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Abstract
We describe a case study in which we appliedQ2

learning (qualitatively faithful quantitative learn-
ing) to the analysis and prediction of ozone concen-
trations in the cities of Ljubljana and Nova Gorica,
Slovenia. We used program QUIN to induce a qual-
itative model from numerical data that include the
measurements of several meteorological and chem-
ical variables. The resulting qualitative model con-
sists of tree-structured monotonic qualitative con-
straints. We show how this model for Nova Gorica
enables a nice interpretation of complex meteoro-
logical and chemical processes that affect the level
of ozone concentration. For Ljubljana, in addition
to inducing a qualitative model from data, we ex-
tended the qualitative model to also enable numer-
ical prediction. In this case, we used in addition to
measured data also data from the European mete-
orological prognostic model ALADIN which itself
does not model pollutants. Program QCGrid was
used to induce a numerical prediction model which
respects the constraints in the qualitative model and
fits the data well. We show that qualitatively con-
strained numerical model improves numerical pre-
diction in comparison with some standard numeri-
cal learning methods.

1 Introduction
In this paper we present an application ofQ2 learning (quali-
tatively faithful quantitative learning, [Šucet al., 2004])to the
analysis and prediction of ozone concentrations in the cities
of Ljubljana and Nova Gorica. For Nova Gorica, we induced
a qualitative model from numerical meteorological data (tem-
perature, relative humidity, wind speed and direction, solar
radiation, precipitation) and air quality measurements (O3,
NO, NO2, CO). The purpose of such a model is to provide
the experts with a relatively simple, interpretable model of
the complex dynamics. For Ljubljana, in addition to induc-
ing a qualitative model from data, we extended the qualitative
model to also enable numerical prediction. In this case, avail-
able data included aforementioned measurements as well as
predictions of the European meteorological prognostic model
ALADIN [Aladin, 1997] for the period from 2001 to 2003.

The measurements and ALADIN data were provided by En-
vironmental Agency of the Republic of Slovenia (ARSO). For
the Ljubljana qualitative model, we performed a qualitative-
to-quantitative transformation, discussed later, to induce a nu-
merical prediction model. The advantage ofQ2 learning,
used here, is in its paying attention to the qualitative correct-
ness of induced numerical models. We compared the numer-
ical accuracy of ourQ2 model to the accuracy of two other,
standard numerical learning methods: linear regression (LR)
and regression trees (M5), both implemented in Weka[Witten
and Frank, 2000]. In addition to superior explanatory power,
theQ2 model also had better numerical, although the differ-
ences in accuracy were not statistically significant. Numeri-
cal predictions are, by expert opinion, good enough to be used
operationally.

The processes that are involved in ozone formation are nu-
merous and complex. Analytical models, such as CAMx[En-
viron, 2004], consist of systems of differential equations, to
capture the physics of the system, and include over 100 chem-
ical reaction equations to describe the chemical processes.
The overall understanding of such complex models is diffi-
cult. But even if that is achieved, such models are usually
not useful in practice for prediction, because we can only use
equations that include the independent variables that we can
measure.

In section 2, we describe the ozone domain, some back-
ground facts and motivation. We give an overview ofQ2

learning method in section 3. The available data is described
in detail in section 4. We present the results in section 5,
assess what has been achieved, and discuss future work in
section 6.

2 The Ozone problem
Meteorological and chemical processes that affect the level
of ozone concentration are very complex. Ozone (O3) in
the lower atmosphere (troposphere) has harmful effects on
vegetation and human health. In Slovenia, typical maximum
ozone concentration during summer is between 200 and 230
mg/m3. The information and alert thresholds that affect hu-
man health are 180 and 240mg/m3 per hour, respectively.
In the capital, Ljubljana (LJ), they are only exceeded a few
times per year. The small city of Nova Gorica (GO) in the
Western part of the country has on average higher levels ofO3

concentration that also appear more often. High tropospheric



ozone episodes in Slovenia are mainly due to the local sources
(in LJ) and the long-range transport of ozone and its precur-
sors (in GO), generally originating from Western Europe. The
highest ozone concentrations occur in summer, with a max-
imum in the afternoon and a minimum in the early morning
[A. Planinšek, 2000]. Nitrogen oxides and VOCs (volatile
organic compounds) are released into the troposphere from a
variety of biogenic and anthropogenic sources. Most of an-
thropogenic sources are emitted as results of the combustion
of fossil fuels. Ozone concentration in rural and elevated ar-
eas is typically twice as high as in urban areas.

