
Using abstract dependencies in debugging∗

Franz Wotawa and Safeeullah Soomro†

Graz University of Technology
Institute for Software Technology,

8010 Graz, Inffeldgasse 16b/2, Austria,
{wotawa,ssoomro}@ist.tugraz.at

Abstract

Fault localization is the next step after detecting
faults in programs. Testing and formal verification
techniques like model-checking are usually used
for detecting faults but fail to locate the root-cause
for the detected faulty behavior. This article makes
use of abstract dependencies between program vari-
ables for localizing faults in programs. It explains
the basic ideas, the underlying theory and the limi-
tations. The fault localization model is based on a
previous work that uses abstract dependencies for
fault detection. Moreover, the paper discusses the
relationship between the abstract model and quali-
tative reasoning.

1 Introduction
Debugging, i.e., removing faults from programs, comprises
three parts. Fault detection is used to find a misbehavior.
Within fault localization the root-cause for the detected mis-
behavior is searched for. And finally, during repair the re-
sponsible parts of the program are replaced by others in order
to get rid of the detected misbehavior. In this paper we focus
on fault localization which is based on abstract dependencies
that are used by the Aspect system [Jackson, 1995] for de-
tecting faults. Abstract dependencies are relations between
variables of a program. We say that a variable x depends on
a variable y iff a new value for y may causes a new value for
x. For example, the assignment statement x = y + 1; im-
plies such a dependency relation. Every time we change the
value of y the value of x is changed after executing the state-
ment. Another example which leads to the same dependency
is the following program fragment:

if (y < 10) then
x = 1;

else
x = 0;

In this fragment not all changes applied to y cause a change
on the value of x, although x definitely depends on y. The

∗The work described in this paper has been supported by the Aus-
trian Science Fund (FWF) project P15265-INF and the Higher Edu-
cation Commission(HEC), Pakistan.

†Authors are listed in reverse alphabetical order

int myMult (int x,y) {
1. int result = 0;
2. int i = 0;
3. while (i < x) {
4. result = result + x ;

// Should be result = result + y
5. i = i + 1; }
6. return result;

}

Figure 1: myMult - a faulty implementation of the integer
multiplication

Aspect system now takes a program, computes the dependen-
cies and compares them with the specified dependencies. If
there is a mismatch the system detects a bug and notifies the
user. However, the Aspect systems does not pinpoint the root-
cause of the detected misbehavior to the user.

We illustrate the basic ideas of fault localization using the
faulty implementation of a multiplication operation myMult
from Figure 1. The bug lies in statement 4 where the vari-
able x is used in the right hand side expression of the assign-
ment instead of variable y. In order to detect the fault we first
have to specify the abstract dependencies for the multiplica-
tion where the result should depend on both inputs. Hence,
we specify that result depends on x and y which can be
written as a rule: result ← x, y or as binary relation
{(result,x), (result,y)}.

When approximating the abstract dependencies from the
source code of myMult using the Aspect system, we finally
obtain a dependency relation {(result,x)} which fails to
be equivalent to the specified dependency relation. The ques-
tion now is how the root-cause of this misbehavior can be
found. The idea behind our approach is the following. During
the computation of abstract dependencies every statement has
an impact to the overall dependency set. For example state-
ment 4 says that result depends on result and x. When
knowing the dependencies of result before statement 4, we
can extend the relation. For myMult the variable result
also depends on i (statement 3) and a constant 0 (statement
1). The variable i itself depends on i (statement 5), x (state-
ment 3) and a constant 0 (statement 2). Hence, in this case
all statements fail to deliver a relation (result,y) and are

therefore candidates for a root-cause. Let us now extend our
example by introducing an additional specified dependencyi
← i, x which is said to be valid for statements 3 to 6. In this
case statements 2, 3, and 5 can no longer be candidates for
the root-cause because they are necessary to compute depen-
dencies for variable i which fulfill the specification. Hence,
only 1 and 4 remain as potential root-causes.

