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In the literature on major crime investigation and evaluati
of evidence, a consensus is arising that a sound methodo
should at least address the following two aspddamieson,

the events and situations that could have resulted in each i
vidual piece of evidence. These can eventually be combined i
hypothetical scenarios that explain the case under consideratiGaP
Second, the investigator must carefully choose those investi
ive actions (e.g. what questions to ask and what forensic exa

ations to complete) that are expected to produce the most info
ative evidence possible. Consequently, major crime investigat|[9f
constitutes a difficult craft that is hard to master without deca
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Abstract

Despite increasing interest in the development of intel-
ligent techniques to aid in the prevention and detection
of crime, an important issue that has not yet been ad-
dressed by existing work is the use of knowledge based
systems (KBS) to aid in the synthesis and analysis
of hypothetical scenarios in major crime investigation.
The main limitation of conventional KBS approaches
is their lack of robustness to deal with the substantial
variability of crime scenarios. This paper introduces a
method to apply model based reasoning techniques to
this problem. In particular, the existing compositional
Bayesian modelling approach is extended and adapted
to create hypothetical crime scenarios. Also, meth-
ods developed in the area of model-based diagnosis
are used to support the analysis of synthesised crime
scenarios.

Introduction

of in-depth experience.

This paper examines the possibility of employing knowled

based systems to support less experienced crime investig

the work previously given ifKeppens and Shen, 20q%aFur-

a
This presents two important challenges: the decision supp
system must be able (1) to cope with the enormous variabillty,
of plausible crime scenarios; and (2) to measure the informat

value that investigative actions are expected to yield. In order t
tackle these challenges, this paper shows a compositional mofie
ling approach to synthesise and efficiently store a space of pl
ible scenarios within a Bayesian Network (BN) (a refinement

The work presented herein provides a novel approach and ap-
plication domain for compositional modelling. It also comple-
ments recent developments on Bayesian model based diagnosi
(BMBD) [Lucas, 2001 While the latter work constitutes a prob-
abilistic abductive reasoning method for diagnosis, it relies on a
static Bayesian network for causally explaining observations. By
generating potentially different networks with a compositional
modeller, more generally applicable BMBD systems can be sup-
ported.

The remainder of the paper is organised as follows: Section
2 presents the compositional Bayesian modelling approach, Sec-
tion 3 describes the application of the entropy reduction tech-
nigue and Section 4 concludes the paper.

2 Scenario Space Synthesis

This section describes the synthesis method for creating
Bayesian scenario spaces, with Section 2.1 addressing the know
ledge representation and Section 2.2 the synthesis algorithm.

2.1 Knowledge Representation

riables
?;'a esian Networks (BNs) are an efficient and comprehensible
ans of describing the joint probability distribution over many
yariables over their respective domains. The variables are cre-
gd and assigned a meaning by the compositional modeller, anc
gir probability distributions are calculated from the combined
onse of the influences that affect them. To facilitate the in-
ggration of these features, the subject of the reasoner propose
grein are tuple$p, D, v,, ®). Each such tuple corresponds to
ghyariable, which is identified by predicatep, which has alo-
in D, of values, including a default valug, € D,, that can
g assigned to the variable, and which is associated withra
ination operator® : D, x D, — D, that describes how the
ects of different influences acting upon the variable are com-
&ed. For example, the tupkhanged-self(johndoe) ,
pver , veryfew , several }, never , max)! corresponds
a variable that describes how oftehndoe hanged himself
or to his death.
ost variable assignments, i.e. assignments of a value to
\jariable from the variable’s domain, correspond to plausible

xjates and events that are part of one or more possible scen

glos. There are also special types of variable assignment that
convey additional information that may aid in decision support.

thermore, it presents an application of the maximum entropy re-1Here, themax operator returns the highest value of the domain
duction technique to determine which investigative actions af&uming that the ordering of values is as follonsver < veryfew
most likely to reduce doubt. < several



These concepts have been adapted from earlier work on abdwttere {p,,...,pr} is the set of antecedent predicates,
ive reasonindPoole, 1989 and model based diagnodidam- {p;,...,p,} is the set of assumption predicatgs, is the con-
scheret al, 1993. In particular, some variable assignmentsequent predicate, eachis a value taken from the domain,,
correspond t@vidence These are pieces of known informatiorof the variable identified by; and eachy; is a real value in
that are considered to be observable consequences of a postibleange|0, 1]. Theif , assuming andthen components
crime?. Factsare pieces of known information that do no requiref scenario fragments respectively describe the types of ante-
an explanation. In practice, it is often convenient to accept someents, assumptions and consequent of a causal relation. Thi
information at face value without elaborating possible justificcomain value that a consequent has is influenced by the values
ations. For instance, when a person is charged with analysaighe antecedent and assumption variables and the probability
the handwriting on the aforementioned suicide note, the statlistributions defined in thdistribution component of the
of that person as a handwriting expert is normally deemed tofbegment. In particular, each line
a fact. Hypothesesre possible answers to questions that must
be addressed (by the investigators), reflecting certain important Ulyee sy Uy Uly vy Um=> Unl  Q1, -« - Unjy, & Gy,
properties of a scenario. Typical examples of such hypotheses
include the categorisation of a suspicious death into homicidgéfines a discrete probability distribution
suicidal, accidental or natural.

