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Abstract to determine the continuous control in more detail. Due to
the qualitative pre-selection, we avoid that the computation-
ally expensive numerical optimization is applied unnecessar-
ily often.
Our qualitative model is formulated with its application,
the task of on-line hybrid control, in mind. It represents the
. ossible qualitative trajectories as a graph that enables effi-
schem_e f_or such Iayb_rld controlproblen) that uses Eient sea?ch methods Jto find a suita%lephybrid control law.
a qualitative description of the system's hybrid dy- 5 a0 jtself is encoded similarly to an Ordered Binary
namics to pre-select feasible mode sequences prior e ision Diagram (OBDDJAndersen, 1997 thus enables
pursuing the computationally expensive task of nu- efficient search and compact storage.
merical control-law synthesis. We present a qual- In literature, qualitative methods in hybrid control mainly
itative modeling framework that captures the hy-  ,q4ress issues of reconfiguratibhskari et al, 1999 or
brid quel In terms of quall_tatlve abstrac_t|0ns ofa fault diagnosisiHamscheret al, 1994. Continuous con-
system’s continuous behavior together with the de- o ot hyhrid systems, i.e. determination of continuous ac-
scription of the d|§crete dynam|cs' (mode change§) tuation, is preferably addressed by numerical methods, like
and othercqntrol-|_nduced constraints. The moqlels mixed integer linear and quadratic programmiigmpo-
representation builds upon a structural analysis of a4 404 Morari, 1999 Contrarily, we take a mixed quali-
the artﬁqcts hybnq model and compac'gly encode; tative/numerical approach that combines the insight provided
the hybrid dynamics as an Ordered Binary Deci- 5 qalitative approach with the exact solutions of a numer-
sion Diagram like representation that supports fast <5 approach. In this way we solve both tasks, mode config-
on-line reasoning. uration and continuous actuation. Together with the hybrid
estimation off Hofbaur and Williams, 2004; Hofbaur, 2005
1 Introduction in its 'final version’, our approach to hybrid control shall ad-

Many modern systems exhibit hybrid behaviors that can b&ress the problem of hybrid automation. This demands high
described in terms of continuous dynamics and discrete evdicXIPility with respect to reacting on unforeseen situations
lutions among operational modes. Automatic control of SUC’,EI’ODGH)/ and motivates our aim to deduce hybrid control on-

systems involves the deduction of a hybrid control sequenc The remainder of this paper is oraanized as follows: Sec-
that consists of a suitable mode sequence and the associated 2 add : hvb 'Id P pt ! gd .'Zt d WS- |
continuously valued actuation to the system. The deductio on - addresses hybrid sysiems and Infroduces an exampie

of this hybrid control strategy is difficult as the number off at g]yirslebs_:jhrou%h lthe gr_ti((:jle. tSec:]ion ?hpresen:)s t?e Elroé"
possible mode sequences over time can be very large. em of fiybrid contro and Indicates how this can be tackie

A natural approach to tackle this problem is to captureby gualitative pre-selection of promising control candidates.

the continuous dynamics of such a hybrid system in term<ction 4 introduces our qualitative modeling approach and
of a qualitative modelsince then both, continuous and dis- discusses important features of the model such as efficient

crete dynamics of that system are described by relation§ear0h within the model and compact compilation. Section 5

among discretely-valued variables and one can apply SymC_oncludes this with a summary of compiling the example into

bolic methods from the toolkit of Artificial Intelligence to se- a qualitative model.

lect among the possible controls. This paper follows this ide .

and presents an approach for hybrid control that builds upo? Hybrid System

a qualitative model to pre-select suitable control candidated.et us start with a simple hybrid system that exhibits differ-
These candidates specify the mode-sequence but capture thiet dynamic behaviors according to dgerational moden;.
continuous part of the hybrid control problem only qualita- The dynamic system can be captured in terms of its continu-
tively. An additional numerical optimization is then applied ously valued stat&(t) = [z1(t),...,z,, ()]’ and receives