All arguments for extracting root-causes have been done
using only dependencies which are computed by analyzing
statements. Hence, a adapted formalization of this process
which allows for reasoning about statements and their in-
fluences on the computed abstract dependencies should lead
to a system which extracts root-causes automatically from
the source code of programs and the specified dependencies.
During the rest of this paper we provide a framework for
this purpose which is based on model-based diagnosis [Re-
iter, 1987]. Model-based diagnosis provides the means for
reasoning about statements and their influences which is nec-
essary for our purpose.

2 Qualitative reasoning in debugging
Although, qualitative reasoning is usually understood as qual-
itative reasoning of physical systems [Weld and de Kleer,
1989] the basic ideas can be also applied to other domains
like software debugging. The underlying idea of qualitative
reasoning is to represent the behavior of a system not in terms
of quantities but in terms of qualitative values and their rela-
tionships. The motivation came from observations of cogni-
tive aspects of reasoning about physical systems, i.e., humans
for example require no quantitative model for deriving very
meaningful results about the behavior even of complex sys-
tems. A similar argument has been used in a different do-
main, i.e., software analysis. Mark Weiser argues in his paper
[Weiser, 1982] that programmers them-self use an abstraction
of the program during debugging. Hence, the application of
qualitative reasoning if not restricted to some techniques like
QSIM [Kuipers, 1986] or QPT [Forbus, 1984] can be used in
debugging.

Before recapitulating some related papers in debugging us-
ing abstractions of the program’s behavior we briefly describe
the relationship between the original execution and its ab-
stract variant for a small example program. Consider Figure 2
where the execution of a two line program is depicted. Dur-
ing execution the state of the program is changed. The state in
this case is represented by the values assigned to a variable.
The program execution starts with a state where variable y
has the value 1. The execution of statement 1, leads to a new
state where in addition x has the value 2. This process con-
tinues until the end of the program is reached. The states are
also called program environments.

The abstract version of the execution of the same program
is given in Figure 3. Instead of changing the program en-
vironment the computed dependency relations are changed
during program execution. Hence, the qualitative version
of program execution only changes the semantics function.
Instead of having a semantics function of the form exec :
STMNT × ENV 7→ ENV (where STMNT is the set
of possible statements and ENV a program environment),

{y = 1}
1. x = y + 1;

{y = 1, x = 2}
2. z = y - 1;

{y = 1, x = 2, z = 0}
3. . . .

Figure 2: State changes during program execution

{}
1. x = y + 1;

{(x, y)}
2. z = y - 1;

{(x, y), (z, y)}
3. . . .

Figure 3: Dependencies changes during program execution

we now have execA : STMNT × DEP 7→ DEP (where
DEP is the set of possible dependencies). It is clear that
because of abstraction we are losing some information. For
example, with execA it is no longer possible to decide which
branch of a conditional to execute. Hence, the obtained result
is only an approximation of the concrete execution but repre-
sents different execution traces at the same time. Moreover,
as an advantage, execution time in this case does not depend
on the underlying problem complexity of the implementation.

Previous work that deals with abstraction of the program’s
behavior include [Cousot and Cousot, 1977] and [Mayer
and Stumptner, 2004] where the former introduced the basic
concepts and principles and the latter applied it for debug-
ging loops in Java programs. Other work which follows the
idea of using dependencies include [Friedrich et al., 1999;
Wieland, 2001]. In contrast we use differences between de-
pendencies as starting point for debugging whereas the others
make use of observations regarding the correctness or incor-
rectness of computed values (wrt. the specification).

3 Modeling
In this section we introduce a model which is based on de-
pendencies between variables. For this purpose we first re-
capitulate Jackson’s definitions [Jackson, 1995]. Afterwards,
we briefly introduce the basic definitions of model-based di-
agnosis [Reiter, 1987] and finally introduce the new model.