Also, assumptionare uncertain pieces of information that can
be presumed to be true for the purpose of performing hypothet- Forvtsee vk pivn pmivm—pn
ical reasoning. This work considers three types of assumption: Dp,, = 10,1] 2 for o opvpevm (Vni) = o
(i) Investigative actionare assumptions that correspond to evid-
ence collection efforts made by the investigators. For exampleyith i = 1, ..., j,. Note that it is not required that a probability
variable assignment associated with the comparison of the haglidtribution is defined for each combination of values assigned to
writing on a suicide note and an identified sample of handwrititige antecedent and assumption variables in a scenario fragment
of the victim is an investigative action. Note that each investigdnstead, a probability distribution in which the default value of
ive actiona is associated with an exhaustive &t of mutually the consequent variable has a probability 1 is presumed. Here,
exclusive pieces of evidence that covers all possible outcomeghef default probability distribution for those combinations of as-
a. (ii) Default assumptionare assumptions that are presumeslgnmentspy : v1,...,Pk : Uk, DLt Vi, - - -, Pm © Uy TOr Which
true unless they are contradicted. Such assumptions are typ@probability distribution is defined, is
ally employed to represent the conditions that an expert produces
evaluations based upon sound methodology and understanding
of his/her field. (iif) Conjecturescorrespond to uncertain states Fo1 01 pk 0k D101 0mm—pm (V) = {
and events that need not be described as consequences of other
states and events.

1 v=wp,
0 otherwise

Thus, the following scenario states that if a victifrhas pete-
Knowledge Base chiae on his eyes and the investigators exarvisecyes, then

The model fragments, herein called scenario fragments in ordgfdence of petechiae is discovered with a certain probability:
to convey their role as parts of (crime) scenarios, describe caL#saI

. . . {petechiae(eyes(V))}

influences among types of state and event in crime scenargsming déﬁEZ“;'Qété%T§2¥3§)Sv))}

However, the consequence of any influence is not presume is@ution evidence(petechiae(v)) oy

be deterministic, but governed by predefined probability distri- T

butions. Thus, the notion of scenario fragment incorporates dn the knowledge base, inconsistencies refer to inconsistent
set of probability distributions, one for each combination of tr@@mbinations of variable assignments. As such, an inconsistency

antecedent and assumption variables. As such, scenario fEgpoting thap, : vi A... Apy : v iS inconsistent is represented

ments are represented by: as:
) inconsistent {p1:v1,...,pk vk}
if {pla"'vpk}
assumin ey Dm L .

9 {pi,-opm} For example, the following inconsistency states that a person
the”_ {?n} can not be both killed by another person and by him/herself:
distribution Pn { inconsistent {commits-suicide-by(V,M):true,

commits-homicide-by(P,V,M):true}
: Inconsistencies are treated as a special type of scenario frag-
Vlyeo s Uky Uy ey Um=> Unl G, -« -y Unjp & Qi ment of the form:
} .
if {plv"'7pk}
then {nogood }
2Note that as evidence is herein defined as “information”, it does distribution nogood {
not equal the “exhibits” presented in court. Thus, for example, a sui- v, .., oe> T o1, L0}

cide note is not considered to be a piece of evidence in itself, but the
conclusions of a handwriting expert who has analysed the note are.



wherenogood refers to a special type of boolean variable, thaerein to efficiently compute the combined effect of a number of
remains hidden from the user and the knowledge engineer, andnario fragments on a single variable (see 2.2). Future work
is known to be false. According to this definition, any situatiowill seek to relax this assumption in order to generalise further
wherep; : v1,...,pr : vg requiresnogood to be true. Con- the application of the method proposed.

sequently, the probability of; : vy, ..., px : vk given thatno- E |
good is false,P(p; : v1,...,pk : vk | NOgood : 1) =0. And xample ) )

in this way, the iINconsistenay; : vs. ... px. : vz is modelled as APPendix A presents a sample knowledge base with which

an impossibility. the remaining discussion will be illustrated. The knowledge

For example, the aforementioned inconsistency is treated £&99t@ined within it relates to cases where a person died from
scenario fragment of the form: hanging. To keep the example self-contained, the scope of the
_ N knowledge base has been restricted and an imaginative reade
if { commits-suicide-by(V,M), . .

commits-homicide-by(P,v,M) } may be able to produce plausible scenarios that are not coverec

then { nogood } . .
distribution nogood { by this knowledge base. It does, however, contain compon-

true, true -> true:1, false:0 }

ents of a broad range of scenarios, including those where the
In addition to scenario fragments, the knowledge base aigotim committed suicide, those where the victim was forcibly
contains prior distributions for assumed states and events. Phanged by a murderer and those where the victim died accident-

distributions are represented by ally whilst committing an act of autoerotic asphyxiation.
define prior p {vi:q,...,v5 g5} 2.2 Algorithm
where{vy,...,v;} is the domainD, of p andqi, ..., ¢; define BNs consist of two distinct features, a directed acyclic graph
a functionf, : D, — [0,1] : f,(v;) = ¢; that is a probability (DAG) and a set of conditional probability tables. Accordingly,
distribution. this subsection is divided into two parts describing how both as-
For example, the definition pects can be composed automatically from a given knowledge
define prior suicidal(V) {true:0.02, false:0.98} base'

specifies the prior probability distribution of a variable identifie8tructure

by suicidal(V) with the domain{true , false } and The procedure to synthesise the structure of a Bayesian scenaric
space involves a sequence of three stages. In the first stage,
hypergraph, which is similar to an ATMS network, is constructed
for a given knowledge badg, a setS of available evidence and

a setF’ of known facts with the following algorithm:

Ssuicidalrvy  (true) = 0.02
Ssuicidairvy  (false) = 0.98

Unless specified otherwise, a variable assignment repres€fft§"™ 21 CENERATEINPERCRAPHIC, T 1)

an uncertain state or event. However, certain variable assigprment nitaisation:

ments can be associated with other types of information, su _chﬂzwge; Byt (Ph A — AU [p):
as hypotheses and evidence, in the knowledge base. PredigmentBackward chaining

