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Abstract

Most models of qualitative reasoning depend upon
qualitative representations of quantity that make the
necessary and relevant distinctions for the reason-
ing task at hand. Automatically generating such ab-
stractions from numerical models has been pointed
out to be a practically significant and potentially
difficult problem [Struss, 2003]. Previous work
[Sachenbacher and Struss, 2001] used finite rela-
tional models as a starting point to generate ab-
stractions. In this paper, we work with a black box
model that relates an output variable with known
landmarks to a set of input variables for which the
landmarks need to be determined. For most prob-
lems of practical significance, the input space is
too large to be exhaustively examined. We present
a simple randomized scheme for discovering land-
marks which performs surprisingly well in time that
is only polylogarithmic in the input size.

1 Introduction
A key insight of qualitative reasoning is that powerful rea-
soning can be performed with an appropriate quantization of
the continuous space. In thequantity spacerepresentation
[Forbus, 1984], continuous values are represented via sets of
ordinal relationships to interesting comparison points. There
are two kinds of such comparison points.Limit pointsare de-
rived from general properties of a domain as applicable to a
specific situation. The precise numerical values of these limit
points can change over time, e.g., the boiling point of a fluid
is the function of its pressure.Landmark valuesdenote con-
stant points of comparison on the space of numerical values.

By letting the modeler choose these comparison points, the
quantity space representation allows for variable resolution,
to make just the necessary and relevant distinctions for the
reasoning task at hand. For example, the temperature of a
fluid might be represented in terms of its relationship to the
freezing and boiling points of the fluid. The particular com-
parison points are usually chosen by the modeler as a first step
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to writing qualitative model fragments. The problem of how
to automatically find the necessary and relevant distinctions
remains largely unsolved (but see[Sachenbacher and Struss,
2001] [Paritosh, 2003]).

[Struss, 2003] has pointed out the practical importance and
difficulties in generating such abstractions automatically from
numerical simulation models. In a real-life industrial sce-
nario, one might have access to complex and opaque numeri-
cal models – MATLAB/Simulink models with nonlinear ana-
lytic functions, tables with empirical data and even black-box
model fragments with C code. Transforming such a model
into a qualitative diagnosis model provides finite compact
representations that can be used for on-board diagnosis.

In this paper, we present the Landmark Discovery (LD)
problem, and randomized algorithms which solve it with
provable performance guarantees. The time complexity of
our algorithms is only polylogarithmic in the input size with
polynomially small error probability.

We motivate the problem with an example in Section 2.
Section 3 is devoted to definitions and terminology. Section
4 presents the problem formulation, algorithm and analyses.
Section 5 discusses related work. We conclude with future
work in section 6.

2 Black Box Landmark Discovery
Let’s look at a simple example. Consider the case of fluid
flow through a pipe. At low velocities, the flow is smooth,
or laminar. Depending on the ratio of inertial and viscous
forces, which is captured by Reynold’s number, the flow can
be laminar, transitional, or turbulent.

Suppose for a certain flow, we are given a black-box model,
M , that relates the Reynold’s number,R, in a certain flow to
the velocity of flow,V , the characteristic distance describing
the flow,D, viscosity of fluid,µ, and the density,ρ. This is
used for the sake of illustration, as for certain flows one might
have a closed-form expression for Reynold’s number.

M(ρ,V,D,µ ) R
∈ [0,2000] ⇒ Laminar
∈ (2000,4000] ⇒ Transient
∈ (4000,∞) ⇒ Turbulent

Figure 1:Black box model for computing Reynold’s number



In this model,R is the output variable, and we can query
the model with values for all the input variables, namely,
V , D, µ and ρ. For each of the input variables, we
are given the range of values that they can take, and the
granularity. The interesting distinctions for the values of
Reynold’s number characterizing the flow are given to us as
{(0, 2000), (2000, 4000), (4000,∞)} with the three intervals
corresponding to laminar, transitional and turbulent flow sce-
narios. Following[Sachenbacher and Struss, 2001], we call
these thetarget distinctions. We are interested in finding the
corresponding distinctions for the input variable. The range
and the granularity of input variables gives rise to a discrete
input space. This space can be very large. Not all distinctions
in the input space are needed if we are just interested in type
of flow. Given a black box model and a set of target qual-
itative distinctions for the output variable, we are interested
in finding the coarsest representation of the input space, i.e.
the minimum distinctions that we need to make in order to
capture all the distinctions thatM makes.