Complex artifacts that exhibit a mixture of con-
tinuous and discrete behaviors are difficult to con-
trol since one has to calculate a continuous control
actuation that is interleaved with commanded dis-
crete mode changes. Our paper presents a novel



the inputsu(t) = [uy(t),...,un,(t)]T. Its operation can

be observed through the outpwt&) = [y1 (), . . ., yn, (£)]© it
and is described in terms of the linear model el 7 /// 7§?////¥*7\\\\
’ D N
d ———
g = Aix(t)+Biult) W o NN TTITTTINN
ey, 1733
where the index of the system matriced;, B;, C; and o VI AN NN
D; indicates the dependence upon an operational mode | \\\ \\\ § { \ l > } hN } }
Complexity of the system’s operation is due to the hybrid evo- 02 AN N NN . > > [
lution that consists of the dynamical change of¢batinuous oal NSNS~
statex(t) interleaved with discrete mode changes. The mode ol R R e A
or discrete state:4(t) determines the dynamic model (1) that ' iii::::///;;;; ; ; ;
is valid at a particular time poirit Thus, the combination of O e Y
continuous and discrete state WL L

1 08 06 04 02 0 02 04 06 08 1

xn(t) = (a(t), x(1)) ) n

manifests théybrid stateof the hybrid system.
As an example consider the hybrid system with two modes
{my, my}. The variation of the dynamic behavior is due to

(a) modem

different system matriceA;
-0.35 -1 1
AJ[ _ ] [ 1117
1 0.35 - o LIS
0.65 1 R
AQ:[ ' } . B
-1 0.65 U EEE NP CUON
The input, output and direct transmission matrix are mode o2 { { { { { / 7;\ii§§§§
independent, more specifically R N N D URNE N
oal SO LA A A
0.2 10 0 RN N R R S A T T
B; = , Ci= , Di= N RSS2
0 0 1 0 R
o
As in many real systems, we assume limited actuation, in par- N ::\":;j;? ? ; ; / :
ticular, for this example we assume: ol I ////// RN
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Furthermore, we require that the continuous stafg = K
[x1(t), 22(t)]T stays within a region of the state space such
that (b) modem
—1<x(t) <1, -1<a(t) <1. (6)
These two constraints make the task of control difficult. Figure 1: Vector fields and trajectories for the hybrid system

For simplicity, we assume here that mode transitions are
purely triggered through an exogenous command it

specified time points
yr = y(tr) denote the sampled continuous state and the

tk =to + KT system output, respectively. In terms of the discrete mode
wheret, andT, denote the initial time and the sampling pe- z4(tx), we take the standard hybrid system’s assumption that
riod of our hybrid control system, respectively. Because ofa mode change takes place immediately after the sampling
the discrete-timeoperation of our hybrid controller, we also time pointt; so that:
assume that the value of the continuous inp(t) is kept
constant within the sampling period at

u(t) =ug, <1<tk
andu; denotes the discrete-time variant of the continuously-
valued system input. In the same sensg, = x(t;) and Because of the hybrid controller’s discrete time operation

1Although the example has a scalar input we will use the boldWe model the hybrid system in terms of an automaton with
[u] to denote the continuous input in order two modesmn; andm, that changes its discrete state imme-
diately aftert;, and specify the continuously-valued dynamics

2q(t) = Tar1 te <t <tggr .

face vector notatiom =
to be conform with the dynamic model (1).
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Figure 2: Trajectory for mode sequen@,, my, m; } Figure 3: Trajectory for mode sequenge,,my,mso}

in terms of the two discrete-time modéfer 7 = 1.5: the vicinity of a desired operational point. In order to ac-
tuate the system, hybrid control has to concurrently deter-
0.04 —-0.59 0.16 ; . : )
mp:  Xg41 = X + u, (7))  mine the discretely-valued actuatiary; (command input)
0.59 0.04 0.13 ; : ¢ .
and the continuously-valued input, in order to drive the
) | 019 264 + 0.30 . (8) system through a continuous evolution that is interleaved with
M2 Xkl = | 964 019 | %k —0.36 | " discrete mode changes. The key problem of hybrid control
) . is, therefore, to deal with continuously valued variables, (
S_amplmg does not change the matrices of the output equgy, v,) and discretely valued variables s, uy) simulta-
tion, thus: neously.