H H i i each substitutior{c),
ates identifying variables whose assignments correspond to fgeessibsicrote Passampionsthen {pe Jdistibution D) € K,
potheses, facts, evidence, investigative actions and default as-< ~
. . B H E — new sef
sumptions are defined by purpose built constructs that associate( i ¢,y & Paecesent Passamptions

certain types of predicate with one of these types of information top, g G
(and corresponding to evidence sets, in the case of investigative (S i)
actions). Conjectures contained in the knowledge base are ideff-| do{ then

if ﬁz GAPassuAmptions
tified in theassuming clause of the scenario fragments. et ‘J{p}f {eh;
i elseE — E U {op;};
Presumptions J(ope) — J(ope){E};
comment: Forward chaining

To enable their use in compositional modelling of BN, it is pre; ..« psitwtioto)
sumed that the scenario fragments in a given knowledge bage Pantecentthen  Pagsumptionsthen  {pc }distribution D) € K,

possess the following properties: {ow; ‘if;pf {;agtveceden} cN
1. Any two probability distributions taken from two scenario B antaigere);
fragments involving the same consequent variable are in- E — new set
dependent Intuitively, this assumption indicates that the E T 5 ) tocodem
outcome of an influence implied by one scenario fragmento | ypen | for eacf;fp; € gas]\s]umpnons
is not affected by that of another. P instantiatéonp; ):
2. There are no cycles in the knowledge habkis means that do { then ¢ N gﬁ{{;}};, A AU{p}
there is no subset of scenario fragments in the knowledge o= {opils
p') «— J(»") U{E};

base that allow a participant to be affected by itself. This
assumption is required because BNs can not represent such

information as they are inherently acyclRearl, 198R Theinitialisation part creates two data structures to store the
While presumption 1 is a strong assumption, and may hergenerated inferences temporarily.is a set that will contain all
reflect a significant limitation of the present work, it is requirethe variables in the DAG and is a set that will contain all the



assumptions and facts. These sets are initialised with the givein the second stage, spurious nodes and justifications are re-
evidence and facts/ is a table that denotes a collection of setsioved from the hypergraph. During the backward chaining
with each set/(p) itself containing sets of antecedents and aphase, sets of minimal sufficient causal justifications are gener-
sumptions that justify a variable identified pywith the cardin- ated incrementally to form plausible explanations for the avail-
ality of the collection being the number of variables consideredble evidence. Starting from the individual pieces of evidence,
The backward chainingpart generates all possible explanasonjunctions of states and events justifying the pieces of evid-
tions of the available symptoms, i.e. observed evidence, by émce are created by instantiating scenario fragments, and thes
stantiating scenario fragmentsi For each scenario fragmentstates and events are in turn justified by instantiating certain
whose consequent variable matches a nod¥ ithe predicates other scenario fragments, and so forth. Ultimately, the states
describing the antecedent and assumption variables are instamiit events in the justification must themselves be justified by as-
ated and added t¥ if these instances do not already exist. A ssumptions and/or facts. As explained in Section 2.1, assumptions
E containing the antecedent and assumption instances is adatetifacts are the only types of information that require no further
to the set of justifications associated with the consequent. Neiplanation. Their role as so-called root nodes in the scenario
that the matching of those predicates specifying variable¥ inspace is extended in the Bayesian scenario space as they repre:
with the predicates in the scenario fragment is accomplished wétft the only types of information which is associated with a prior
a set of substitutions. For the example, the node correspondtistribution. In particular, assumptions have a prior distribution
ing tocommits-homicide-by( _1,johndoe,hanging) as defined in the knowledge base and the prior distribution of a
matches the predicate identifying the consequent variable of thet corresponding to a variable assignment is defined by:
scenario fragment

assuming {is-killer(P,V), chooses-homicide-method(P,M)} P(p . l‘) =
then {commits-homicide-by(P,V,M)}
distribution commits-homicide-by(P,V,M) {

1 ife=w
0 otherwise

true -> true:l, false:0} wherez € D,,. Therefore, each root node in the hypergraph gen-
with substitutions = {P\_1,V\johndoe ,Mhanging }. erated by this procedure must be either a fact or an assumption.
Therefore, the backward chaining phase will add two neWpwever, the backward chaining phase can not guarantee this.
predicates is_ki”er( 71,johnd0e) and chooses- Hence, _V\/_hen the procedure terminates, all th(_)se nOdes, which
homicide-method(  _1,hanging) to NV and a justification Were originally regarded as root nodes and which are not a fact
{is-killer( _1,johndoe) chooses-homicide- or assumption and all the justifications including these nodes are
method( _1,hanging) } to the set J(commits- deemed spurious. Asthe hypergraph of Figure 1 does not contain
homicide-by(  _1,johndoe,hanging) ). any spurious nodes, consider the following scenario fragment as

The forward chaining part generates all possible con@ means of illustration:
sequences of the explanations created in the previous phase f £V
each scenario fragment, whose antecedent variables match inﬁgﬁ%%?gﬁgg{r';?}{f\‘,??ﬁm,
stances inV, the predicates describing the assumption and cqp; e ﬁgmégrpemm
sequent variables are instantiated and added tbthey do not ¢ icimvictimy
already exist. As in the prev_ious phasg, a Batontaining the .assu";'unsgpe{d(,:erpe"am1
antecedent and assumption instances is added to the set of justighiFerpetrator ictim),
fications associated with the consequent. For the example, base

ight(Victim,Perpetrator)} o
d}gransfer(flbres,Perpetrator,thlm)}

on the predicat@etechiae(eyes(johndoe)) in N and Given evidencetransfer(fibres, _1, johndoe)
the scenario fragment the symbolic scenario space generator will create the following
it {petechiae(eyes(v)} information: victim(johndoe) , suspect(johndoe) ,
v el victim( 1), suspect( 1), fight( 1, johndoe)  and
distribution evidence(petechiae(V)) { fight(johndoe, -1) . Here, victim(johndoe)

true, true -> true:0.99, false:0.01} T is a fact.  Furthermore,suspect(johndoe) and
new predicates examination(eyes(johndoe)) suspect( _1) correspond to assumption nodes, where
and evidence(petechiae(V) are added toN and suspect(johndoe) : T should be rendered impossible by
the justification {examination(eyes(johndoe)) , means of an inconsistencyictim( _1) is neither fact nor
petechiae(eyes(johndoe)) } is added to assumption, and it is not further justified. Therefore, the node
J(evidence(petechiae(johndoe)) ). In forward containingvictim(  _1) is spurious and must be removed.

