
Abstract 
The paper presents the theoretical foundations and 
an algorithm to reduce the efforts of testing physi-
cal systems. A test is formally described as a set of 
stimuli (inputs to the system) to shift the system 
into a particular situation or state and a set of varia-
bles whose observation or measurement refutes 
hypotheses about the behavior mode the system is 
operating in. Tests (either generated automatically 
or by humans) may contain redundancy in the 
sense that some of its stimuli and/or observables 
maybe irrelevant for achieving the result of the test. 
Identifying and dropping them contributes to redu-
cing the cost of set-up actions and measurements. 
We define different kinds of irrelevant variables, 
discuss their practical importance, and present 
criteria and algorithms for computing reduced tests. 

1 Introduction 
Testing of physical systems is a frequent task in industry: 
During or after manufacturing of a product it has to be 
checked whether the process worked properly and the 
product behaves as designed. Under operation, wearing und 
breaking of parts may lead to system failures, and it has to 
be investigated whether and where a fault occurred and of 
what kind it is. Even though some testing particularly in 
manufacturing, is performed automatically and requires no 
or limited human intervention, saving time and efforts spent 
on testing is an economical requirement. This becomes more 
important with the amount of necessary human actions, such 
as disassembly of parts of a vehicle in a workshop, and the 
cost of downtime of large equipment. 

Designing effective test sets or sequences is a demanding 
and time consuming task, particularly when the systems to 
be tested come in many variants such as cars and their 
subsystems. In [Struss 94], we presented the theoretical 
foundations and implemented algorithms to generate tests 
for a device based on behavior models of its components. 

Designing efficient tests is a challenge for the reasons 
stated above. Our solution presented in [Struss 94] 
addressed this in one way: it searches for tests that could 
serve several purposes at once, i.e ruling out more than one 
hypothesis. This increases efficiency of testing by reducing 

the number of tests. However, it was ignorant of another 
source of efficiency: the reduction of the efforts spent on 
an individual test. More precisely:  so far, the question 
answered was “Given a set of possible stimuli to a system 
and a set of observables, how can we stimulate the system 
such that the observables reveal information about behavior 
model of the system?”  Now, we address the problem of 
determining minimal sets of stimuli and observations. 
When combined with an estimation of costs of the 
respective actions, the solution will contribute to cost-
optimal testing. However, this paper is neither addressing 
costs nor the task of organizing the tests in a sequence or 
tree, which are different issues. 

In the following section, we will introduce a formal 
definition and representation of tests based on a relational 
representation of the behavior model of a system or, more 
generally, the hypotheses to be tested. We also briefly sum-
marize the basis for automated model-based test generation, 
although our solution to test reduction is independent of the 
way the tests were produced. The basis for this is the 
manipulation of finite relations as they are given by quali-
tative behavior models. 

Section 3 provides the formal foundations for test reduc-
tion by defining and characterizing redundancy in tests in 
terms of variables that are irrelevant for a particular test. 
The algorithms are presented in section 4. Finally, we 
discuss the practical impact of the solution and the open 
problems. 

2 The Background:  
Model-based Test Generation 

In the most general way, testing aims at finding out which 
hypothesis out of a set H is correct (if any) by stimulating a 
system such that the available observations of the system 
responses to the stimuli refute all but one hypotheses (or 
even all of them).  

This is captured by the following definition. 

Definition (Discriminating Test Input) 
Let  
TI = { ti}  be the set of possible test inputs (stimuli), 
OBS = { obs}  the set of possible observations (system 
responses), and 
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H = { hi}  a set of hypotheses. 
ti ∈ TI is called a definitely discriminating test input for 
H if 
(i) ∀ hi ∈∈∈∈ H  ∃ obs ∈ OBS    ti ∧ hi ∧ obs    ⊥ 
and 
(ii) ∀ hi ∈∈∈∈ H  ∀ obs ∈ OBS  
     if    ti ∧ hi ∧ obs  ⊥ 
     then ∀ hj ≠ hi ti ∧ hj ∧ obs  ⊥. 
ti is a possibly discriminating test input if  
(ii´) ∀ hi ∈∈∈∈ H  ∃ obs ∈ OBS such that 
     ti ∧ hi ∧ obs  ⊥ 

and ∀ hj ≠ hi  ti ∧ hj ∧ obs  ⊥. 