Vi = { 10 ] X 9) Let us demonstrate hybrid control with the hybrid model
01 introduced above. The control objective is to traverse the sys-
Figure 1 visualizes the different dynamic behaviors of the hytem from the initial continuous state, = [—0.875, 0.875]7

brid system as vector fields and indicates a particular trajedo a goal state that lies within a disk of radius 0.125 around the
tory for the initial statex, = [—0.4,0.4]7 andu;, = 0. The  operational poinf—0.625, —0.625]7. What makes the prob-
dots along the trajectory indicate the sampled stafes lem complicated are the limited continuous actuation (5) and
Normally, one would use individual hybrid automata to the constraints on the allowed region of the state-space (6).
model system components of a complex physical artifact. Taking the qualitative view of the system’s dynamics that
Their composition as a concurrent hybrid automaton will thenis shown in Figure 1 we observe that the system at mogde
represent the overall model. However, for clarity, we will re- exhibits trajectories that follow counterclockwise spirals that
strict our presentation to a single component model, since thidirectly traverse states from the upper left region of the state
allows us to concentrate on the individual qualitative model-space to the lower left region, just what we desire. As a con-
ing assumptions and we do not loose track due to the comsequence, an initial guess would be to keep the system at the
plexity of the model itself. However, we will highlight those modem; for all times, i.e.xg;, = m1.
facts in our modeling and control scheme that are particularly However, due to the limitation of the continuous input, we
relevant for the multi-component case. cannot find values fon,, between the limit® and1 such that
Another simplifying assumption that we take at this pointwe can reach the goal region. The trajectory that achieves
of our research endeavor is that we assume direct observgninimal distance for any of the statgs,, xo, x3} to the cen-
tion of the continuous state. It is our intention to relax thister of the goal region passes by the goal region after 2 time
assumption later through the utilization of hybrid estimatorssteps, as shown in Figure 2. Thus, we have to back-track and

similarly as it is done in standard state space control. consider an alternative mode sequence that combines both
_ o ) modes of the hybrid system in a clever way.
3 Hybrid Control and Qualitative Modeling The continuous dynamics of the model as shown in Fig-

The task of automatic control is to actuate the hybrid sysreé 1 can be classified qualitatively in terms of a stable coun-
tem such that its hybrid state follows a particular trajectory,lerclockwise spiral forn, and an unstable clockwise spiral

reaches a specific point in the state space or remains withif" 72. This gives rise to the following idea: we traverse
with modem; until we pass by the goal region and then

2Let ®(t) denote the solution afx/dt = Ax. Then, one can  switch to the moden, to reverse the direction and proceed to-
obtain the dynamic and input matrix of the corresponding discretewards the goal region. Because of the shape of the trajectories
time model by®(7) and [, * ®(7)Bdr, respectively. we guess that a trajectory segment at modefor two time



steps, followed by a trajectory segment at madge might M

be a suitable mode sequence and determine values for the in- offline
putsug, k = 0,...,2 such that the constraints on the input """""""";r;_ﬁné'l' --------------------- -
and the state are satisfied. This numerical optimization, that
attempts to bring the state,,k = 1,...,3 as close to the Goal [} Qualitative
. . . goal
center of the goal region as possible, leads to the following
values for the continuous input Hybrid E) Qualitative “bad”
state state sequences
u =08, u =0, uy=0.12. (10) 7'
Discrete search
Figure 3 shows the trajectory of the continuous state for this
mode-sequence and input actuation. Continuous | Mode Discrete
dynamics model | sequence inputs
3.1 Hybrid Control through Qualitative L 2 —
Pre-Selection controller design
We showed how abstracting the continuous dynamics qual- successiul
itatively can help to solve the hybrid control problem. Continuous .| System
. . inputs behavior

Therefore, we capture the continuous dynamics of the hy-
brid system in terms of a qualitative model and obtain a ) mapping v

. .. . —influence New
discretely-valued description for both, the continuous and =presult hybrid state

discrete evolution of the system. Then, one can capture
the control objective, that is, the desired continuous trajec-
tory or goal state and the initial state of the hybrid sys-
tem qualitatively and apply discrete search methods to de- o i )
termine a suitable hybrid trajectory that satisfies the condescription of the variable’s valuation. In order to keep the
trol objective. This operation provides the desired mode setodel compact, we select a reasonable coarse separation of