One such representation is a set oflandmarksfor each of
the input variables. If there ared input variables, the land-
marks imply a grid whose cells ared-dimensional hyper-
rectangles such that for any point inside this hyper-rectangle,
the output variable is in the same target qualitative state.

3 Definitions and Terminology
We consider a system with one output variable,y, and d
input variables. The discussion here can be generalized to
the case of more than one output variables. We assume
that there is a model,M , which has a functional form, i.e.,
y = M(x1, x2, . . . , xd). We say thatM is a black box model
as we don’t knowM directly, or make any assumptions about
M . M could be instantiated as Simulink/C code. We can
queryM with values for the input variables to find the value
for the output variable.

We assume that input variable,xi can take real values from
a given closed interval. Even though input variables can take
real values, because of measurement and/or observability lim-
itations, we have a maximum granularity on the input values.
A measurement granularity is the smallest difference that can
be noticed. Thus the domain of input variables is observable
as a set of discrete points in the given interval. In Sachen-
bacher and Struss’ formalism, this corresponds to the set of
observable distinctions for the variable. Let the domain of an
input variable,xi, be the setI = {1, 2, . . . , n}. We assume
the cardinality of each of the dimensions to be the same for
the ease of exposition. However, this assumption is not criti-
cal for either the correctness or performance of our algorithm.
The output variable takes on real values. Furthermore, we
are given a partition of the domain of output variable, which
correspond to qualitatively distinct regions called thetarget
distinctions.

By querying the model,M , with values for the input vari-
ables we can obtain the value for the output variable, and thus
the corresponding target distinction. ThusM implies a map-
ping, f , from the discrete input space to the discrete output
space of target distinctions. Letτ be the set of giventarget
distinctionsfor the output variable. Note thatτ is countable

and finite.Landmarksare points in the domains of each input
variable. The output variable belongs to two different target
distinctions across a landmark of a given variable, for some
combination of input values of the other variables. We repre-
sent the landmarks for the input variablexj as the landmark
set,Lj = {`j

1, . . . , `
j
m}. A landmark set is calledmaximalif

it contains all the landmarks for that input variable. We illus-
trate these concepts in Figure 2(a) for the case of one input
and one output variable.

The landmark discoveryproblem is to find the maximal
landmark sets for each of the input variables. In the next sec-
tion we formally define this problem.

4 Algorithms and analysis

We first present the simpler case of one input variable to illus-
trate the algorithm, after which we discuss the general case of
d input variables.

4.1 Landmark Discovery with one input variable

Problem 1 (Landmark Discovery: 1 Input).
INPUT: A functionf : I → τ .
OUTPUT: A set of pointsL = {`1, . . . , `m} such thatf(`i −
1) 6= f(`i)∀i and|L| is maximized.

Let n be the number of points in the input space, i.e.,
n = |I|. Let L∗ = {`1, . . . , `m} be the true landmark set
such that̀ 1 < `2 < · · · `m. We now present a randomized
algorithm which outputs a landmark setLout ⊆ L∗ such that
Lout contains all the landmarks inL∗ with high probability.

Algorithm 1 1-LD(c,δ)

1. Samplef uniformly ats = c· log n
δ points fromI. Let the

points ber1, r2, . . . , rs such thatr1 ≤ r2 ≤ . . . ≤ rs.

2. LetLout = ∅.
3. For all i ∈ [1, s − 1], if f(ri) 6= f(ri + 1), do a binary

search to find a landmark̀such thatf(`) 6= f(` − 1).
LetLout = Lout ∪ {`}.

4. OutputLout.

Theorem 1. Algorithm 1-LD finds all landmarks which are at
leastδ·n apart inO( c

δ log2 n) runtime with error probability
o(m/nc) for any constantc > 0.

PROOF: For any two consecutive sample points, Algorithm
1-LD spends at mostO(log n) time for binary search. Since
there are a total ofO( c

δ log n) sample points, the total runtime
of algorithm isO( c

δ log2 n).
For any`j ∈ L∗ such that̀ j − `j−1, `j+1 − `j > δ·n, let

P`j be the probability of not including̀j in Lout. Note that
if the set of sample points contain somexα ∈ [`j−1, `j ] and
xβ ∈ [`j , `j+1], then we are guaranteed to include`j in Lout.
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Figure 2:Example of the landmark discovery problem for one input variable. Figure 2(a) shows the relationship between the input variable
x and the output variabley. T0, T1, T2 are target distinctions fory. Figure 2(b) shows the intervals on the domain ofx identified by the
landmarks, `1, `2, . . . , `6 corresponding to the given target distinctions. All points within an interval between two adjacent landmarks onx
map to the same target distinction ony. Across a landmark, the variablex maps to different target distinctions.

