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Abstract

Complex artifacts that exhibit a mixture of con-
tinuous and discrete behaviors are difficult to con-
trol since one has to calculate a continuous control
actuation that is interleaved with commanded dis-
crete mode changes. Our paper presents a novel
scheme for such ahybrid controlproblem that uses
a qualitative description of the system’s hybrid dy-
namics to pre-select feasible mode sequences prior
pursuing the computationally expensive task of nu-
merical control-law synthesis. We present a qual-
itative modeling framework that captures the hy-
brid model in terms of qualitative abstractions of a
system’s continuous behavior together with the de-
scription of the discrete dynamics (mode changes)
and other control-induced constraints. The model’s
representation builds upon a structural analysis of
the artifact’s hybrid model and compactly encodes
the hybrid dynamics as an Ordered Binary Deci-
sion Diagram like representation that supports fast
on-line reasoning.

1 Introduction
Many modern systems exhibit hybrid behaviors that can be
described in terms of continuous dynamics and discrete evo-
lutions among operational modes. Automatic control of such
systems involves the deduction of a hybrid control sequence
that consists of a suitable mode sequence and the associated
continuously valued actuation to the system. The deduction
of this hybrid control strategy is difficult as the number of
possible mode sequences over time can be very large.

A natural approach to tackle this problem is to capture
the continuous dynamics of such a hybrid system in terms
of a qualitative model, since then both, continuous and dis-
crete dynamics of that system are described by relations
among discretely-valued variables and one can apply sym-
bolic methods from the toolkit of Artificial Intelligence to se-
lect among the possible controls. This paper follows this idea
and presents an approach for hybrid control that builds upon
a qualitative model to pre-select suitable control candidates.
These candidates specify the mode-sequence but capture the
continuous part of the hybrid control problem only qualita-
tively. An additional numerical optimization is then applied

to determine the continuous control in more detail. Due to
the qualitative pre-selection, we avoid that the computation-
ally expensive numerical optimization is applied unnecessar-
ily often.

Our qualitative model is formulated with its application,
the task of on-line hybrid control, in mind. It represents the
possible qualitative trajectories as a graph that enables effi-
cient search methods to find a suitable hybrid control law.
The graph itself is encoded similarly to an Ordered Binary
Decision Diagram (OBDD)[Andersen, 1997], thus enables
efficient search and compact storage.

In literature, qualitative methods in hybrid control mainly
address issues of reconfiguration[Askari et al., 1999] or
fault diagnosis[Hamscheret al., 1992]. Continuous con-
trol of hybrid systems, i.e. determination of continuous ac-
tuation, is preferably addressed by numerical methods, like
mixed integer linear and quadratic programming[Bempo-
rad and Morari, 1999]. Contrarily, we take a mixed quali-
tative/numerical approach that combines the insight provided
by a qualitative approach with the exact solutions of a numer-
ical approach. In this way we solve both tasks, mode config-
uration and continuous actuation. Together with the hybrid
estimation of[Hofbaur and Williams, 2004; Hofbaur, 2005],
in its ’final version’, our approach to hybrid control shall ad-
dress the problem of hybrid automation. This demands high
flexibility with respect to reacting on unforeseen situations
properly and motivates our aim to deduce hybrid control on-
line.

The remainder of this paper is organized as follows: Sec-
tion 2 addresses hybrid systems and introduces an example
that guides through the article. Section 3 presents the prob-
lem of hybrid control and indicates how this can be tackled
by qualitative pre-selection of promising control candidates.
Section 4 introduces our qualitative modeling approach and
discusses important features of the model such as efficient
search within the model and compact compilation. Section 5
concludes this with a summary of compiling the example into
a qualitative model.