chaining, inconsistencies are processed in the same manner &purious nodes are ignored in an ATMS. However, if the be-
scenario fragments, but they all have the same nogood nédepropagation algorithm of a BN attempts to take them into
as their consequent, which will be identified by in what account, incorrect results or errors will be produced as spuri-
follows. ous nodes have no prior probability distribution. Therefore, all

To illustrate the application of these ideas, consider spurious nodes and justifications must be removed from the hy-
case where a person identified dshndoe is found pergraph. The following procedure recursively removes from a
dead hanging from a rope, and let this piece of evidiven hypergraphN, A, J) all root nodes that do not corres-
ence be identified by the variable assignmeewid- pond to a fact/assumption and the justifications in which these
ence(hanging(body(johndoe))) :true . By applying nodes occur. The procedure terminates when each root node ir
Algorithm 2.1 to this given piece of evidence and the knowleddéV, 4, J) corresponds to either a fact or an assumption. In ef-
base shown in Appendix A, the hypergraph shown in Figure Ifext, this procedure deletes all spurious nodes and justifications
produced. from the hypergraph.
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Figure 1: Sample scenario subspace structure

Algorithm 2.2: SPURIOUSNODEREMOVAL((N, A, J), K)

foreachn € N, [(Asubstitutiofo), J(n) = 0,n & A
N — N\{n};
do { foreachn’, E € J(n'), (n € E) A (n’ € N)
do J(n') «— J(n')\E;

each set of justifying variables]; € J(p,), is associated an
instantiated scenario fragme@t. Each(C; contains a set of
probability distributions describing how the value of the variable
identified byp,, is affected by assignments to the variabled;in

Let A be a set of value assignments to the variableg;ior a
superset thereof. Then, the probability thatcause®,, to take

valuev € D, is denoted byP(A G Dn i V).

The setP = {p1,...,ps} of immediate parent variables in
the generated DAG is derived by computisigu ... U J,. Let
A be a set of assignment{®, : v1,...,ps : vs}, where each
v; € Dy, to the parent variables ¢f, in the DAG. It is clear
pr, Will be assigned:, with ¢ € D, , whenever the causal in-
fluences described by the scenario fragméits . ., Cy, result
in a collection of outcomesy, ..., c. whose combined effect
@ ... B ¢, equalse. Thus, the probability thag, : ¢ given A
specified by:

Finally, in the third stage, the hypergraghv, A, J) is col-
lapsed into a DAG by means of the following procedure:

Algorithm 2.3: cREATEDAG((N, A, J))

G < new DAG;
foreachn € N
add G, n);
do {foreachn/ € Ugesn) B)
doadd G, arq(n’, n));

&
The resulting DAG forms the structure of a BN that is extems1
ded with conditional probability tables as described in the next

section.
P(pn:c|A) =P \V

c1D...Bcr=c

CL . .
Conditional Probability Tables (1/\ k(A = Pn Cl))} 1)
A BN a_l_so requires a complete sp_ecification of the conditional T
probability tables to be of any practical use. bebe the number  According to (1), computindg®(p,, : ¢ | A) involves calculat-

of states of each node in the BN apthe the number of parentsjng the likelihood of a combination of events described by a dis-
of each non-root node. Then, a totalof x (m — 1) probab- junctive normal form (DNF) expression. Because the occurrence
ilities must be assigned to each non-root node. In an abduci¢ejifferent combinations of outcomes, . .., ¢, of the scen-
diagnosis applicationg may become large, thereby inhibitingyyio fragments;, . .., C;, involves mutually exclusive events,

the manual specification of the conditional probabilities. For ere calculation can be resolved by adding the probabilities of the
ample, the probability distribution of the amount of a particulgionjuncts in (1):
Cz)) (2)

anaesthetic in the blood of a victim’s body can be affected by
self-medication, consumption of a spiked drink, surgery, etc.

Using the proposed method to derive the structure of a BN p(p . c| 4) =
from knowledge, a sef(p,,) = {J1,. .., J-}, containing sets of
justifying variables is constructed for each predicate where

Z /\ (A%pn:

P(
c1®...becg=c i=1,...,k



From presumption 1, the outcomes of different scenario frag-
ments (with the same consequent), in case of a given set ofﬁ -
. ’ . . 3 f ;T : T
signments of the antecedent and assumption variables, corre@-3 veryfew |py = T,pz: T)
pond to independent events. Therefore, the probability of the =pP(p, : T A ps sveryfew ) x P(pa: T e P veryfew )+
conjunctions in (2) is equal to the product of the probabilities of o Cs
their conjuncts, and (2) is calculated as follows: P(p1: T = ps:never ) x P(px: T = ps : veryfew )+
P(p1:T gpg :veryfew ) X P(p2: T %pg : never )

=0.4 x0.2940.1 x0.2940.4 x 0.7 = 0.425

Cv
Ppn:c| A) = < P(A = pp : cl)) 3)
Cl@.%ck:c :Hk Similarly, it can be shown that
P(ps :never |p1: T,p2:T)=0.07
Consider, for example, the following two scenario fragments, P(ps : several |pi: T,pz2:T)=0.505

which are part of the probabilistic knowledge base from which its
symbolic counterpart as presented in Figure 1 can be generated:

3 Scenario Space Analysis
then { previous-hanging(V)

en : . Once constructed, the Bayesian scenario space can be analyse
distribution prevmus-hangmggv) { . . . . . . .
true -> never0.1, verylew:0.4, several:0.5 } in conjunction with the symbolic one to compute effective evid-
i { previous-suicide-atemprs(y) } ence collection strategies. The concepts of evidence, hypotheses
distribution previous%a%ginggv) ( assumptions and facts are still employed in the Bayesian scen-
true -> never:0.7, veryfew:0.29, several:0.01 } . H . .
ario space, but they now refer to variable assignments instead

of predicates. For implementational simplicity, hypotheses and

if { autoerotic-hanging-habit()V) }

where autoerotic-hanging-habit(V) and nvestigative actions are assumed to be represented by (truth) as
previous-suicide-attempts(V) _ correspond 10 gignments to boolean variables (although this will be extended
boolean variables, amgtevious-hanging(V) to avariable future work).

taking values from the domaimever , veryfew ,several }  \yhjle the likelihood ratio approach can be extended to deal
deflned. over comblnatlon operatofx. Then, the prpbabﬂmes with more than two hypotheses (for example by computing mul-
of assignments toprevious-hanging(V) , given that (e Jikelihood ratios or a likelihood ratio comparing combin-
autoerotic-hanging-habit(V) __and previous- ations of hypothesegpitken and Taroni, 2004 it is not clear
suicide-attempts(V) are assigned’, can be computed o\, these extensions can employed to compute a metric of doubt
as follows: over multiple positions. The benefit of such a metric is that it en-
For notational convenience, ley, p, and p; respectively ables a decision support system to order different evidence col-
denote autoerotic-hanging-habit(johndoe) , lection strategies in order of their effectiveness in reducing doubt
previous-suicide-attempts(johndoe) , and between multiple hypotheses. An alternative approach based or
previous-hanging(johndoe) , and let the above information theory is proposed here.
two scenario fragments be naméd and C,. Then, the  The work will be illustrated by means of probabilities derived
probabilities in the scenario fragments involved are assigned fism a BN which has been generated by means of the the tech-
nigues of Section 2 using the knowledge base of Appendix A
(and which is a Bayesian representation of the symbolic scen-
ario space given in Figure 1).

Plp1:T gpg :never ) =0.1
P(pr: T % ps : veryfew ) = 0.4 3.1 Hypothesis sets and query types
o Instead of two hypotheses, the approach aims to evaluate evid-
P(pr: T = ps:several ) =05 ence in relation to a seif of hypotheses. This set must be ex-
P(ps: T & ps :never ) =0.7 haustive and the hypotheses within it mutually exclusitis
s exhaustivef one of the hypotheses in the set is guaranteed to be
P(p2: T = p3 : veryfew ) =0.29 true, ensuring that the approach will evaluate the scenario space
Plps: T 2 s - several ) = 0.01 entirely, without ignoring any plausible scenarios. The hypo-

theses in a set amautually exclusivef no pair of hypotheses
taken from the set can be true simultaneously. This property en-
sures that the approach is not biased.

According to (3), all combinations of outcomes In this work, hypothesis sets are predefined in the knowledge
c; and ¢y of scenario fragmentsC; and C,, with base along with a precompiled taxonomyqofery typesQuery
c1,C2 € {never ,veryfew ,several } and types represent important questions that the investigators neec
never jveryfew jseveral , and such thatnax(ci;,cz) = to address, such as the type of death of victim in a suspicious
veryfew , must be considered. There are three such combiteath case, or the killer of a victim in a homicide case. Query
ations: {¢; : veryfew ¢y : veryfew 1}, {c; : never ,c; : types are identified with a predicate describing it and they may
veryfew } and {¢; : veryfew ,co : never }. Hence, be associated with a set of predicates identifying the hypothesis
P(ps : veryfew |p; : T,ps: T) can be computed as follows: variables. For example, the following two query type definitions



for the purpose of generating evidence collection strategies is

define query type {
unifiab?,e = type-of-death(P),

hypotheses = {homicidal-death(P) suicidal-death(P), the entropy over a set of hypothesHs given a setfl = {e; :
- accidental-death(P),natural-death(P)}} Vi lp Un} Of pieces Of evidence:
define quer?/ type {
E%S?eese's EII?k'iﬁgg&’g,P)}} _
«(H|E)=-Y P(h|E)logP(h|E) (4)
are respectively associated with the following hypothesis sets: heH
where the valuesP(h | FE) can, again, be computed by
H, = {homicidal-death(johndoe) : T, means of conventional BN inference techniques. For the
suicidal-death(johndoe) : T, example problem from the sample scenario space, the fol-
accidental-death(johndoe) LT, Iowin_g probabilities can be computed, with; containing
natural-death(johndoe) Ty hanging-dead-body(johndoe) : T andnogood : 1:
H, = {killed(mr-hyde,mary-kelly) : T, o _
killed jack-the-ripper,mary-kelly) LT, P(homicidal-death(johndoe) | E1) =0.22
killed( _1,mary-kelly) LT, P(suicidal-death(johndoe) | E1) =0.33
killed(none,mary-kelly) .Y P(accidental-death(johndoe) | E1) =0.45