Ozone concentrations are regularly monitored, and, ac-
cording to European regulations, environmental agencies
have to provide short term predictions. In this paper we apply
theQ2 approach to machine learning to induce a qualitative
and quantitative model for such predictions.

3 Q2 learning method
The learning problem addressed by theQ2 method is as fol-
lows. Given is a set of numerical examples S, (observations,
measurements), where each example consists of the values of
a set of independent variables and a set of dependent vari-
ables. The problem is to find a numerical functionfi for
each dependent variable, for predicting the value of the i-th
dependent variable given the values of the independent vari-
ables.Q2 learning solves this problem in two stages (Fig. 1):
(1) Construct qualitative constraints QC that hold in the mod-
eled domain, and (2) Construct numerical functionsfi so that
these functions (a) respect the constraints QC, and (b) fit the
data S numerically . The resulting numerical functions con-
stitute a numerical model of the domain. The intermediate
qualitative constraints QC are also part of the overall model,
the part that is not useful directly for making numerical pre-
dictions, but useful for the understanding and interpretation.

The two stages above can be carried out in various ways. In
this paper we used program QUIN[Šuc, 2003] that induces
qualitative constraints in the form of qualitative trees, and
program QCGrid[Vladušičet al., 2003] that performs piece-
wise linear regression respecting a given qualitative tree. In
the following paragraphs we present in more detail the build-
ing blocks of theQ2 learning approach, and a simple illustra-
tive example (subsection 3.3).

3.1 Qualitative induction

QUIN (QUalitative INduction) is a learning program that
looks for qualitative patternsin numerical data. QUIN ex-
presses such qualitative patterns byqualitative trees. In this
section we only give a brief introduction to QUIN; its detailed
description and evaluation is given in[Šuc, 2003].

Figure 1:Q2 Learning Schema

QUIN induces qualitative trees in a top-down greedy fash-
ion, similarly to induction of decision trees[Breimanet al.,
1984; Quinlan, 1992]. The first difference between two ap-
proaches is that in induction of qualitative trees, a differ-
ent error measure is used (based on minimum description
length[Rissanen, 1978]). The second difference is in labels,
assigned to leaves. In decision trees, the leaves are labelled
with values of the dependent variable, whereas in qualita-
tive trees the leaves are labelled with what we callmonotonic
qualitative constraints, which are a kind of monotonicity con-
straints that are widely used in the field of qualitative reason-
ing [Forbus, 1984; Kuipers, 1994].

A monotonic qualitative constraintM s1,...,sm wheresi ∈
{+,−}, stands for an arbitrary relation between the class
variable andm attributes, so that such a relation respects the
qualitative constraints given by signssi. The class and any
of the attributes can be either continuous or ordinal. For ex-
ample, consider the constraintY = M s1,...,sm(X1, ..., Xm).
A relation(Y, X1, ..., Xm) between classY andm attributes
X1, . . . , Xm respects this constraint if for alli = 1, . . . , m,
classY is si-related to attributeXi. We say thatY is “+”-
related (positively related) to an attributeX if for all pairs
(y1, x1) and(y2, x2) of values ofX andY in the projection
of the relation on(Y, X): x1 < x2 ⇒ y1 < y2. “Negatively
related” is defined analogously.

Note that this definition does not require that the class vari-
able is a function of the attributes mentioned in an MQC.
As defined above, MQCs can have more than one argument.
For example,Z = M+,−(X, Y ) says thatZ monotoni-
cally increases inX and monotonically decreases inY . If
Z=M+,−(X, Y ) and bothX andY increase, then accord-
ing to this constraint,Z may increase, decrease or stay un-
changed. In such a case, a MQC cannot make an unambigu-
ous prediction of the qualitative change inZ. This is called
qualitative ambiguity. As qualitative ambiguity usually in-
creases with the number of arguments in an MQC, QUIN
prefers MQCs with less arguments.

Empirical results[Šuc, 2003;̌Sucet al., 2004] show that
QUIN can handle noisy data and, at least in simple domains,
produces qualitative trees that correspond to the human intu-
ition.