2 Hybrid System
Let us start with a simple hybrid system that exhibits differ-
ent dynamic behaviors according to itsoperational modemi.
The dynamic system can be captured in terms of its continu-
ously valued statex(t) = [x1(t), . . . , xnx(t)]T and receives



the inputsu(t) = [u1(t), . . . , unu(t)]T . Its operation can
be observed through the outputsy(t) = [y1(t), . . . , yny (t)]T
and is described in terms of the linear model

d

dt
x(t) = Ai x(t) + Bi u(t)

y(t) = Ci x(t) + Di u(t) ,
(1)

where the indexi of the system matricesAi,Bi,Ci and
Di indicates the dependence upon an operational modemi.
Complexity of the system’s operation is due to the hybrid evo-
lution that consists of the dynamical change of thecontinuous
statex(t) interleaved with discrete mode changes. The mode
or discrete statexd(t) determines the dynamic model (1) that
is valid at a particular time pointt. Thus, the combination of
continuous and discrete state

xh(t) = 〈xd(t), x(t)〉 (2)

manifests thehybrid stateof the hybrid system.
As an example consider the hybrid system with two modes

{m1,m2}. The variation of the dynamic behavior is due to
different system matricesAi

A1 =
[ −0.35 −1

1 −0.35

]
,

A2 =
[

0.65 1
−1 0.65

]
.

(3)

The input, output and direct transmission matrix are mode
independent, more specifically1:

Bi =
[

0.2
0

]
, Ci =

[
1 0
0 1

]
, Di =

[
0
0

]
. (4)

As in many real systems, we assume limited actuation, in par-
ticular, for this example we assume:

0 ≤ u(t) ≤ 1 . (5)

Furthermore, we require that the continuous statex(t) =
[x1(t), x2(t)]T stays within a region of the state space such
that

−1 ≤ x1(t) ≤ 1, −1 ≤ x2(t) ≤ 1 . (6)

These two constraints make the task of control difficult.
For simplicity, we assume here that mode transitions are

purely triggered through an exogenous command inputud at
specified time points

tk = t0 + kTs

wheret0 andTs denote the initial time and the sampling pe-
riod of our hybrid control system, respectively. Because of
thediscrete-timeoperation of our hybrid controller, we also
assume that the value of the continuous inputu(t) is kept
constant within the sampling period at

u(t) = uk, tk ≤ t < tk+1

anduk denotes the discrete-time variant of the continuously-
valued system input. In the same sense,xk = x(tk) and

1Although the example has a scalar input we will use the bold
face vector notationu = [u] to denote the continuous input in order
to be conform with the dynamic model (1).
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Figure 1: Vector fields and trajectories for the hybrid system

yk = y(tk) denote the sampled continuous state and the
system output, respectively. In terms of the discrete mode
xd(tk), we take the standard hybrid system’s assumption that
a mode change takes place immediately after the sampling
time pointtk so that:

xd(t) = xd k+1 tk < t ≤ tk+1 .

Because of the hybrid controller’s discrete time operation
we model the hybrid system in terms of an automaton with
two modesm1 andm2 that changes its discrete state imme-
diately aftertk and specify the continuously-valued dynamics
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Figure 2: Trajectory for mode sequence{m1,m1,m1}

in terms of the two discrete-time models2 for Ts = 1.5:

m1 : xk+1 =
[

0.04 −0.59
0.59 0.04

]
xk +

[
0.16
0.13

]
uk (7)

m2 : xk+1 =
[

0.19 2.64
−2.64 0.19

]
xk +

[
0.30
−0.36

]
uk . (8)

Sampling does not change the matrices of the output equa-
tion, thus:

yk =
[

1 0
0 1

]
xk . (9)

Figure 1 visualizes the different dynamic behaviors of the hy-
brid system as vector fields and indicates a particular trajec-
tory for the initial statex0 = [−0.4, 0.4]T anduk = 0. The
dots along the trajectory indicate the sampled statesxk.

Normally, one would use individual hybrid automata to
model system components of a complex physical artifact.
Their composition as a concurrent hybrid automaton will then
represent the overall model. However, for clarity, we will re-
strict our presentation to a single component model, since this
allows us to concentrate on the individual qualitative model-
ing assumptions and we do not loose track due to the com-
plexity of the model itself. However, we will highlight those
facts in our modeling and control scheme that are particularly
relevant for the multi-component case.

Another simplifying assumption that we take at this point
of our research endeavor is that we assume direct observa-
tion of the continuous state. It is our intention to relax this
assumption later through the utilization of hybrid estimators
similarly as it is done in standard state space control.