Itis the responsibility of the knowledge engineer to ensure th us, as an instance,
the hypotheses sets generated in this way meet the exhaustive-
ness and mutual exclusivity criteria. These criteria can be sag#, | ;) = —(0.221log 0.2240.3310g 0.33+0.45 log 0.45) = 0.46
fied for any given seP = {py, ..., p,} Of predicates identifying
hypotheses variables. Exhaustiveness can be assured by extend- ] ] ] o
ing P with an additional predicate,; and adding a probabil- A useful evidence collection strategy involves selecting invest-
istic scenario fragment that enforces, ; : T with likelihood 1  igative actions from a given settaccording to the following cri-
if pr:L,...,pn: L, andp,4 : L with likelihood 1 otherwise: terion:

min E(e(H | F),a 5
t ) min E(e(H | E), a) Q)
then {pni1} Note that the entropy values calculated by equation (4) are af-
distribution prs1 {L,...,L>T:1,1:0} fected by the prior distributions assigned to assumptions, as de-

scribed in 2.1. Within the context of evidence evaluation (which
is the conventional application of the likelihood ratio approach),
The mutual exclusivity criterion can be easily attained s is a controversial issue as decisions regarding the likelihood

adding inconsistencies for each pair of hypotheses: of priors, such as the probability that a victim had autoerotic
hanging habits, are a matter for the courts to decide on. In the
context of an investigation, however, these prior distributions
may provide helpful information often ignored by less experi-
enced investigators. For example, the probability of suicides or
3.2 Entropy autoerotic deaths are often underestimated. As such, decisior
The work here employs an information theory based approagfiterion (5) is a useful means of deciding on what evidence to
which is widely used in areas such as machine |earniﬁg||ect next. Yet, the minimal entropy decision rule does not
[Mitchell, 1997 and model based diagnodidamscheret al, Yield information that should be used for evidence evaluation in
1994. Information theory utilises a measurement of doubt oveeurt.
a range of choices, called entropy. Applied to the present prgb- . ) )
lem, theentropyover an exhaustive set of mutually exclusivé-3 Minimal entropy-based evidence collection

inconsistent {pi:T,pj: T}

hypotheses? = {hq,..., h,, } is given by: Let a denote an investigative action aiyj be a set of the vari-
able assignments corresponding to different possible outcomes
€(H) =~ P(h)log P(h) of a (i.e. the pieces of evidence that may result from the invest-
heH igative action). The expected posterior entropy (EPE) after per-

where the value$(h) can be computed by means of converd®'Minga can then be computed by calculating the average of the
fposterior entropies under different outcomes E,, weighted

tional BN inference techniques. Intuitively, entropy can be i o . . :
terpreted as lack of information. Under the exhaustiveness Q;(?the likelihood of obtaining each outcomegiven the avail-

mutual exclusivity conditions, it can be shown thé# ) reaches 20P!€ evidence):

its highest value (which corresponds to a total lack of inform-

ation) whenP(h;) = ... = P(h,,) = + ande(H) reached) E(e(H | E),a) = Z Ple|la:T,E)e(H|EU{a:T,e}) (6)
(which corresponds to a totally certain situation) wherPdh,), €,

withi=1,...,m, equal0 or 1.
In crime investigation, additional information is created The ongoing example contains an investigative action
through evidence collection. Thus, the entropy metric of interest =test-toxicology(johndoe) : T, representing a



toxicology test of johndoe searching for traces of an-Local optima and action sequences

aesthetics and a corresponding set of outconi&s = Although the minimum EPE evidence collection technique guar-
{toxscreen(johndoe) : T,toxscreen (johndoe) : antees to return an effective investigative action, it does not en-
L}, respectively denoting a positive toxscreen and a negatire globally optimal evidence collection. This limitation is in-
ive one. LetE; be a set containinganging-dead-body herent to any one step lookahead optimisation approach. The
(johndoe) : T, text-toxicology(johndoe) : Tand likelihood of obtaining poor quality locally optimal evidence col-
nogood : L. Then, through exploiting the Bayesian scenariection strategies can be reduced by considering the EPEs after
space the following can be computed: performing a sequence of actioas . . ., a,, (of course, with in-
curred overheads over computation):

P(toxscreen(johndoe) : T | E2) =0.17

P(toxscreen(johndoe) : L | Ey) =0.83 E(e(H | E), a1, a0)

P(homicidal-death(johndoe) | = > ... > Ple,...,enlar: T, .. a0 : T,E) (7)

E» U {toxscreen(johndoe) : T} =040 e1€Fa;  ev€Fa,

P(suicidal-death(johndoe) | e(H |e,a1: T, ... 0,00 : T, E)
E, U {toxscreen(johndoe) :T}) =0.49
P(accidental-death(johndoe) | In order to determinéZ(e(H | E),ay,...,a,), equation (7)

E, U {toxscreen(johndoe) : T}H =0.11 can be simplified as follows:

P(homicidal-death(johndoe) |

E» U {toxscreen(johndoe) :1})=0.19 E(e(H | E),a1,...,a0)

P(suicidal-death(johndoe) | Pler,...,ev,a1:T,...,a0: T, E)
E» U {toxscreen(johndoe) (1)) =044 = X a1:7T,....a0:T,E
P(accidental-death(johndoe) | @ SR
E» U {toxscreen(johndoe) :1})=0.38 C(H[EUfer,a1: T, sewaui T}

Z Z (ﬁP(ei,alzT,...,aU:T,E))
Ll .7 e :T,E
Intuitively, these probabilities can be explained as follows. In 1€Bay CvClay 1

a homicide situation, anaesthetics may have been used by the eH|EU{er,a1:T, ... eva0: T}
murderer to gain control ovgéohndoe , and in a suicide case, v

johndoe may have used anaesthetics as part of the suicide pro- = Z B Z (H Pleilar:T,...;a,: T,E))
cess. In the accidental (autoerotic) death case, there is no par-  €1€Pa1 ¢2€Fa, =1

ticular reason fojohndoe to be anaesthetised. Therefore, the e(H|EU{er,a1:T,...,ep,ap:T})

discovery of traces of anaestheticjohndoe 's body supports
both the homicidal and suicidal death hypotheses whilst disaf-
firming the accidental death hypothesis. By means of these prfitiple evidence sets

abilities, the EPEs can be computed as the following instancegerain investigative actions may be associated with multiple

sets of evidence. For example, a careful examination of the body
of a man found hanging may yield various observations such as
petechiae on the eyes, defensive wounds on the hands and lowe
arms and various types of discolouration of the body. The con-