3.1 Dependencies
Jackson [Jackson, 1995] defines dependencies over state
changes which come from program execution, i.e., a variable
x depends on y if different pre-states that are distinguishable
only in their y component lead to post-states having differ-
ent x components. In other words x depends on y if the
computation of x makes use of the value of y. For exam-
ple, the statement x = y + z impose a dependency rela-
tion {(x,y), (x,z)}. Using similar arguments as for slicing
[Weiser, 1982; 1984] the computation of dependency infor-
mation from the source code can only be approximated. This
approximation may lead to additional entries of the result-
ing dependencies. Before we discuss an example to illustrate

this observation we introduce rules for computing dependen-
cies for alias-free programs. We make use of two functions.
The function D maps dependencies of the every statement.
Function M maps statements to a set of variables which are
defined in the statements.

The model for the assignment statement is defined by the
following definitions:

D(x = e) = {(x, v)|v ∈ vars(e)}
M(x = e) = {x}

In the above rule the function vars is assumed to return all
variables which are used in the parameter expression e.

For conditional statements the dependencies not only come
from the dependencies of the branches but also from the used
conditional expression. This expression influences which
branch is to be executed. Since, it is not possible to deter-
mine which branch to go at compile-time we have to consider
all possible branches.

D(if e then S1 else S2) =
= D(S1) ∪D(S2) ∪ ((M(S1) ∪M(S2))× vars(e))
M(if e then S1 else S2) = M(S1) ∪M(S2)

The loop statement can be represented as an infinite nested
conditional statement, i.e., while e { S } = if e then
while e { S } else NOP where NOP represents the
empty statement. Hence, its model can be expressed by:

D(while e { S }) = D(S;while e{ S})∪
D(NOP)∪

((M(S;while e{ S}) ∪M(NOP))× vars(e))

M(while e { S }) = M(S)

Considering M(NOP) = {} and D(NOP) = I with
I = {(x, x)|x ∈ V ARS} we obtain:

D(while e { S }) = D(S;while e{ S})∪
I ∪ (M(S;while e{ S})× vars(e))

Statement sequences can be modeled by composing their
dependencies

D(S1; S2) = D(S1) ◦D(S2)
M(S1; S2) = M(S1) ∪M(S2)

where ◦ stands for the following operator which is not
equivalent to the original composition operator on relations.

R1 ◦R2 =
{(x, y)|(x, z) ∈ R2 ∧ (z, y) ∈ R1}∪
{(x, y)|(x, y) ∈ R1 ∧ 6 ∃(x, z) ∈ R2}∪
{(x, y)|(x, y) ∈ R2 ∧ 6 ∃(y, z) ∈ R1}

Hence, the ◦ operator ensures that no dependencies which
come from previous statements are ignored. Only dependen-
cies for variables that are defined in the last statement are
changed.

Using the conversion rules for statement sequences we fur-
ther can rewrite the rules for loop statements and finally ob-
tain:

D(while e { S }) =
= D(S)∗ ∪ (M(S)× vars(e)) ◦D(S)∗

In the above rule D(S)∗ is the reflexive and transitive clo-
sure of D(S). Note that the rule represents the least solution
of the rule after applying the sequence rule.

The following example not only shows how dependencies
are computed but serves as one example for additional depen-
dency relations. Consider the following program fragment:
1. x = y + r;
2. x = x - r;

In this program x only depends on variable y and not on r.
However, the computation leads to:

D(x = y + r) = {(x,y), (x,r)}
D(x = x - r) = {(x,x), (x,r)}

and finally:

D(x = y + r; x = x - r) = {(x,y), (x,r)}

where the rightmost entry represents an additional depen-
dency.

3.2 Model-based diagnosis
The basic idea behind model-based diagnosis (MBD) [Reiter,
1987; de Kleer and Williams, 1987] is to use a model of a
system directly to compute diagnosis candidates. The pre-
requisite of MBD is the availability of a logical model of a
system which comprises different components. The outcome
of diagnosis is a set of components that may causes an ob-
served unexpected behavior. In debugging for example we
are interested in statements that contribute to the computation
of wrong values for some variables. Hence, statements serve
as components. In our case we are interested in finding state-
ments that cause the computation of wrong dependencies, i.e.,
dependencies that are not specified. Hence, the behavior of
components must be expressed in terms of dependencies.