3.2 QCGrid
The QCGrid algorithm (QCGrid stands forQualitatively
Constrained Grid) is a regression algorithm that performs the
Q2Q transformation shown in Fig. 1. Inputs to the QCGrid
algorithm are (Fig. 2 - lines 8 and 9): learning data and qual-
itative constraints of one leaf of the qualitative tree and para-
meterk that defines the maximum density of the grid. Results
of the QCGrid algorithm are piece-wise linear functions that
respect given qualitative constraints.

When constructing the grid we search for a suitable grid
spanned over the training data, using binary split search, com-
monly used in regression tree learning algorithms. LetS de-
note the learning data in the current leaf and consist of one
attribute (x) and the function value (y). First, we perform lin-
ear regression and obtain the error, denoted asMSEundivided,
whereMSE stands forMean Squared Error. In the next step
we try to find the valuexg of the independent variable that



1: function NTree =Q2(S,k)
2: QTree = QUIN(S)
3: NTree = CopyStructure(QTree) {Copy structure of the QTree to NTree}

{Induce quantitative models in leaves of the QTree}
4: for Leaf∈ QTreedo
5: Data = ExtractData(S, QTree, Leaf) {Use qualitative tree (QTree) to partition S over leaves}
6: QConstr = GetQualitativeConstraints(QTree, Leaf){Store qualitative constraints of the current Leaf}
7: Grid = GridSearch(Data,k) {Find grid points with respect to parameterk using Data}
8: QGrid = QRegress(Data, Grid, QConstr) {Learn (qualitatively consistent) function values in the points of the Grid}
9: NTree(Leaf) = QGrid {Copy regression result into current Leaf of NTree}

10: end for

Figure 2: Outline of theQ2 learning approach. The two stages of the algorithm are divided as: (1) Induction of the qualitative
model (line 2) and (2) induction of qualitatively consistent piece-wise linear functions (lines 4 — 11).

splits S into two subsetsSl andSr ”best”. The subsetSl

contains the learning examples that satisfyx ≤ xg and the
Sr contains examples wherex > xg holds. LetX denote the
values of the independent variablex in data setS. Candidates
for the grid pointxg are all values in theX . Using each value
as a candidate forxg value, we divideS into Sl andSr and
perform linear regression in both subsets to obtain the error
MSEdivided(xg). In order for somexg to be found as the
”best” grid point, all of the following criteria must hold:

∀x ∈ X : MSEdivided(xg) ≤ MSEdivided(x)

MSEdivided(xg) < MSEundivided

|Sl| >= k & |Sr| >= k

In the above equations,k denotes the minimal number of ex-
amples in each subset and is usually given as percentage of
the examples in the leaf. When the best grid point in theS
has been found, the algorithm recursively proceeds to both
subsetsSl andSr. The output is a set of grid points (G).
If dataset hadn attributes, the above procedure would be
employed for each attribute thus obtainingG1, G2, . . . , Gn

grids. The resulting gridG would be obtained with Carthe-
sian product of the onedimensional grids.

In the next step of the QCGrid algorithm we learn qualita-
tively consistent function values in the previously found grid
pointsG. To this end we use quadratic programming algo-
rithm [Coleman and Li, 1996; Gillet al., 1981], mathemati-
cally formulated as:

min
x

1

2
x
>
Hx + f

>
x

Ax ≤ b

The (quadratic) criterion function is given by matrixH and
vector f . It must be minimized over all vectorsx. The re-
maining three equations give additional constraints: linear
inequalities are defined with matrixA and vectorb; simi-
larly Aeq andbeq define linear equalities. Lower and upper
bounds ofx are defined bylb andub respectively.

When approximating function values in points of the grid
we maximize the fit to the data between the grid points using
linear models. Thus, we transform the generalMSE equa-
tion:

MSE =
1

|S|

∑

yi∈S

(yint,i − yi)
2

=

1

|Sr|

∑

(xi,yi)∈Ls

(axi + b − yi)
2

whereyi andyint,i denote the original and predicted func-
tion values. As we use linear models of the original data,
we can replace the termyint,i with axi + b. Further trans-
formation follows with incorporation of grid pointsgi ∈ G -
division of the approximation function into piece-wise linear
function:

MSE =
1

|S|





∑

(g1≤xi≤g2,yi)∈S

(a1xi + b1 − yi)
2

+ . . . +

∑

(gn−1≤xi≤gb,yi)∈S

(anxi + bn − yi)
2





We rewrite the above equation in order to express the slope
coefficients explicitly: for i-th regionai = bi+1−bi

gi+1−gi

). The
translation of thexi point intoxi−gi gives the intercept coef-
ficients (bi) a new meaning - they become the function values
at the grid points. The rewritten equation for our example is
given below.