The investigative action that is expected to provide the mG@duences of some types of investigative action, e.g. the exam-
information is the one that minimises the corresponding EPR2ton of a dead body, are better modelled by multiple evidence

For example, Table 1 shows a number of possible investigatﬁ}?e.,IS since the resulting symptoms may occur in any combination

actions that can be undertaken (in column 1) and the correspoﬁ’1fos-ucdh gieces of evidfenCﬁ_. 'I;)he above _apprr?ach can bf‘;" readily
ing EPEs in the sample Bayesian scenario space (in columféégﬁn ed to account for this by computing the EPESs after per-

E(e(H | E1),a) = 0.17 x 0.41 4 0.83 x 0.45 = 0.45

computed on the assumption that the aforementioned toxicol ing actiona with associated evidence séfs . .., Fo,u!
screen yielded a positive result. The most effective investigative
actions in this case are a knot analysis and an examination of E(e(H | E),a)
the body. This result can be intuitively explained by the fact that _ .
these investigative actions are effective at differentiating between = Z o Z Ples,...,ew|a: T, E)
homicidal and suicidal deaths, the most likely hypotheses if an- 1881 ewClFaw
aesthetics have been discovered in the body. e(H |er,...,ew,a: T, E)
3.4 Extensions = > - > (IPEla:T.B)
e1€Eq 1 ew€Eq,w =1
While the approach presented above is itself a useful extension (H|EU{ew,... ew,a: T

of the likelihood ratio approach, several further improvements
are proposed.



[ Investigative action [ EPE[ NEER | REER] 4 Conclusions and Future Work

Knot analysis 0.30 | 26% 29% . L
Examine body 033 | 17% | 19% This paper has _presented a n0\_/el ap_pllc_atmn of model based
Search for cutting instrument 036 | 13% | 14% reasoning techniques to crime investigation. By means of a
Search for signs of previous hangings0.41 | 1.3% | 1.5% refinement of a compositional modelling approach for generat-
Check eyes for petechiae 0.46 | 0% 0% ing Bayesian Networks (BNs), the work allows for the creation
of a BN that represents a space of plausible scenarios which
Table 1: Evaluation of investigative actions can explain the available evidence. This use of compositional

modelling enables the resulting decision support system to deal
with widely varying circumstances without having to rely on an

Multiple hypothesis sets overly large knowledge base. The information contained in the

EQ@'Q/& Ito?%)lsﬁlc?r?ebe _lﬁﬁguelgc;g%nss;ﬂergmlitlﬁ)ltra]hypoth(rat&s SER is exploited to produce suitable evidence collection strategies
] " > (NE decision Support Sys are expected to yield the most valuable information regard-

(DSS) to propose evidence collection strategies that are effeciye o iicant hypotheses about the case at hand. The systen

at answering multiple gueries. To consider multiple hypotheﬁ ovides a useful tool for aiding inexperienced major crime in-

setsHy, ..., H; by measuring entropy over these sets, glVenv%stigators in speculating about all plausible causes of the evid-

set of pieces of evidende: ence available in a case, and in devising useful strategies to con-
tinue the investigation.
e(Hy,...,H | E) While the proposed approach presented herein offers very use-
_ ful functionalities for DSS, a number of further improvements
== 2 2 Pl h| B)logPllu,....hi| B) are possible. As the probability distributions in the scenario frag-
. . ments refer to subjective assessments by experts of the likely
__ A _ outcomes, which are described in terms of vague concepts, the
Z Z (H P(hi | E)) log(H Phi| ) use of numeric probabilities conveys an inappropriate degree of
precision. It would be more appropriate to incorporate a meas-
urement of imprecision within the probability distributions. A
3.5 User interface number of approaches can provide a means of representing anc
While a detailed discussion of the user interface developed f8asoning with such imprecision, such as second-order probab-
the present DSS system is beyond the scope of this paper, ilitg theory [de Cooman, 2002; Goodman and Nguyen, 1999;
important to point out that a mere representation of the outcony¥alley, 1997 and linguistic probability theorjHalliwell et al,
of the decision rules is inadequate for the objectives of the DSL0J. Investigation into the use of symbolic probabilities forms
Investigators may have a number of considerations that are b¥y.interesting immediate future work.
ond the scope of the current DSS. These include perishability ofAnother important consideration is that typical applications
evidence, legal restrictions, limitations on resources and oveglthis work involve reasoning about hypothetical scenarios that
workload. Therefore, the DSS is devised to list alternative evigecur in time and space. The likelihood of such scenarios is not
ence collection strategies in increasing order of EPEs. only affected by the observed symptoms or evidence, but also
The benefits of each strategy is indicated by eithentitenal- by constraints on the time and space in which the events in the
ised expected entropy reducti®EER) or therelative expected scenarios occur. Therefore, further research into incorporating
entropy reductio(REER). The NEER represents the reductioigmporal and spatial reasoning in this framework is of significant
in EPE, as a consequence of performing an investigative actioi¢levance to this work.
(i,e.e(H | E)— E(e(H | E),a)) as a proportion of the maximal ~Other important future work concerns relaxing two important
entropy under total lack of information, and as such, it provid@ssumptions made within this work: 1) probability distributions

h1€H ht€H;

h1€H; he€Hy i=1 i=1

a means of assessing case progress: governing the outcomes of different causal influences (and hence
represented in distinct scenario fragments) that affect the same