3 Hybrid Control and Qualitative Modeling
The task of automatic control is to actuate the hybrid sys-
tem such that its hybrid state follows a particular trajectory,
reaches a specific point in the state space or remains within

2Let Φ(t) denote the solution ofdx/dt = Ax. Then, one can
obtain the dynamic and input matrix of the corresponding discrete-
time model byΦ(Ts) and

R Ts

0
Φ(τ)Bdτ , respectively.
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Figure 3: Trajectory for mode sequence{m1,m1,m2}

the vicinity of a desired operational point. In order to ac-
tuate the system, hybrid control has to concurrently deter-
mine the discretely-valued actuationud k (command input)
and the continuously-valued inputuk in order to drive the
system through a continuous evolution that is interleaved with
discrete mode changes. The key problem of hybrid control
is, therefore, to deal with continuously valued variables (xk,
uk, yk) and discretely valued variables (xd k, ud k) simulta-
neously.

Let us demonstrate hybrid control with the hybrid model
introduced above. The control objective is to traverse the sys-
tem from the initial continuous statex0 = [−0.875, 0.875]T
to a goal state that lies within a disk of radius 0.125 around the
operational point[−0.625, −0.625]T . What makes the prob-
lem complicated are the limited continuous actuation (5) and
the constraints on the allowed region of the state-space (6).

Taking the qualitative view of the system’s dynamics that
is shown in Figure 1 we observe that the system at modem1

exhibits trajectories that follow counterclockwise spirals that
directly traverse states from the upper left region of the state
space to the lower left region, just what we desire. As a con-
sequence, an initial guess would be to keep the system at the
modem1 for all times, i.e.xd k = m1.

However, due to the limitation of the continuous input, we
cannot find values foruk between the limits0 and1 such that
we can reach the goal region. The trajectory that achieves
minimal distance for any of the states{x1,x2,x3} to the cen-
ter of the goal region passes by the goal region after 2 time
steps, as shown in Figure 2. Thus, we have to back-track and
consider an alternative mode sequence that combines both
modes of the hybrid system in a clever way.

The continuous dynamics of the model as shown in Fig-
ure 1 can be classified qualitatively in terms of a stable coun-
terclockwise spiral form1 and an unstable clockwise spiral
for m2. This gives rise to the following idea: we traverse
with modem1 until we pass by the goal region and then
switch to the modem2 to reverse the direction and proceed to-
wards the goal region. Because of the shape of the trajectories
we guess that a trajectory segment at modem1 for two time



steps, followed by a trajectory segment at modem2 might
be a suitable mode sequence and determine values for the in-
putsuk, k = 0, . . . , 2 such that the constraints on the input
and the state are satisfied. This numerical optimization, that
attempts to bring the statexk, k = 1, . . . , 3 as close to the
center of the goal region as possible, leads to the following
values for the continuous input

u0 = 0.8, u1 = 0, u2 = 0.12 . (10)

Figure 3 shows the trajectory of the continuous state for this
mode-sequence and input actuation.

3.1 Hybrid Control through Qualitative
Pre-Selection

We showed how abstracting the continuous dynamics qual-
itatively can help to solve the hybrid control problem.
Therefore, we capture the continuous dynamics of the hy-
brid system in terms of a qualitative model and obtain a
discretely-valued description for both, the continuous and
discrete evolution of the system. Then, one can capture
the control objective, that is, the desired continuous trajec-
tory or goal state and the initial state of the hybrid sys-
tem qualitatively and apply discrete search methods to de-
termine a suitable hybrid trajectory that satisfies the con-
trol objective. This operation provides the desired mode se-
quence{xd 0, . . . , xd N} (along with the sequence of com-
mand inputs{ud 0, . . . ,ud N−1}) and a qualitatively ab-
stracted continuous trajectory{X0, . . . ,XN} and input se-
quence{U0, . . . ,UN−1}. This continuous part of the hybrid
control problem has to be specified in more detail in order
to provide the exact values of the inputsuk that ought to
be actuated. Because of the qualitative pre-selection, how-
ever, we obtain a hybrid control problem for a system with a
fixed mode-sequence{xd 0, . . . , xd N}. This is equivalent to
interpreting the hybrid model as acontinuously valued time-
variant systemand standard methods from automatic control
theory, such as Optimal Control[Bertsekas, 1995] or Model
Predictive Control[Maciejowski, 2002] can be used to de-
termine the values for the continuous inputs on a numerical
basis.