MSE =
1

|S|





∑

(xi,yi)∈S

(

xi − g1

g2 − g1
(b2 − b1) + b1 − yi

)2

+

. . . +
∑

(xi,yi)∈S

(

xi − gn−1

gn − gn−1
(bn − bn−1) + bn−1 − yi

)2


 ,



wheregj−1 ≤ xi ≤ gj for j = 2, . . . , n.
In the above formulation of theMSE equation the in-

tercept coefficientsbi denote the function values at the grid
points. In orded to minimizeMSE on the datasetS, the
matrix H and f (the criterion function) must be filled with
coefficients atbi. The matrixH is square and symmetric, and
its fields contain the coefficients that are located next to the
mixed terms after we have simplified the above expression.
We mark the coefficient next to the mixed termbi · bj with
kij . It then follows:Hij = kij . Similarly, f contains coeffi-
cients that are placed next to the termbi.

Qualitative constraints are taken into account with matrix
A andb. The values are set according to they = M+(x)
which means that the function values (bi) at split points
G1 < G2 < . . . < Gend must satisfy the inequalities:
b1 < b2 < . . . < bend)) (see[Šuc and Bratko, 2003] for
detailed description).

The outline of theQ2 algorithm in Fig. 2 shows construc-
tion of the numerical model. In every leaf of the qualita-
tive tree, qualitative constraints are replaced with consistent
piece-wise linear functions, based on the data contained in
that particular leaf. When glueing these functions together,
the problem of discontinuities in the class variable at the
borders between leaves is not addressed. We have consid-
ered several possible approaches towards this issue, but found
them to be overall unsatisfactory, as they cannot guarantee
both continuity and qualitative faithfulness of the model.

3.3 Q2: Simple example
Here we show an example of theQ2 learning approach. We
sampled a simple function and used theQ2 learning approach
in order to reconstruct the function qualitatively and quanti-
tatively.

For the purpose of the example we sampled the function
y = x2. We randomly chose 20 values of the independent
variablex from the intervalx ∈ [−2, 2]. In each of the sam-
pled points, we computed the value of the dependent variable
y. This way, we obtained a dataset with 20 examples, each
example consisting of the value of the independent variablex
and the corresponding function valuey = x2.

The first step of theQ2 approach is the construction of a
qualitative model. A hand crafted qualitative model for our
simple example is shown in Fig. 3(a). The induced qualitative
model is shown in Fig. 3(b). We can see that the only differ-
ence between the models is the value of the internal (splitting)
node - when constructing the hand crafted model we knew
the correct splitting value, whereas QUIN was given only the
sampled learning data and no background knowledge regard-
ing the function to be modeled. Both qualitative trees are fully
consistent with the learning data.

To perform qualitative-to-quantitative transformation we
used the QCGrid algorithm. Fig. 4 shows the result of the
Q2Q transformation, when using QUIN-induced qualitative
tree. QCGrid induced piecewise linear functions in both
leaves of the qualitative tree - both functions consist of three
segments, as the value of parameterk was set to 0.2. Hence
the minimum number of examples in segments of both leaves
was 2. It can also be observed that extreme data values are
end points of the underlying grid.

x ≤ 0.0

y=M
−

(x)
y=M

+

(x)
(a)

(b)

Figure 3: (a) Hand-crafted qualitative tree for they = x2

domain.(b) Qualitative tree induced by QUIN.

Figure 4: QCGrid model fory = x2. The root split from
QUIN’s qualitative tree is indicated by a vertical line atx =
−0.01.

We extend this simple example with comparison of the
numerical accuracy between the describedQ2 approach and
locally weighted regression - LWR[Atkeson et al., 1997],
implemented in WEKA[Witten and Frank, 2000]. We ob-
tained learning data with additional resampling of they = x2

function thus obtaining 10 datasets, each consisting of 20
examples, with no added noise. The comparison was per-
formed as follows: Both methods used internal 4-fold cross-
validation to determine the best prediction parameters. LWR
used Gaussian weighting function, with possible values for
number of nearest neighbours taken from:[1, 2, . . . , 20]. Pos-
sible values for parameterk of the QCGrid algorithm were
taken from[0.1, 0.2, . . . , 0.5]. Each of the 10 datasets was
once used as the learning set for both methods. The induced
models were then tested on the remaining 9 datasets, thus we
performed 90 experiments. The error was measured withroot
mean squared error(RMSE).