NEER(H | B,a) = UL E) = E((H | E),a) variable must be independent, and 2) the effects of all causal in-

e(H) fluences affecting the same variable must be combinable using

. . single composition operator. It has been argued in this paper
en-trrge Rﬁ%&ﬁg‘:iﬁgﬁt E;ifrgegﬁggr as_(? proport|3n of t these issues can be overcome by adding appropriate vari-
py € evidence, and as Sfyjlas to the scenario fragments in question and that the incon-

it focuses on the relative benefits of each alternative investigatiyg. .., .o posed by these additional variables is far outweighed

action possible: by the benefits of compositionality of scenario fragments. How-
e(H | E) — E(e(H | E), a) ever, the knowledge representation scheme adopted seems to a
REER(H | E,a) = (| B) low the aforementioned assumptions to be relaxed. For example,
information on the correlation between causal influences, spe-
These calculations are illustrated in Table 1 for the runnimgied by scenario fragments, could be added to the knowledge
example. As mentioned previously, this table presents the eladse, thereby explicitly representing how influences are interde-
uation of a number of investigative actions after traces of anapsndent. Yet, exactly how this may be implemented requires
thetics have been discoveredjghndoe ’'s body. The second considerable further studies. Also, multiple composition oper-
column of this table displays the EPEs for investigative aators can be allowed by defining rules of composition, as in the
tion while the third and fourth columns show the correspondimgprk on compositional model repositorifiseppens and Shen,
NEER and REER values respectively. 20044.
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if {autoerotic-asphyxiation- hablt(\é)gv)}

A Sam ple KnOW|edge Base mgtr:lb(ljptll'g\n”o;rsé\r/‘lgﬂglﬂgasrlglflrg:jgn;?ccurred(V) {

true -> never:0.1, veryfew:0.4, several:0.5}

assuming {suicidal(’ )3
then_{attempted-suicide(V, if {died-from(V,hanging)}
distribution attempted-: sumde(\/g { then {cause-of-death(V,asphyxiation)}
true -> true:0.8, false distribution cause-of-death(V,asphyxiation)
true -> true:l, false:0}
if {attempted-suicide(V)}

then_{previous-hangings-occurred(V)} if {died-from(V,hanging)}
distribution previous-hangings-occurred(V) { then {evidence hanglng(bod V)))}
true -> never:0.7, veryfew:0.29, several:0.01} distribution evi ence(hanglng body(V))) {
true -> true:l, false:0}
assuming {suicidal(V), chooses-suicide-method(V,M)}
then {commits-suicide-by(V,M)} if {cause-of-death(V,asphyxiation)}
distribution commits-suicide-by(V,M) { then {petechiae(eyes(V))}

true, true -> true:l, false:0}

{



distribution petechiae(eyes(V)) {
true -> true:0.99, false:0.01}

if {petechiae(eyes(V))}

assuming {examination(eyes(V))}

then_{evidence(petechiae(V))

distribution evidence(petechiae(V)) {
true, true -> true:0.99, false:0.01}

if {was-anaesthetised(V)}

assuming {toxscreen(V)

then {evidenc: éanaesthetlcs(v))

distribution evidence(anaesthetics(V)) {
true, true -> true:0.95, false:0.05
false, true -> true:0.01, false:0.99}

if {head-injury(V)}
assuming {examine(body(V))
then (ewdence head-injury(V))}
distribution evidence(head-in uryév)) {
true, true -> true:l, false:
false, true -> true:0.1, false:0.9}

if {was-forced(V)
assuming {examine(body(V))}
then {evidence(defensive-wounds(V))}
distribution evidence(defensive-wounds(V)) {
true, true -> true:1, false:0
false, true -> true:0.1, false:0.9}

if {attempted-suicide(V

assuming {examlne bo ly(V,

then {evidence self arm

distribution evidence(self-harm(V)) {
true, true -> true:0.7, false:0
false, true -> true:0.1, false:0A9}

if {previous-| hanglngs occurred(V)}
assuming {search(home(V),previous-hangings)}
then_{evidence(previous-hangings(V))}
distribution evi ence(prewous han |ngsg/)) {
veryfew, true -> true:0.2, false:0
several, true -> true:0.95, false:0.05}

if {cutting-instrument-near(V)}

assuming {search(near(V),cutting-instrument)}

then_{evidence(cutting-instrument-near(V))

distribution evidence(cutting-instrument-near(V)) {
true, true -> true:0.9, false:0.1}

inconsistent {commits-suicide-by(V,M):true
commits-homicide-| y(P 2 M):true}

inconsistent {commits-suicide-by(V,M):true,
accidental-autoerotic-hanging(V):true}

inconsistent {commits-homicide-by(P,V,hanging):true,
accidental-autoerotic-hanging(V): true}

inconsistent {leaves-cutting-instrument-near(P,V):true,
accidental-autoerotic-hanging(V): true}

define prior suicidal(V) {true:0.02, false:0.98}

define prior chooses-suicide-method(V,hanging) {
true:0.1, false:0.9}

define prior is-killer(P,V) {
true:0.01, false:0.99}

define prior chooses-homicide-method(P,hanging) {
true:0.05, false:0.95}

define prior autoerotic-asphyxiation-habit(V) {
true:0.025, false:0.975}

define prior fatal-autoerotic-hanging(V) {
true:0.01, false:0.99}

define prior other-cause-of-anaesthetics(V) {
true:0.05, false:0.95}

define prior other-cause-of-head-injury(V) {
true:0.05, false:0.95}

define prior_leaves-cutting-instrument-near(P,V) {
true:0.5, false:0.5}