Figure 4: Hybrid control supported by a qualitative model

quence{zqo,...,zqn} (along with the sequence of com- qualitative values. On the one hand, we ensure that we cap-
mand inputs{ugo,...,usny_1}) and a qualitatively ab- ture the system-imposed qualitative values but also increase
stracted continuous trajectofty, ..., Xy} and input se- the granularity in order to obtain good behavior for hybrid

quence{lo, ..., Ux_1}. This continuous part of the hybrid control. . _ _ _
control problem has to be specified in more detail in order Our modeling framework is meant to work with hybrid au-
to provide the exact values of the inpuis that ought to  tomata of higher complexity than the example that was in-
be actuated. Because of the qualitative pre-selection, howfroduced above. First, we will compose complex systems in
ever, we obtain a hybrid control problem for a system with aterms of a concurrent composition of simpler automata that
fixed mode-sequenciro, . .., zq v }. This is equivalent to Modelindividual system componerftsofbaur and Williams,
interpreting the hybrid model asantinuously valued time- 2004. Secondly, we will allow autonomous mode transitions,
variant systenand standard methods from automatic control2nd not just commanded ones. The second fact, in particular,
theory, such as Optimal ContrfBertsekas, 1995r Model ha_s implications on th_e state space separation since we have
Predictive Contro[Maciejowski, 2002 can be used to de- tointroduce all qualitatively important values/borders into the
termine the values for the continuous inputs on a numericaflualitative domain as well. . .
basis. Before we get more specific on multi-component hybrid
This approach, however, has one major drawback. Th&ystems, we demonstrate the approach of forming the qual-
qualitative abstraction of the hybrid model leads to a qualitative model for our example (7-9) informally. We choose
tative model that is subject to spurious behavisipers, o describe the continuous state space in terms of quadratic
1994 and the consecutive numerical control law deductionP0xes of sizé).25 x 0.25, as indicated by the dotted lines in
may be unsuccessful or may lead to unsatisfying results ifhe Figures 1-3. The outpyt. provides direct observations
terms of the control objective. In both cases, one has to bacl@f the statex;. (9) so it is reasonable to express the quali-
track to the qualitative hybrid control problem and determinetative model in terms of state and input only. For the input
an alternative result. uy, we choose two qualitative values that represent the inter-
The described procedure for hybrid control that uses ¥als[0,0.5]and(0.5,1]. In terms of notation, we will use the
qualitatively abstracted hybrid model to guide the search fofalligraphic letterst and/ to denote the qualitative counter-

a suitable hybrid control strategy is summarized in Figure 4.Parts ofx andu, respectivelys; andv; denote the qualitative
valuation of the qualitative variabl& andi/.

P As an example, let us provide the qualitative encoding of
4 Qualitative Model the trajectories for the mode; that start at time;, in the
The first step towards a qualitative description of the contin-upper left corner of the state space
uous dynamics of the hybrid system, that is somehow similar 1< < 075 0.75< <1 11
to a non-deterministic automathunze, 1992; 1994 is to _ = Tk = 7000, - B0 = T2k = (11)
divide the continuous domains of the variablesu andy  Which represents the qualitative value
into qualitatively distinct regions so that we obtain a finite Xy =& (12)



0.8r

061

04r

0.2r

0.2

0.4

0.6

0.8
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and an inpuiy, within the interval(0.5, 1], qualitatively ex-

pressed as Figure 6 shows this operation graphically for the example

relations given above (14). The resulting probability density

. . I .uf“ 2 (13) " allows us to calculate the likelihood of each relation. We ob-
With this specification it is straight forward to calculate the i5in the values by taking the integral over all qualitative val-

possible state at + 1 using the difference equation (7). For yations ofx,_ ;. For our example and the relations (14) we
x,+1 We obtain a region in the state space as illustrated ig)ptain likelihood values

Figure 5 where the grid represents the qualitative quantifica-

tion of the state space infox 8 = 64 boxes¢y, . . ., 4. mode X, Up Xpt1 L
With respect to this figure and its underlying deduction, we my & v & 0.08 (16)
record two qualitative relationships as my & ve &3 0.92.