Before showing how models can be derived from depen-
dencies we recapitulate the basic definitions of MBD. In
MBD a diagnosis problem is a triple (SD, COMP, OBS)
where SD is a logical representation of the structure and be-
havior of the system, COMP is a set of components, and
OBS is a set of given observations, i.e., itself a set of log-
ical sentences. In our case OBS will be the set of speci-
fied dependencies. A subset ∆ of COMP is a diagnosis iff
SD ∪ OBS ∪ {¬Ab(C) C ∈ COMP \∆} ∪ {Ab(C)|C ∈
\∆} is consistent. In other words a diagnosis is a set of com-
ponents that when assumed to behave not as expected, i.e.,
abnormal, does not contradict the given observations. The
system description SD comprises logical sentences that cor-
respond to the behavior of the components and the structure
of the system. At least the correct behavior has to be ele-
ment of SD. This behavior is given as sentences of the form
¬AB(C) → . . . where the right-hand-side of the rule speci-
fies the behavior.

Computation of diagnosis can be done by checking all sub-
sets of COMP which is obviously highly inefficient. For
one basic algorithm that computes diagnoses usually faster
we refer the reader to Reiter [Reiter, 1987; Greiner et al.,

1989]. Beside optimization techniques which avoid some
re-computations Reiter’s algorithm can be easily adapted to
search for diagnoses up to a given size. For example, first
the single diagnoses are computed, and later on double, triple
diagnoses and so on. Since, in most cases we are only in-
terested in single fault diagnoses this algorithm works suffi-
ciently good.

3.3 The dependency model
The dependency model makes use of Jackson’s dependency
computation. It allows for locating a bug within a program
which manifests itself in missing or additional dependencies.

The first part of the model SDD comprises rules for the
correct abstract behavior of the statements. This behavior is
given by the rules for computing the dependencies. The only
addition to the original rules is to introduce the negated AB
predicates. Figure 4 shows the rules that represent the correct
abstract behavior.

The other rules for computing the functions D and M re-
main the same and are assumed to be member of our de-
pendency model SDD. When we take SDD together with
the assumption that all components are correct, i.e., provide
the correct dependency relations, we obtain the same depen-
dencies from SDD and the original definitions of D and M .
However, it remains unclear what happens in cases when as-
suming a statement to be faulty and as a consequence deliv-
ering the wrong dependencies. The idea behind the model for
incorrect statements is the following. An incorrect statement
contributes in the computation of the dependencies. In cases
of assignment statements there are relation entries which are
wrong. Hence, if we assume a statement to be incorrect we
have to remove these entries. In order to strengthen the re-
sult we do not remove all entries but we say that an assign-
ment statement contributes with an arbitrary number of en-
tries. The only fixed part of all entries is the left side which
holds the target variable of the assignment. The right side is
represented by a model variable χι which represents variables
from V ARS for the statement at line ι.

Ab(x = e)→ D(x = e) = {(x, ξι)}

For the model of the incorrect statement we assume that
target variables of assignments are correct but the bug lies
in an incorrectly used variable on the right-hand-side of the
assignment.

The models of incorrect conditional and loop statements
are similar. The only difference is that these two statements
can provide wrong contributions to the dependency compu-
tation only because of the used variables in the conditions.
Hence, we introduce a model variable for the condition. Fig-
ure 5 summarizes the rules of the incorrect abstract behavior.