This approach, however, has one major drawback. The
qualitative abstraction of the hybrid model leads to a quali-
tative model that is subject to spurious behaviors[Kuipers,
1994] and the consecutive numerical control law deduction
may be unsuccessful or may lead to unsatisfying results in
terms of the control objective. In both cases, one has to back-
track to the qualitative hybrid control problem and determine
an alternative result.

The described procedure for hybrid control that uses a
qualitatively abstracted hybrid model to guide the search for
a suitable hybrid control strategy is summarized in Figure 4.

4 Qualitative Model
The first step towards a qualitative description of the contin-
uous dynamics of the hybrid system, that is somehow similar
to a non-deterministic automaton[Lunze, 1992; 1994], is to
divide the continuous domains of the variablesx, u andy
into qualitatively distinct regions so that we obtain a finite
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Figure 4: Hybrid control supported by a qualitative model

description of the variable’s valuation. In order to keep the
model compact, we select a reasonable coarse separation of
qualitative values. On the one hand, we ensure that we cap-
ture the system-imposed qualitative values but also increase
the granularity in order to obtain good behavior for hybrid
control.

Our modeling framework is meant to work with hybrid au-
tomata of higher complexity than the example that was in-
troduced above. First, we will compose complex systems in
terms of a concurrent composition of simpler automata that
model individual system components[Hofbaur and Williams,
2004]. Secondly, we will allow autonomous mode transitions,
and not just commanded ones. The second fact, in particular,
has implications on the state space separation since we have
to introduce all qualitatively important values/borders into the
qualitative domain as well.

Before we get more specific on multi-component hybrid
systems, we demonstrate the approach of forming the qual-
itative model for our example (7-9) informally. We choose
to describe the continuous state space in terms of quadratic
boxes of size0.25 × 0.25, as indicated by the dotted lines in
the Figures 1-3. The outputyk provides direct observations
of the statexk (9) so it is reasonable to express the quali-
tative model in terms of state and input only. For the input
uk we choose two qualitative values that represent the inter-
vals[0, 0.5] and(0.5, 1]. In terms of notation, we will use the
calligraphic lettersX andU to denote the qualitative counter-
parts ofx andu, respectively.ξj andυj denote the qualitative
valuation of the qualitative variableX andU .

As an example, let us provide the qualitative encoding of
the trajectories for the modem1 that start at timetk in the
upper left corner of the state space

−1 ≤ x1,k ≤ −0.75, 0.75 ≤ x2,k ≤ 1 (11)

which represents the qualitative value

Xk = ξ1 (12)
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Figure 5: Reachable state space atk + 1 for trajectories start-
ing fromXk = ξ1

and an inputuk within the interval(0.5, 1], qualitatively ex-
pressed as

Uk = υ2 . (13)
With this specification it is straight forward to calculate the
possible state atk + 1 using the difference equation (7). For
xk+1 we obtain a region in the state space as illustrated in
Figure 5 where the grid represents the qualitative quantifica-
tion of the state space into8× 8 = 64 boxesξ1, . . . , ξ64.

With respect to this figure and its underlying deduction, we
record two qualitative relationships as

mode Xk Uk Xk+1

m1 ξ1 υ2 ξ42

m1 ξ1 υ2 ξ43

. (14)

Each line of the table stands for a logical expression such as
(xd k = m1)∧(Xk = ξ1)∧(Uk = υ2)∧(Xk+1 = ξ42) (15)

for the first line.
We observe that these trajectories are ambiguous, since for

one given origin and actuation (m1, ξ1, υ2) we have two dif-
ferent qualitative goal states (ξ42, ξ43). However, we addi-
tionally observe, that most of the region forxk+1 covers the
qualitative valueξ43. We account for this by associating each
relation with alikelihoodvalueL that takes this fact into ac-
count.