mode Xy Uy Xy (14) These likelihood values will be used as quality measure when

mi & v e deducing a qualitative hybrid control strategy. Of course, in
m1 & ve &u3 terms of s )
. , . probabilities, they are only correct under the assump
Each line of the table stands for a logical expression such asjon that we have a uniform distribution at time-stepnd we
(ar = m1) A (X = &) AUk = v2) AN(Xp1 = &2) (15)  only perform a one-step-ahead prediction as the distribution
for the first line. for xx41 is not uniform already. However, we intend to use
We observe that these trajectories are ambiguous, since fifte qualitative relations recursively to dedutestep qualita-
one given origin and actuatiom, &, v») we have two dif- tive trajectories so using these values consecutively is, strictly
ferent qualitative goal stateg,6, £43). However, we addi- speaking, an abuse of the probability notion. Nevertheless,
tionally observe, that most of the region feg,, covers the the likelihood values provide a good indicator that tells us
qualitative valuet,3. We account for this by associating each Whether an ambiguous relation is likely to hold or whether it
relation with alikelihoodvalue L that takes this fact into ac- is just true for some very special valuations of the system’s
count. variables. Because of these relaxed requirements it is easily
One way to express this likelihood is to assume uniformpossible to consider even simpler measures, such as the area
probability density for all valuations that correspond to thebased measures used[Benazero, 20d3for the estimation
qualitative values of the variables, andu,, and zero proba- and reconfiguration of hybrid systems. However, we prefer
bility density elsewhere. We then apply the difference equathe likelihood values due to their intuitive probability-like in-
tion for the moden; under consideration terpretation.

Xpi1 = A; xp + B; uy, Up to now, we only de_scrlbed the quahtauve abstraction
of the continuous dynamics of the hybrid model. We have
to include also the discrete mode transitions that can depend
on the values of the input and the state variables. Without
going into detail here (we did not even detail the underlying
hybrid model in its full extent) we only want to note that these
model properties can be formulated as relations as well so

that we end up with a set of relations that directly describe
p(x1,x2) = / / p1(ag, ag)pe(z1—ar, zo—ag) dasday . the discrete dynamics of the hybrid automaton together with
the qualitative abstraction of its continuous dynamics.

and calculate the resulting probability distribution through
convolution [Papoulis, 1984 For example with a 2-
dimensional state space = [z1,72]7 and distributions
p1(x1,x2) andps(z1, z2) for A; x; andB; ug, respectively,
this is done by

+oo +o0o

—0o0 — 00



Of course, the number of relations increases exponerstructural properties can be obtained through the causal anal-
tially with the number of input, output and state variables.ysis [Nayak, 1995; Trag-Massugs and Pons, 199f the
As a compromise between model size and on-line reasoninderlying equations. As motivation for this consider two tra-
ing time, we compile the possible behaviors component-wisgectories with same;, but different 'past’ k51, ux_1,- - .),
only. Therefore, it seems reasonable that the number of variwhere we have depicted causal dependencies among variables
ables and their qualitative state-space stays within a marnin Figure 8.
ageable size and on-line reasoning is responsible for deduc-
ing system-wide interactions among the system’s components 0 0
and to deduce qualitative trajectories that go beyond a one-

step-ahead prediction. @ ° @

4.1 Compilation of the Qualitative Model @ @

Our qualitative model encodes the possible trajectories for
component automata via a set of relations. Each trajectory
is supplemented by a likelihood value. Apart from the obser- Figure 8: Causal dependencies among variables
vation that the assumption of uniform probability distribution
at each time step is generally not satisfied, the qualitative |n this figure we observe, that the future’ of a trajectory
model for each component could be captured in terms of @nly depends on variables at time steand later, whereas its
non-deterministic automaton. However, we do not follow thlSpast is no |0nger relevant, since as far as further evolution is
automaton approach, since such a model would still be quitgoncerned it is subsumed in the valuexgf So, since both
large. Borrowing from model checkirl@larkeet al, 1999 trajectories share common,, it is reasonable to continue in-
that deals with a very similar task, we utilize a variant of anyestigating the better one. This might seem paradoxical since
Ordered Binary Decision DiagrantOBDD) [Bryant, 1986; it is known that qualitative abstractions of continuous systems
Andersen, 1997 This dlagram, on the one hand, allows do not possess the Markov prope[‘ane' 1998 A pure
the compact representation of large sets of relations. On thualitative analysis of a continuous system can predict wrong
other hand, the representation of the qualitative model as gspurious) trajectories. Those trajectories, however, will be
graph allows us to utilize efficient search algorithfBert-  caught by the consecutive numerical optimization that fails to
sekas, 1995 predict the associated continuous actuation for the system.
OBDDs represent boolean expressions as a directed acyclic 5o, if we investigate variables in a causality-induced order-
graph (DAG). They are often substantially more compact thafing that takes into account, for example, that the future of a
traditional boolean normal forms and they can be manipulate@articular qualitative trajectory only depends on a subset of
very efficiently. For example, the following truth table for the yariables while others become irrelevant, we are enabled to