The model for alias-free programs now allows for comput-
ing dependencies which may comprise model variables ξι.
After the computation we have to compare the computed de-
pendencies with the specified ones to check consistency of
our assumptions whether a component is correct or not. We
perform this comparison by first grounding all model vari-
ables ξι and second comparing the relations. If the computed
and grounded dependency relation is equivalent to the speci-
fied relation the assumptions do not contradict the given ob-

servations. Otherwise, we obtain an inconsistency. Note that
this definition is quite strong and requires the specification of
all dependencies in advance.

The grounding step is done as follows. Assume that we
compute the dependency (x, ξ1) and that we specified the de-
pendencies {(x,y), (x,z)}. We know that ξ1 can hold every
variable. In order to make the dependency relation equiva-
lent, we only have to replace ξ1 by y and z. Hence, we re-
move (x, ξ1) from the set of computed dependencies and add
the two entries (x,y), (x,z). If for example ξ1 is used in an-
other relation entry, e.g., (w, ξ1), we again ground this entry
by replacing it with new entries (w,y), (w,z).

We now illustrate the computation of single fault diagnoses
using a small example program.

1. r = d/2;
2. a = r*r;
3. c = 2*r*p;

We further assume the following specification
{(r,d), (a,d), (a,p), (c,d), (c,p)}. The program does
obviously not fulfill the specification because statement 2
does not provide all dependencies, i.e., (a,p) is missing. We
compute all single fault diagnoses by making the appropriate
assumptions.

1. Assume Ab(r=d/2): Using the rules we
obtain the following dependency relation:
{(r, ξ1), (a, ξ1), (c, ξ1), (c,p)}. After grounding
the statements where ξ1 is replaced by d and p we
have {(r,d), (r,p), (a,d), (a,p), (c,d), (c,p)} the
computed dependency relation contradicts the specified
one. Hence, {r=d/2} is not a single diagnosis.

2. Assume Ab(a=r*r): For this assumption we obtain
{(r,d), (a, ξ2), (c,p)}. After grounding where ξ2 is re-
placed by d and p the computed dependency relation is
equivalent to the specified one. Therefore {a=r*r} is a
diagnosis.

3. Assume Ab(c=2*r*p) from which we compute
{(r,d), (a,d), (c, ξ3)}. Grounding by replacing ξ3

with d and p again leads to a set which contradicts the
given specification. c=2*r*p is not a single fault diag-
nosis.

From the above derivations we see that the statement in line
2 remains to be the only single fault diagnoses.

3.4 A diagnosis example

We represent the myMult example program from (Fig. 1) to
illustrate our approach. The ideas behind our approach is the
following. During the computation of abstract dependencies
every statement has impact to overall dependency set. Here
we specify that result depends on x and y which is written
as {(result,x), (result,y)}.

The computed dependencies for myMult are depicted in
Figure 6. The dependency in line 3 is the summarized depen-
dency for the while-statement.

The computation of all single diagnoses is done in the same
way as before. We assume a statement to be incorrect and the

¬Ab(x = e)→ D(x = e) = {(x, v)|v ∈ vars(e)}

¬Ab(if e then S1 else S2)→
D(if e then S1 else S2) = D(S1) ∪D(S2) ∪ ((M(S1) ∪M(S2))× vars(e))

¬Ab(while e { S })→
D(while e { S }) = D(S)∗ ∪ (M(S)× vars(e)) ◦D(S)∗

Figure 4: The correct abstract behavior

Ab(x = e)→ D(x = e) = {(x, ξι)}
Ab(if e then S1 else S2)→

D(if e then S1 else S2) = D(S1) ∪D(S2) ∪ ((M(S1) ∪M(S2))× {ξι})

Ab(while e { S })→
D(while e { S }) = D(S)∗ ∪ (M(S)× {ξι}) ◦D(S)∗

Figure 5: The abstract behavior for buggy statement

int myMult (int x,y) {
1. int result = 0; // D(1)={}
2. int i = 0;// D(2)={}
3. while (i < x) {
// D(3)={(result,result), (result,x),
// (result,i), (i,i), (i,x)}
4. result = result + x ;
// D(4)={(result,result), (result,x)}
5. i = i + 1; }
// D(5)={(i,i)}
6. return result;
// D(6)={(result,result), (result,x),
// (result,i), (i,i), (i,x)}