One way to express this likelihood is to assume uniform
probability density for all valuations that correspond to the
qualitative values of the variablesxk anduk and zero proba-
bility density elsewhere. We then apply the difference equa-
tion for the modemi under consideration

xk+1 = Ai xk + Bi uk

and calculate the resulting probability distribution through
convolution [Papoulis, 1984]. For example with a 2-
dimensional state spacex = [x1, x2]T and distributions
p1(x1, x2) andp2(x1, x2) for Ai xk andBi uk, respectively,
this is done by

p(x1, x2) =

+∞∫

−∞

+∞∫

−∞
p1(α1, α2)·p2(x1−α1, x2−α2) dα2dα1 .
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Figure 6 shows this operation graphically for the example
relations given above (14). The resulting probability density
allows us to calculate the likelihood of each relation. We ob-
tain the values by taking the integral over all qualitative val-
uations ofxk+1. For our example and the relations (14) we
obtain likelihood values

mode Xk Uk Xk+1 L
m1 ξ1 υ2 ξ42 0.08
m1 ξ1 υ2 ξ43 0.92 .

(16)

These likelihood values will be used as quality measure when
deducing a qualitative hybrid control strategy. Of course, in
terms of probabilities, they are only correct under the assump-
tion that we have a uniform distribution at time-stepk and we
only perform a one-step-ahead prediction as the distribution
for xk+1 is not uniform already. However, we intend to use
the qualitative relations recursively to deduceN -step qualita-
tive trajectories so using these values consecutively is, strictly
speaking, an abuse of the probability notion. Nevertheless,
the likelihood values provide a good indicator that tells us
whether an ambiguous relation is likely to hold or whether it
is just true for some very special valuations of the system’s
variables. Because of these relaxed requirements it is easily
possible to consider even simpler measures, such as the area
based measures used in[Benazero, 2003] for the estimation
and reconfiguration of hybrid systems. However, we prefer
the likelihood values due to their intuitive probability-like in-
terpretation.

Up to now, we only described the qualitative abstraction
of the continuous dynamics of the hybrid model. We have
to include also the discrete mode transitions that can depend
on the values of the input and the state variables. Without
going into detail here (we did not even detail the underlying
hybrid model in its full extent) we only want to note that these
model properties can be formulated as relations as well so
that we end up with a set of relations that directly describe
the discrete dynamics of the hybrid automaton together with
the qualitative abstraction of its continuous dynamics.



Of course, the number of relations increases exponen-
tially with the number of input, output and state variables.
As a compromise between model size and on-line reason-
ing time, we compile the possible behaviors component-wise
only. Therefore, it seems reasonable that the number of vari-
ables and their qualitative state-space stays within a man-
ageable size and on-line reasoning is responsible for deduc-
ing system-wide interactions among the system’s components
and to deduce qualitative trajectories that go beyond a one-
step-ahead prediction.

4.1 Compilation of the Qualitative Model
Our qualitative model encodes the possible trajectories for
component automata via a set of relations. Each trajectory
is supplemented by a likelihood value. Apart from the obser-
vation that the assumption of uniform probability distribution
at each time stepk is generally not satisfied, the qualitative
model for each component could be captured in terms of a
non-deterministic automaton. However, we do not follow this
automaton approach, since such a model would still be quite
large. Borrowing from model checking[Clarkeet al., 1999]
that deals with a very similar task, we utilize a variant of an
Ordered Binary Decision Diagram(OBDD) [Bryant, 1986;
Andersen, 1997]. This diagram, on the one hand, allows
the compact representation of large sets of relations. On the
other hand, the representation of the qualitative model as a
graph allows us to utilize efficient search algorithms[Bert-
sekas, 1995].

OBDDs represent boolean expressions as a directed acyclic
graph (DAG). They are often substantially more compact than
traditional boolean normal forms and they can be manipulated
very efficiently. For example, the following truth table for the
binary variablesV1 andV2

V1 V2 truth value
0 0 true
0 1 true
1 0 false
1 1 true

(17)

can be encoded into an OBDD as shown in Figure 7. This

 

V1 

V2 
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0 

Figure 7: OBDD for truth table (17)

encoding is the result of a variable orderingV1 Â V2 and
achieves its compactness through the fact that parts of the
graph are reused to represent multiple relations and that re-
dundant parts of relations are eliminated. For example, once
V1 is set to0 the truth value istrue , regardless of the valua-
tion of V2.