binary variabled/; andV5 concentrate on 'good’ trajectories, while others are dropped
Vi Va truthvalue from further investigation. This becomes even more impor-
0 O true tant, when multi-component models are taken into account,
0 1 true (17)  since these properties do not only apply on a temporal scale,
1 0 false but also on topological properties of the composition of the
1 1 true components.

can be encoded into an OBDD as shown in Figure 7. This Our qualitative model records only valid relations, i.e. ones
that evaluate ttrue and which are associated with a partic-

ular likelihood value. Furthermore, our qualitative variables
can usually take on more than just 2 binary values so that we
have to utilize a modified OBDD concept. In order to deal
with non-binary symbolic variables, we take a standard ap-
proach and replace each symbolic variablevith a domain
Figure 7: OBDD for truth table (17) size|dom(V)| > 2 by m binary variables that encode the
[dom(V)| < 2™ different valuations. The modifications of
encoding is the result of a variable orderitlg = V, and  the OBDD to incorporate likelihood values is more involving
achieves its compactness through the fact that parts of th&nd outlined in the remainder of this section.
graph are reused to represent multiple relations and that re- First of all, we intend to replace the binary truth values
dundant parts of relations are eliminated. For example, oncef the terminal nodes of the OBDD by likelihood values.
V7 is set to0 the truth value igrue , regardless of the valua- Compactness of OBDDs result from the fact that several rela-
tion of V5. tions link to common terminal nodes with shared truth values.
Compactness of an OBDD depends on the particular orNow, introducing terminal nodes for all likelihood values of
dering among the variables, where it seems a good heuristi! relations is surely not a good idea. Therefore, we approx-
to group together 'dependent’ variabl&arkeet al, 1999. imate the likelihood values in that we group them into few
However, even more important to us is to represent strucdistinct ranges only.
tural properties of the underlying hybrid model in the or- Assume, for example, the following variant of the truth
dering of variables, for this enables efficient search. Thidable (17), where we use likelihood values for tinee -




e 0.0 m . 5 Example

OV . We provide a short summary of compiling the qualitative
@---l’l _____ > model for the example (7-9) given in Section 2. The hybrid
model contains three continuously-valued variableax y)
and two discretely-valued oneg, u,). Outputy and statex
Figure 9: Labeled directed acyclic graph for (20) are identical for all operational modes. Similarly, there is an
identity between a particular value of the command input and
the corresponding operational mode. Thus, modeling the dis-

relations: crete evolution among operational modes becomes trivial and

‘61 ‘62 0]57 is omitted. Thus, we only have to build a qualitative model
0 1 0'41 (18)  for equations (7-8). To deduce the qualitative model from
11 0.98 these equations, we first encode the domains of the continu-

ously valued variablesx( u) into distinct qualitative values.

In order to keep the OBDD-like directed acyclic graph com-To remain conform with the presentation in previous sections,
pact, we group the three likelihood values into two groupswe describe the state spacethat is,x;, andx; ;) in terms
and separate the range 1] at 0.5. Of course, the sepa- 0f 64 quadratic boxes of siz&25 x 0.25 (Figure 5) and the
ration of the probability space inte equally sized intervals inputu (that is,uy) in terms of the two interval®), 0.5] and

is the simplest method one can think of. It is also possibleg0.5,1].

to analyze the distribution of likelihood values and separate Next, we record all trajectories for timg — ;. that are
them accordingly. We then replace the likelihood value allowed by (Figures 1-3) in terms of their qualitative values
by the center of the interval it belongs to, thus we obtainand obtain

