assuming {examine(body(V))}
then {evidence(defensive-wounds(V))}
distribution evidence(defensive-wounds(V)) {

true, true -> true:1, false:0
false, true -> true:0.1, false:0.9}

if {attempted-suicide(V)}
assuming {examine(body(V))}
then {evidence(self-harm(V))}
distribution evidence(self-harm(V)) {

true, true -> true:0.7, false:0.3
false, true -> true:0.1, false:0.9}

if {previous-hangings-occurred(V)}
assuming {search(home(V),previous-hangings)}
then {evidence(previous-hangings(V))}
distribution evidence(previous-hangings(V)) {

veryfew, true -> true:0.2, false:0.8
several, true -> true:0.95, false:0.05}

if {cutting-instrument-near(V)}
assuming {search(near(V),cutting-instrument)}
then {evidence(cutting-instrument-near(V))}
distribution evidence(cutting-instrument-near(V)) {

true, true -> true:0.9, false:0.1}

inconsistent {commits-suicide-by(V,M):true,
commits-homicide-by(P,V,M):true}

inconsistent {commits-suicide-by(V,M):true,
accidental-autoerotic-hanging(V):true}

inconsistent {commits-homicide-by(P,V,hanging):true,
accidental-autoerotic-hanging(V):true}

inconsistent {leaves-cutting-instrument-near(P,V):true,
accidental-autoerotic-hanging(V):true}

define prior suicidal(V) {true:0.02, false:0.98}

define prior chooses-suicide-method(V,hanging) {
true:0.1, false:0.9}

define prior is-killer(P,V) {
true:0.01, false:0.99}

define prior chooses-homicide-method(P,hanging) {
true:0.05, false:0.95}

define prior autoerotic-asphyxiation-habit(V) {
true:0.025, false:0.975}

define prior fatal-autoerotic-hanging(V) {
true:0.01, false:0.99}

define prior other-cause-of-anaesthetics(V) {
true:0.05, false:0.95}

define prior other-cause-of-head-injury(V) {
true:0.05, false:0.95}

define prior leaves-cutting-instrument-near(P,V) {
true:0.5, false:0.5}