To evaluate the obtained results, we first performed a
paired comparison of all 90 obtained numerical errors. The
Q2 approach had lower RMSE in 74% of the experiments.
Mean RMSE over all 90 experiments of theQ2 approach was
0.12, with standard deviation 0.1, while LWR achieved only
0.32, with standard deviation 0.29. We then grouped numeri-
cal results, obtained with the same learning set and averaged



them. So, we had 10 average prediction errors, each result-
ing from one of the learning sets. Such comparison between
learning algorithms shows thatQ2 is on average better in 9
out of 10 cases. To determine whether these differences are
significant, we performed t-test, which showed the signifi-
cance at level 0.04.

The obtained results were further analysed in order to de-
termine the reason for poor performance of the LWR ap-
proach. Fig. 5 shows prediction of both methods on one of
the test sets, if learning set shown in Fig. 4 is used. We can
see that LWR makes rather large quantitative and qualitative
errors - a consequence of poor learning examples coverage in
some regions of the learning dataset. Using qualitative mod-
els as guidance in such problematic areas alleviates predic-
tion, hence better performance of theQ2 approach.

Q2
: y2

LWR: y2
y2

x
21.510.50-0.5-1-1.5-2

4

3.5

3

2.5

2

1.5

1

0.5

0

-0.5

Figure 5: Prediction of the two competing approaches: LWR
makes rather large quantitative and more qualitative errors,
while Q2 predictions are qualitatively consistent.

4 The learning data
Available data are meteorological (temperature, relativehu-
midity, wind speed and direction, solar radiation, precipita-
tion) and air quality measurements (O3, NO, NO2, CO)
as well as predictions of the ALADIN model. Because of
changes in the structure of the ALADIN model, we are lim-
ited to use its predictions only from 2001 to 2003. The mea-
surement data was taken from the same period with a lot of
missing values encountered. The measuring tolerances are
also high and prevent potencial improvement of numerical
accuracy which is in the same range as the tolerances.

By an expert opinion, the amount of data is too small in
many aspects, namely the time period, the number of mea-
sured variables and the number of measurement stations. Var-
ious important measurements, such as VOC, are currently
not available and the process of acquiring them is underway.
Even so, it was possible to induce meaningful qualitative
models, and a numerical model whose prediction accuracy
suffices for operational use. To enable the evaluation of the
accuracy of the induced model, the data was split at the very
beginning into the learning set and the test set. The learning
set was taken to include the data from 2001-2002, while data
from 2003 was left for testing.

ALADIN output data are 3D fields of meteorological pa-
rameters with a finite resolution, in our case 11 km. Up to

the current stage of the project, only ground-level data was
used. The values in model grid points present the average
over the whole model grid cell and it is not possible to as-
sess, within the model framework, a sub grid cell variation.
When interpolating meteorological parameters in a selected
point (for instance a meteorological station) from model out-
put fields, it is erroneously assumed that model output repre-
sents values in the centers of model grid cells. Therefore we
approximated the values at the required points through nu-
merical regression. We decided to use stepwise linear regres-
sion method to build a regression model for each of the mete-
orological parameters separately. With the stepwise method,
a regression model is built progressively. At each step, the
independent variable which has the smallest P-value (using
F-test), is added to the model, but only if that probability is
smaller than0.05. Variables already in the regression equa-
tion are removed if their P-value becomes larger than0.1. The
method terminates when no more variables are eligible for in-
clusion or removal. In our case, independent variables were
meteorological measurements of temperature, solar radiation,
relative humidity and pressure at the meteorological stations
in Ljubljana and Nova Gorica. The dependent variables are
prognostic model values at 210 grid points over Slovenia with
resolution of 11 km. Time resolution of data is 3 hours. Final
results were eight linear regression models (for four meteoro-
logical variables at two stations).

Meteorological and air quality measurements are done
half-hourly. No additional preprocessing is needed, sincethe
predictions are made for the location of meteorological sta-
tion.

The data from the ALADIN model were used together with
meteorological and air quality measurements to induce a pre-
diction model for Ljubljana. On the other hand, only half-
hourly spaced meteorological and air quality measurements
were used alone to induce a qualitative model for Nova Gor-
ica, which was evaluated by a meteorologist and a chemist.
The principals used in CAMx model were compared to the
induced qualitative model.