L, = Ly, = 0.25 for the first two relations of (18), and 785 relations

L3 =0.75 for the thirq one. Of course, this Iead_s toa coar_seamong variables(y, 4y, Xy andXy 1.
e o e s e e 1% o complle these reatons o the uajectry graph, we
their likelihood values, exactly what we are looking for for have to determine an ordering among the qualitative abstrac-

o~ - : tions of the variablesy, xx+1, x4k, ux. FOr one time step
our qualitative mod'e-sequence pre-selection mechanism. we obtain the variable ordering based on the causal analysis
Our overall goal is to have a compact graph that represent own in Figure 8 &s

all possible trajectories in a weighted sense. We intend to use

standard search algorithms, such as shortest path, to find the Xp = Tap = Up = Xpi1 -
'best’ trajectories. As a preparation for this fact, we calculate o o
the negative logarithm of the unified likelihood valugs=  Furthermore, we group the likelihood values intaliscrete
—In(L;) and obtain the cost values as ranges|0, 0.25), [0.25,0.5), [0.5,0.75) and [0.75, 1] (with
corresponding cost values, for exampldn(0.125) for the
¢ :=¢; —ming; (19)  range|0,0.25)) and introduces binary variables to represent
J the 64 qualitative values for the state, andxy.1, respec-
which normalizes the best possible cost value to zero. Thi§Vvely. The resulting DAG is then used recursively to reason
leads to the table about a finite prediction horizon ¢f > 1 steps.
Vi Vo e In our example, we want to use a horizon of 3 steps from
0 0 11 20 to to t3 and obtain a compiled trajectory graph with
0 1 1l 20 782 nodes
1 1 00
1161 edges

This table enables us to use a standard OBDD generation pro-

cedure to obtain the directed acyclic graph (DAG) that en- As above, the control goal is to bring the statg =
codes the valid qualitative trajectories of the hybrid model.[-0.875, 0.875] to x3, which is inside a disk of radiu® 125

To integrate cost values into that graph, we start with labelaround the continuous stgte0.625, —0.625], whilst satisfy-

ing the terminal nodes with the corresponding cost-vatues ing0 <u, < land—1 < z;; < 1.

Afterwards, each node in the graph recursively is assigned Search for the best sequence of operational maggs

the minimum cost value of its children, so that each node isz42, 243, that meets all of the control constraints leads to
labeled with the lowest cost-value of all terminal nodes reach-

able from it. With this we bring the information whether Ld1 =M1, Td2 =M1, Td3 = M2 .

particular variable-assignments are more likely than Otheg\/ith this mode-sequence, subsequent numerical optimization

clpser to t'he root of the graph. Finally, all edges are Iab_ele f the actuationuo, u;, u, provides the trajectory already
with the difference between cost values assigned to their a epicted in Figure 3.

jacent nodes so that all path costs in the graph from its root to

a leaf represent the cost value of the corresponding variable- 3The ordering of scalars among vectors is legitimate since our
assignment. The resultingajectory-DAGof (20) is shownin  qualitative framework encodes a vector in terms of a single qualita-
Figure 9. tive variable.



6 Conclusion [Kuipers, 1994 B.J. Kuipers.Qualitative Reasoning: Mod-

For simple hybrid control problems, deducing a 'good’ se- €ling and Simulation with incomplete Knowledg#IT
quence of operational modes by reasoning about possible tra- PT€SS, Cambridge, MA, 1994.

jectories can be done intuitively. This paper outlines an autofLunze, 1992 J. Lunze. Qualitative modeling of continuous
mated reasoning scheme that makes qualitative pre-selection variable systems by means of non-deterministic automata.
of feasible mode sequences for hybrid control applicable to Journal of Intelligent System Engineerjrig22—-30, 1992.

more complex systems. L .. [Lunze, 1994 J. Lunze. Qualitative modeling of linear dy-
Basis for this approach is a qualitative model that facilitates 5 mical systems with quantized state measuremaus.
efficient search and compact storage. We obtain this through tomatica 30(3):417—431, 1994.

the formulation of an approximate likelihood value for trajec-

tory segments and an off-line compilation scheme that prolLunze, 1998 J. Lunze. ~ On the markov property of

vides an OBDD like encoding of the model. This model then guantised state measurement sequencesutomatica

facilitates the efficient on-line deduction of the hybrid con- ~ 34(11):1439-1444, November 1998.

trol law and is intended to be integrated into a more generalMaciejowski, 2002 J. M. Maciejowski. Predictive Control

hybrid automation framework in the future. with Constraints Pearson Education Ldt., Essex, UK,
2002.
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