Therefore,

P`j
≤ Pr[@ a sample in[`j−1, `j ]

or @ a sample in[lj , lj+1]]

≤ (1− `j − `j−1

n
)s + (1− `j+1 − `j

n
)s

≤ 2·(1− δn

n
)s

= 2·(1− δ)
c· log n

δ

= 2·n c log(1−δ)
δ

< 2·n−c.

SinceP`j < 2·n−c for all `j ∈ L∗, the probability that
Lout misses any of the landmarks inL∗ which are at leastδ·n
apart is at most2·m·n−c which iso(m/nc).

Corollary 1.1. If all landmarks inL∗ are at leastδ·n apart,
then Algorithm 1-LD finds them all in timeO( c

δ log2 n) with
error probabilityo(m/nc) for any constantc > 0.

4.2 Landmark Discovery with d input variables
Problem 2. [Landmark Discovery:d Inputs]
INPUT: A functionf : Id → A.
OUTPUT: SetsL1, . . . ,Ld whereLj = {`j

1, . . . , `
j
m} such

that the following holds for all1 ≤ j ≤ d

1. For all `j ∈ Lj , ∃x1, . . . , xj−1, xj+1, . . . , xd ∈
I such thatf(x1, . . . , xj−1, `j − 1, xj+1, . . . , xd) 6=
f(x1, . . . , xj−1, `j , xj+1, . . . , xd)

2. |Lj | is maximized.

Let n = |I|. The total size of the input space isnd. Let
Lj
∗ = {`j

1, . . . , `
j
m} be the true landmark set. We present a

randomized algorithm which outputs a landmark setLj
out ⊆

Lj
∗ such thatLj

out contains all the landmarks inLj
∗ with high

probability.

For thed-dimensional case, the landmarks imply a grid
whose cells ared-dimensional hyper-rectangles such that for
any point inside this hyper-rectangle, the output variable is in
the same target qualitative state.

Let~a = (a1, . . . , ad) denote a point in d-dimensional space
and~aj be its jth componentaj . Each landmark̀ j

i ∈ Lj
∗

defines ad−1 dimensional axis parallel hyperplaneH`j
i

given

by the equation~xj = `j
i . Further letA`j

i
andB`j

i
be two

adjacent grid cells such that their common face lie onH`j
i

and
the points inA`j

i
belong to a different target qualitative state

than those inB`j
i
, i.e. if ~a ∈ A`j

i
and~b ∈ B`j

i
, thenf(~a) 6=

f(~b). We call any suchA`j
i

andB`j
i

to be`j
i−separated grid

cells.

Definition For any two points~x and~y such thatf(~x) 6=
f(~y), a landmark̀ j is said toresolve~x and~y if and only if
~xj ≤ `j < ~yj or ~xj < `j ≤ ~yj .

Figure3 illustrates these definitions for the case of two in-
put variables.

Algorithm 2 d-LD(c,∆)

1. Samplef uniformly ats = c
∆ log nd points fromId.

2. LetLj
out = ∅ ∀ j.

3. For all pairs of sample pointssa andsb, if @`j
i ∈ Lj for

any j such that̀ j
i resolvessa andsb, then do a binary

search betweensa andsb to find a landmark̀ j′

i′ which

resolves them. LetLj′
out = Lj′

out ∪ {`j′

i′ }.
4. OutputLj

out ∀ j.

Theorem 2. Algorithm d-LD finds all landmarks̀ such
that `−separated grid cells are at least∆·nd large in
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Figure 3:Example illustrating the concepts used in thed dimensional landmark discovery problem. Shown is the input space for two inputs.
Figure 3(a) depicts regions which correspond to different target qualitative distinctions, 1 and 2. The dotted lines in Figure 3(b) indicate the
grid implied by these regions. The landmark,` defines the 1 dimensional hyperplane (line), represented by the thick line.A andB represents
the`-separated grid regions.

O(m( cd
∆ )2 log2 n) runtime with error probabilityo(m/ncd)

for any constantc > 0.