Compactness of an OBDD depends on the particular or-
dering among the variables, where it seems a good heuristic
to group together ’dependent’ variables[Clarkeet al., 1999].
However, even more important to us is to represent struc-
tural properties of the underlying hybrid model in the or-
dering of variables, for this enables efficient search. This

structural properties can be obtained through the causal anal-
ysis [Nayak, 1995; Trav́e-Massuỳes and Pons, 1997] of the
underlying equations. As motivation for this consider two tra-
jectories with samexk but different ’past’ (xk−1,uk−1, . . .),
where we have depicted causal dependencies among variables
in Figure 8.

 uk-1 

xk-1 

xd k-1 

uk 

xk 

xd k 

xk+1 

Figure 8: Causal dependencies among variables

In this figure we observe, that the ’future’ of a trajectory
only depends on variables at time stepk and later, whereas its
past is no longer relevant, since as far as further evolution is
concerned it is subsumed in the value ofxk. So, since both
trajectories share commonxk, it is reasonable to continue in-
vestigating the better one. This might seem paradoxical since
it is known that qualitative abstractions of continuous systems
do not possess the Markov property[Lunze, 1998]. A pure
qualitative analysis of a continuous system can predict wrong
(spurious) trajectories. Those trajectories, however, will be
caught by the consecutive numerical optimization that fails to
predict the associated continuous actuation for the system.

So, if we investigate variables in a causality-induced order-
ing that takes into account, for example, that the future of a
particular qualitative trajectory only depends on a subset of
variables while others become irrelevant, we are enabled to
concentrate on ’good’ trajectories, while others are dropped
from further investigation. This becomes even more impor-
tant, when multi-component models are taken into account,
since these properties do not only apply on a temporal scale,
but also on topological properties of the composition of the
components.

Our qualitative model records only valid relations, i.e. ones
that evaluate totrue and which are associated with a partic-
ular likelihood value. Furthermore, our qualitative variables
can usually take on more than just 2 binary values so that we
have to utilize a modified OBDD concept. In order to deal
with non-binary symbolic variables, we take a standard ap-
proach and replace each symbolic variableV with a domain
size |dom(V)| > 2 by m binary variables that encode the
|dom(V)| ≤ 2m different valuations. The modifications of
the OBDD to incorporate likelihood values is more involving
and outlined in the remainder of this section.

First of all, we intend to replace the binary truth values
of the terminal nodes of the OBDD by likelihood values.
Compactness of OBDDs result from the fact that several rela-
tions link to common terminal nodes with shared truth values.
Now, introducing terminal nodes for all likelihood values of
all relations is surely not a good idea. Therefore, we approx-
imate the likelihood values in that we group them into few
distinct ranges only.

Assume, for example, the following variant of the truth
table (17), where we use likelihood values for thetrue -
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Figure 9: Labeled directed acyclic graph for (20)

relations:
V1 V2 L
0 0 0.27
0 1 0.41
1 1 0.98

(18)

In order to keep the OBDD-like directed acyclic graph com-
pact, we group the three likelihood values into two groups
and separate the range[0, 1] at 0.5. Of course, the sepa-
ration of the probability space inton equally sized intervals
is the simplest method one can think of. It is also possible
to analyze the distribution of likelihood values and separate
them accordingly. We then replace the likelihood valueL
by the center of the interval it belongs to, thus we obtain
L̄1 = L̄2 = 0.25 for the first two relations of (18), and
L̄3 = 0.75 for the third one. Of course, this leads to a coarse
quantification of the likelihood values that provides the dis-
tinction between transitions that differ in the magnitude of
their likelihood values, exactly what we are looking for for
our qualitative mode-sequence pre-selection mechanism.