5 Results
5.1 Qualitative model
The available data for qualitative model building was a set of
meteorological and air quality half-hourly measurements in
Nova Gorica. Nova Gorica was chosen because the measure-
ments showed higher levels of ozone concentrations and more
interesting dynamics. Namely, the experts expected that the
model would highly depend on wind direction because wind
is known to be the reason for high level concentrations. To
enable a reference to the time of the day, the attributet was in-
cluded as an index of the begining of each half-hourly period,
i.e. t ∈ [0, 47]. QUIN cannot efficiently handle large learn-
ing sets, neither in terms of examples nor the attributes. The
learning set was therefore sampled taking every4th example
and subsets of 4 attributes were passed to QUIN[Šuc, 2003].
The output models were evaluated by coverage and qualita-
tive uncertainty which QUIN calculates. The following set of
attributes came out to be the best on the given learning set:
relative humidity (H), solar radiation (S), index of half-hour



interval (t), nitrogen dioxide concentration (NO2). The re-
sulting qualitative tree is shown in figure 6.

Experts’ interpretation
The first look at the selected attributes shows that no irrele-
vant attributes were chosen. Surprisingly, no dependence on
wind can be found, which can, by one interpretation, indi-
cate that local sources of ozone precursors in the city have
an important role in ozone formation. It also turns out, from
the analysis of data scatter plots, that the wind direction mea-
surements themselves cannot indicate the information thatthe
human expert can conclude from other sources, such as Ital-
ian air pollution cadastral registers etc., that were not atour
disposal.

The split in the root of the tree is made ont ≤ 10 which
means 5 a.m. and clearly separates the dynamics at night
and day. The monotonic qualitative constraint (MQC)M+

(S)

may seem disturbing since there is no solar radiation during
the night, but the analysis of the examples in the leaf shows
slightly increasing dependence, presumably in summer days.

In the right subtree, there is a split ont ≤ 35, i.e.
17:30. This break point separates the periods of increas-
ing/decreasing dependence regardingt. The ozone concen-
tration grows witht, i.e.O3 = M+

(t), until 17:30. The produc-
tion of O3 is higher than consumption. Although it has been
generally known to happen in the late afternoon, there are two
possible explanations, not excluding each other. Since we
are modeling the system in the cities it is very likely that the
amount of traffic, which is increased in the afternoon when
people go home from work, influences this by increasing
NOx emissions. These are known to cause the reactions with
O3, decreasing the level ofO3 concentration. The second ex-
planation says that solar radiation is decreasing, resulting in
O3 decreasing. The right subtree of thet ≤ 35 node includes
two splits onNO2. The value of the upper split separates the
space to higher and lowerNO2 concentrations, while the split
on NO2 ≤ 8.6 further separates low and average concentra-
tions. Obviously, MQCs are the same but the regression func-
tions in the leaves differ by slope which is the reason for three
leaves instead of one. This is a concequence of highly non-
linear chemical processes. Finlayson-Pitts[Finlayson-Pitts
and Pitts, 2000] discusses the non-linearity of the dependence
of O3(NOx, V OC) while the qualitative constraints are the
same as in our model.

The left subtree oft ≤ 35 demands a meteorological expla-
nation. The space is nicely separated by relative humidity (H)
to dry (H ≤ 35), average wet (35 < H ≤ 93) and precipita-
tion (H > 93). The MQCs are also easily explained since we
always have one or more dependence fromO3 = M+,+,+

(t,S,NO2)
.

TheM+
(H) in the left leaf of the subtree is not very logical but

the analysis again shows that the regression slope is very low,
almost 0. In fact, this dependence could easily be removed
from the tree in the pruning process, if necessary.

5.2 Numerical predictions
The attributes used in the learning process were built from the
ALADIN predictions at the model grid points, neighboring
the meteorological station point in both cities, as described

in section 4. At that point, the meteorological measurements
were performed. The attributes used are:MAXNO (max.
concentration ofNO in the last 36 hours before the predic-
tion is made),Tavg915LJ (avg. of the ALADINs predic-
tions of temperature from 09:00 to 15:00) in Ljubljana (LJ)
andSsum015LJ (the sum of ALADINs predictions of so-
lar radiation from 00:00 to 15:00). The qualitative tree for
Ljubljana is shown in figure 7. It shows that the ozone con-
centration is positively correlated with the temperature and
solar radiation while negatively correlated with the concen-
tration ofNO. The concentration ofNO in the leaves of the
qualitative trees reflects the dominating mechanisms of the
ozone cycle. Higher NO concentrations occur during night
time with low ozone concentration (right branch). On the
contrary, high ozone concentration as a result of photochem-
ical formation prevents highNO concentration (left branch).