// Specified dependencies:
// {(result,x), (result,y),
// (result,result), (result,i),
// (i,i), (i,x)}

}

Figure 6: The computed dependencies for the integer multi-
plication example

remaining statements to be correct. Compute the dependen-
cies, ground them and compare them with the specified de-
pendencies. If a contradiction arises the assumption that the
selected statement is incorrect is wrong. The computational
complexity is polynomial in the number of statements pro-
vided a polynomial algorithm for computing dependencies.

When using our model we obtain two single fault diagno-
sis. Statement 1 or 4 can be the root cause of the detected dif-
ferences between the dependencies. For example, statement
5 cannot be responsible for the following reasons.

Assume statement 5 to be abnormal, i.e., Ab(5). From this
we derive the dependency D(5) = {(i, ξ5)} which leads to
the summarized dependency

D(3) = {(result,result),
(result,x), (result,i),
(result, ξ5)(i, ξ5), (i,x)}

of statement 3. After grounding we obtain to dependency

relations (result,y) and (i,y) where the former is an ele-
ment of the specified dependencies but the latter is not. We
obtain a contradiction and conclude that our assumptions can-
not be true anymore. With similar computations we can rule
out statement 2 from the list of candidates. Statement 3 can
also not be the a candidate because it would lead to a depen-
dency (i,y) which is not a specified one.

4 Limitations
The limitations of the proposed approach are the same as for
Aspect system. Additional computed dependencies may not
be the result of a wrongly written statement but is caused
of the used approximation algorithm. For example consider
again the code fragment:

1. x = y - r
2. x = x + r

where x only depends on y and not on r. If we specify
OBS = {(x,y)} as the expected dependency relation, the
contradiction relation {(x,y), (x,r)} would be computed.
Using the given model we finally obtain a double-fault di-
agnosis which comprises both statements. This result is not
correct when assuming diagnosis candidates to be always the
cause of a faulty behavior. However, in terms of differences
between a given specification and a computed specification
the result is correct because it says only that the cause of the
difference lies in both statements. Hence, the approach is cor-
rect with respect to the model. Because of the used abstrac-
tion, results maybe not correct with respect to the program’s
semantics. This limitation can be seen as an effect of the used
abstraction.

Another limitation is the due to the used model. The model
allows to deal with differences between dependencies. How-
ever, it does not allow to deal with situations where we know
that the outcome of a program is faulty. Other models are
available for this purpose and we refer the reader to [Wotawa,
2002; Wieland, 2001].

The described model can only be used for alias-free pro-
grams. An extension to pointer handling, structures and func-

tion calls is straightforward. The underlying techniques are
described by Jackson [Jackson, 1995].

5 Related research
The used model strongly depends on the concept of depen-
dencies between variables. This concept of dependencies
has been used for verification purposes [Jackson, 1995] but
also for debugging, i.e., fault localization, [Kuper, 1989;
Wieland, 2001]. In contrast to these approaches we do not
use detected differences in variable values at a certain line in
the code, but make use of differences between specified and
computed dependencies. Hence, our model is an extension to
previous research.

In [Zeller and Hildebrandt, 2002] Zeller introduced a
method for reducing the input to a minimal subset which still
entails a faulty behavior. His approach can also be used for
locating a bug using a cause effect chain but the computation
of faults is limited to one diagnosis because of the underly-
ing binary search algorithm. We use model-based diagnosis
which always guarantees to find all possible bugs with respect
to the given model.

Other approaches like [Johnson, 1986] focus on novice
programmers and make use of methods that help to find faults
in the code by comparing the code with pre-specified prob-
lem formulations. If the given problem cannot be realized by
the novice’s code, then the reason for this difference is given
back as a result. This approach can only be used in situations
where the problem is formulated in a formal way which is
unlikely for general programs.