PROOF: For any pair of sample points, we spend at most
O(m) time searching for a resolving landmark. For every
landmark, we spend at mostO(d log n) time for the binary
search in which it is discovered. Hence the total running time
is O(ms2 + md log n) which isO(m( cd

∆ )2 log2 n).
For any`j

i ∈ Lj
∗, let A andB be two`j

i−separated grid
cells. Note that a point inA and one inB can be resolved
only by the landmark̀j

i . Hence, we are guaranteed to include
`j
i in Lj

out if the set of sample points contain somexα ∈ A
andxβ ∈ B. Therefore, if|A| ≥ ∆·nd and|B| ≥ ∆·nd, then

P`j
i

≤ Pr[@ a sample inA OR@ a sample inB]

≤
(

1− |A|
nd

)s

+
(

1− |B|
nd

)s

≤ 2·
(

1− ∆·nd

nd

)s

= 2·(1−∆)
c· log nd

∆

= 2·n cd log(1−∆)
∆

< 2·n−cd.

SinceP`j
i

< 2·n−c for all `j
i ∈ Lj

∗ for all dimensionsj, the

probability thatLout misses any of the landmarks`j ∈ Lj
∗ for

anyj such that thèj−separated grid cells are at least∆·nd

in size is at most2·m·n−cd which iso(m/ncd).

4.3 Discussion

The input spaceId is too large to be exhaustively searched
for landmarks. In an adversarial situation, scanning the entire
input space is unavoidable. However, the above algorithms
demonstrate that we can get good guarantees for finding all
the landmarks in sublinear time when the landmarks are not

too close to each other. Such an assumption is quite reason-
able in practice. For instance, based on physical or measure-
ment constraints, we might expect how close the landmarks
can be. The constantδ captures this constraint. The constantc
represents the tradeoff between running time and probabilis-
tic guarantee of success.

5 Related Work
Although the idea of necessary and relevant distinctions is
a cornerstone of qualitative reasoning, Struss and Sachen-
bacher were the first to highlight and formalize the problem
as theQualitative Abstraction Problem[Struss and Sachen-
bacher, 1999]. They gave a solution to the case of finite re-
lational models, and an implementation of their algorithm,
AQUA.

The problem presented here is a special case of the qual-
itative abstraction problem for the case of ordered domains.
The domainId of the functionf maps to the concept ofob-
servable distinctions. Thedomain abstractionsare captured
by the sets,L. Thetarget distinctionsare captured by the set
τ .

Thetarget distinctionsare present only on the single output
variable (in our formulation). Our algorithm extends easily to
the case when there are target distinctions on more than one
output variable. We find thedomain abstractions, L for each
variable (with target distinctions) separately and then merge
(find intersections) of the results. This statement has actually
been proved in[Struss and Sachenbacher, 1999].

The problem formulation in this work prescribes a func-
tional relationship that connects each variable with target dis-
tinctions with the other variables. The requirements that the
resultant solution bedistinguishingandmaximalis captured
by conditions 1 and 2 in Problem 2 in Section 4. While the
solution methodology described in[Sachenbacher and Struss,
2001] applies to general case of unordered domains, the work
here presents an efficient way of solving the problem with
ordered domains. Our approach could be used in conjunc-



tion with their model-based approach which exploits knowl-
edge of relationships between variables. Or, one could use
our methods to create a finite abstraction of the input space
that could be then used as a starting point by a system like
AQUA. In our problem we assume that at least one of the
output variables is also the target variable.

Another very different approach is taken by[Paritosh,
2003]. The goal of his work is to find cognitively plausi-
ble qualitative representations of quantity. The key insight
there is that important qualitative distinctions arise because
of discontinuities in the relational structure of the domain.
The theory has been implemented in a system, CARVE, that
takes a set of examples represented in predicate calculus as
input and determines thelimit pointson various quantitative
dimensions.

6 Conclusions and Future Work
Clearly, no algorithm can guarantee to find all the landmarks
without looking at the entire input space. However the in-
put space could be prohibitively large to be exhaustively ex-
amined. For such cases we are able to find landmarks that
are not too close to each other with polynomially small error
probability in polylogarithmic runtime.

In this paper we have only analyzed the case when the qual-
itative states correspond to axis-parallel hyper-rectangles in
the input space. As future work, we intend to extend these
techniques to general d-dimensional polyhedra. We also be-
lieve there is scope for tightening the analysis and improving
the run-time of the algorithm by more carefully choosing a
subset of all the pairs of sample points to be resolved.

We presented sublinear algorithms for finding all land-
marks under the assumption that they are not too close. An-
other possible approach might be to allow the landmarks to
be arbitrarily close but exploit the property that the number
of landmarks for a variable is usually much less than its input
space.
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