MAXNO ≤ 44.3

M+,+,−

(Ssum015LJ, Tavg915LJ, MAXNO) Tavg915LJ ≤ 279.2

M+,−,+

(Ssum015LJ, MAXNO, Tavg915LJ)
M+,+

(Ssum015LJ, Tavg915LJ)

Figure 7: Qualitative model for Ljubljana

Temperature and solar radiation are statistically highly cor-
related, so a model can choose each of the variables to de-
scribe the presence and intensity of photochemical reactions
in the atmosphere. During night time and cloudy days with-
out solar radiation, temperatures are usually lower. In our
case, temperature showed better statistical correlation with
ozone concentration, which resulted in the second leaf. This
proves that highest ozone concentrations occur during day-
time in summer in hot, sunny and dry weather.

We used QCGrid to build a numerical model from the qual-
itative one. Numerical accuracy of induced model is com-
pared to linear regression (LR) and model trees (M5)[Quin-
lan, 1992]. Table 1 shows the RMSE measured on the test
set. Q2 turns out to be superior to LR and M5, although not
significantly.

Table 1: Comparison of the numerical accuracy of the com-
peting methods

RMSE on test set LR M5 Q2
Ljubljana 21.63 22.94 19.9

6 Discussion and related work
A qualitative model was induced from available measurement
data of meteorological and air quality variables. The purpose
of this model is to describe the complex process of ozone
formation. The qualitative model was evaluated from sev-
eral perspectives - by expert meteorologist, expert chemist
and compared to models in the literature ([Finlayson-Pitts and
Pitts, 2000]). The experts found the models explanatory and
consistent with their understanding of the relevant processes.



t ≤ 10

M+

(S) t ≤ 35

H ≤ 93

H ≤ 35

M+,+,+

(S, t, H)
M+,+,−,−

(S, t, NO2, H)

t ≤ 16

M+

(S)
M+,−,+,+

(H, NO2, t, S)

NO2 ≤ 26.6

NO2 ≤ 8.6

M+

(S)
M+

(S)

M+

(S)

Figure 6: The qualitative model for Nova Gorica built from measurement data. Attributes: relative humidity (H), solar radiation
(S), index of half-hour interval (t), nitrogen dioxide concentration (NO2)

Separate qualitative models were induced for ozone
process analysis and prediction of ozone concentration in the
city of Ljubljana. ALADIN model forecasts were used as
attributes for this purpose. The accuracy of numerical predic-
tions was compared to linear regression and regression trees.
Q2 learning gave results that are slightly better, but the im-
provements are not significant. The experts found prediction
models operationally useful and conclude that the prediction
error is in the order of the measurement error.

Till now in the project, only ground-level data has been
used. Further work should include the data from higher lev-
els of the atmosphere. We expect improvement from that.
ALADIN’s model forecasts of wind speed and direction are
much better at the higher levels of the atmosphere. By ex-
pert opinion, the information of the processes at higher lev-
els could improve the predictions of ozone concentrations at
ground-level.

Finally we here mention some of the related work on
ozone modeling, although none of it involves qualitative
models. Several statistical models[Jenkin and Clemitshaw,
2000; I. N. Athanasiadis and Petridis, 2003; S. Canu, 2001;
M. C. Hubbard, 1998; Cobourn and Hubbard, 1999] have
been built in order to predict the ozone (O3) concentration.
On the other hand, Eulerian photochemical dispersion mod-
els, such as CAMx (Comprehensive Air quality Model with
extensions)[Environ, 2004], are being developed. CAMx
simulates the emission, dispersion, chemical reaction andre-
moval of pollutants in the troposphere. The Eulerian conti-
nuity equation describes the time dependency of the concen-
tration within each grid cell volume where specific physical
and chemical processes are operating. Details on chemical
processes can be found in[Finlayson-Pitts and Pitts, 2000].
The CAMx model has not been in operational use so far and
no numerical prediction from this model is available for com-
parative study.

Acknowledgements
We would like to thank dr. Matevž Pompe from the Faculty
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