6 Conclusion and future research
In this paper we introduced a novel model that helps to lo-
cate bugs in a program. The model is based on dependen-
cies between variables that can be extracted at least approx-
imately directly from the source code. These dependencies
are compared with pre-specified dependencies. In case of un-
expected differences the model allows to compute diagnosis
candidates. These candidates explains possible causes for the
detected differences. The approach is different to other avail-
able dependency-based models and provides better results for
some examples as explained in the paper.

Future research has to extend the model to handle pointers,
function calls, data structures, and other programming lan-
guage specific features. Moreover, an empirical evaluation
has to be carried out in order to prove the usefulness of the
approach.

References
[Cousot and Cousot, 1977] Patrick Cousot and Radhia

Cousot. Abstract interpreation: A unified lattice model
for static analysis of programs by construction of approxi-
mation of fixpoints. In in Proc. POPL’77, pages 238–252,
Los Angeles, 1977. ACM.

[de Kleer and Williams, 1987] Johan de Kleer and Brian C.
Williams. Diagnosing multiple faults. Artificial Intelli-
gence, 32(1):97–130, 1987.

[Forbus, 1984] Kenneth D. Forbus. Qualitative process the-
ory. Artificial Intelligence, 24:85–168, 1984.

[Friedrich et al., 1999] Gerhard Friedrich, Markus Stumpt-
ner, and Franz Wotawa. Model-based diagnosis of hard-
ware designs. Artificial Intelligence, 111(2):3–39, July
1999.

[Greiner et al., 1989] Russell Greiner, Barbara A. Smith, and
Ralph W. Wilkerson. A correction to the algorithm in Re-
iter’s theory of diagnosis. Artificial Intelligence, 41(1):79–
88, 1989.

[Jackson, 1995] Daniel Jackson. Aspect: Detecting Bugs
with Abstract Dependences. ACM Transactions on Soft-
ware Engineering and Methodology, 4(2):109–145, April
1995.

[Johnson, 1986] W. Lewis Johnson. Intention-Based Diag-
nosis of Novice Programming Errors. Pitman Publishing,
1986.

[Kuipers, 1986] Benjamin Kuipers. Qualitative simulation.
Artificial Intelligence, 29:289–388, 1986.

[Kuper, 1989] Ron I. Kuper. Dependency-directed localiza-
tion of software bugs. Technical Report AI-TR 1053, MIT
AI Lab, May 1989.

[Mayer and Stumptner, 2004] Wolfgang Mayer and Markus
Stumptner. Debugging program loops using approximate
modeling. In Proc. ECAI’04, pages 843–847, Valencia,
Spain, August 2004.

[Reiter, 1987] Raymond Reiter. A theory of diagnosis from
first principles. Artificial Intelligence, 32(1):57–95, 1987.

[Weiser, 1982] Mark Weiser. Programmers use slices when
debugging. Communications of the ACM, 25(7):446–452,
July 1982.

[Weiser, 1984] Mark Weiser. Program slicing. IEEE Trans-
actions on Software Engineering, 10(4):352–357, July
1984.

[Weld and de Kleer, 1989] D. Weld and J. de Kleer, editors.
Readings in Qualitative Reasoning about Physical Sys-
tems. Morgan Kaufmann, 1989.

[Wieland, 2001] Dominik Wieland. Model-Based Debug-
ging of Java Programs Using Dependencies. PhD
thesis, Vienna University of Technology, Computer
Science Department, Institute of Information Systems
(184), Database and Artificial Intelligence Group (184/2),
November 2001.

[Wotawa, 2002] Franz Wotawa. On the Relationship be-
tween Model-Based Debugging and Program Slicing. Ar-
tificial Intelligence, 135(1–2):124–143, 2002.

[Zeller and Hildebrandt, 2002] Andreas Zeller and Ralf
Hildebrandt. Simplifying and isolating failure-inducing
input. IEEE Transactions on Software Engineering, 28(2),
feb 2002.