Our overall goal is to have a compact graph that represents
all possible trajectories in a weighted sense. We intend to use
standard search algorithms, such as shortest path, to find the
’best’ trajectories. As a preparation for this fact, we calculate
the negative logarithm of the unified likelihood valuesc̄i =
− ln(L̄i) and obtain the cost values as

ci := c̄i −min
j

c̄j (19)

which normalizes the best possible cost value to zero. This
leads to the table

V1 V2 c
0 0 1.1
0 1 1.1
1 1 0.0

(20)

This table enables us to use a standard OBDD generation pro-
cedure to obtain the directed acyclic graph (DAG) that en-
codes the valid qualitative trajectories of the hybrid model.
To integrate cost values into that graph, we start with label-
ing the terminal nodes with the corresponding cost-valuesc.
Afterwards, each node in the graph recursively is assigned
the minimum cost value of its children, so that each node is
labeled with the lowest cost-value of all terminal nodes reach-
able from it. With this we bring the information whether
particular variable-assignments are more likely than others
closer to the root of the graph. Finally, all edges are labeled
with the difference between cost values assigned to their ad-
jacent nodes so that all path costs in the graph from its root to
a leaf represent the cost value of the corresponding variable-
assignment. The resultingtrajectory-DAGof (20) is shown in
Figure 9.

5 Example
We provide a short summary of compiling the qualitative
model for the example (7-9) given in Section 2. The hybrid
model contains three continuously-valued variables (x, u, y)
and two discretely-valued ones (xd, ud). Outputy and statex
are identical for all operational modes. Similarly, there is an
identity between a particular value of the command input and
the corresponding operational mode. Thus, modeling the dis-
crete evolution among operational modes becomes trivial and
is omitted. Thus, we only have to build a qualitative model
for equations (7-8). To deduce the qualitative model from
these equations, we first encode the domains of the continu-
ously valued variables (x, u) into distinct qualitative values.
To remain conform with the presentation in previous sections,
we describe the state spacex (that is,xk andxk+1) in terms
of 64 quadratic boxes of size0.25 × 0.25 (Figure 5) and the
inputu (that is,uk) in terms of the two intervals[0, 0.5] and
(0.5, 1].

Next, we record all trajectories for timetk → tk+1 that are
allowed by (Figures 1-3) in terms of their qualitative values
and obtain
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among variablesUk, xd k, Xk andXk+1.
To compile these relations into the trajectory graph, we

have to determine an ordering among the qualitative abstrac-
tions of the variablesxk,xk+1, xd k,uk. For one time step
we obtain the variable ordering based on the causal analysis
shown in Figure 8 as3:

xk Â xd k Â uk Â xk+1 .

Furthermore, we group the likelihood values into4 discrete
ranges[0, 0.25), [0.25, 0.5), [0.5, 0.75) and [0.75, 1] (with
corresponding cost values, for example− ln(0.125) for the
range[0, 0.25)) and introduce6 binary variables to represent
the 64 qualitative values for the statexk andxk+1, respec-
tively. The resulting DAG is then used recursively to reason
about a finite prediction horizon ofN > 1 steps.

In our example, we want to use a horizon of 3 steps from
t0 to t3 and obtain a compiled trajectory graph with

782 nodes

1161 edges.

As above, the control goal is to bring the statex0 =
[−0.875, 0.875] to x3, which is inside a disk of radius0.125
around the continuous state[−0.625,−0.625], whilst satisfy-
ing 0 ≤ uk ≤ 1 and−1 ≤ xi,k ≤ 1.

Search for the best sequence of operational modesxd 1,
xd 2, xd 3, that meets all of the control constraints leads to

xd 1 = m1, xd 2 = m1, xd 3 = m2 .

With this mode-sequence, subsequent numerical optimization
of the actuationu0, u1, u2 provides the trajectory already
depicted in Figure 3.

3The ordering of scalars among vectors is legitimate since our
qualitative framework encodes a vector in terms of a single qualita-
tive variable.



6 Conclusion
For simple hybrid control problems, deducing a ’good’ se-
quence of operational modes by reasoning about possible tra-
jectories can be done intuitively. This paper outlines an auto-
mated reasoning scheme that makes qualitative pre-selection
of feasible mode sequences for hybrid control applicable to
more complex systems.

Basis for this approach is a qualitative model that facilitates
efficient search and compact storage. We obtain this through
the formulation of an approximate likelihood value for trajec-
tory segments and an off-line compilation scheme that pro-
vides an OBDD like encoding of the model. This model then
facilitates the efficient on-line deduction of the hybrid con-
trol law and is intended to be integrated into a more general
hybrid automation framework in the future.
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[Travé-Massuỳes and Pons, 1997] L. Travé-Massuỳes and
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