In this definition, condition (i) expresses that there exists 
an observable system response for each hypothesis under 
the test input. It also implies that test inputs are consistent 
with all hypotheses. i.e. we are able to apply the stimulus, 
because it is causally independent of the hypotheses. 
Condition (ii) formulates the requirement that the resulting 
observation guarantees that at most one hypothesis will not 
be refuted, while (ii’ ) states that each hypothesis may 
generate an observation that refutes all others. 

Usually, one stimulus is not enough to perform the discri-
mination task which motivates the following definition. 

Definition (Discriminating Test Input Set) 
{ tik}  =  TI´ ⊂ TI is called a discriminating test input set 
for H = { hi}  if  

∀ hi, hj with hi ≠ hj     ∃ tik  ∈ TI´ such that 
  tik is a discriminating test input for { hi, hj} . 

It is called definitely discriminating if all tik have this 
property, and possibly discriminating otherwise. It is 
called minimal if it has no proper subset TI´´⊂ TI´ which 
is discriminating. 

Such logical characterizations (see also [McIlraith-Reiter 
92]) are too general to serve as a basis for the development 
of an appropriate representation and algorithms for test 
generation. Here, the hypotheses correspond to assumptions 
about the correct or possible faulty behavior of the system to 
be tested. They are usually given by equations and imple-
mented by constraints, and test inputs and observations can 
be described as value assignments to system variables. 

The system behavior is assumed to be characterized by a 
vector 

vS = (v1, v2, v3, … , vn) 
of system variables with domains 

DOM(vS) =  
DOM(v1) × DOM(v2) × DOM(v3) × … × DOM(vn). 

Then a hypothesis hi ∈∈∈∈ H is given as a relation 
Ri ⊆ DOM(vS). 
Observations are value assignments to a subvector of the 

variables, vobs, and also the stimuli are described by 
assigning values to a vector vcause of susceptible (“causal”  or 
input) variables. We make the reasonable assumption that 
we always know the applied stimulus which means the 
causal variables are a subvector of the observable ones: 

vcause ⊆ vobs ⊆ { vi}  

The basic idea underlying model-based test generation 
([Struss 94]) is then that the construction of test inputs is 
done by computing them from the observable differences of 
the relations that represent the various hypotheses. Figure 1 
illustrates this. Firstly, for testing, only the observables 
matter. Accordingly, Figure 1 presents only the projections, 
pobs(Ri), pobs(Rj), of two relations, R1 and R2, (possibly 
defined over a large set of variables) to the observable 
variables. The vertical axis represents the causal variables, 
whereas the horizontal axis shows the other observable 
variables (which represent the observable response of the 
system). 

 
To construct a (definitely) discriminating test input, we 

have to avoid stimuli that can lead to the same observable 
system response for both relations, i.e. stimuli that may lead 
to an observation in the intersection 

(pobs(Ri) 
�

 pobs(Rj) 
shaded in Figure 1. These test inputs we find by projecting 
the intersection to the causal variables: 
 pcause(pobs(Ri) 

�
 pobs(Rj) . 

 The complement of this is the complete set of all test 
inputs that are guaranteed to produce different system 
responses under the two hypotheses: 

DTI ij = DOM(vcause) \ pcause(pobs(Ri) 
�

 pobs(Rj)) .  

Lemma 1 
If hi=Ri, hj=Rj, TI=DOM(vcause), and OBS=DOM(vobs), 
then DTI ij is the set of all definitely discriminating test 
inputs for { hi, hj} . 

Please, note that we assume that the projections of Ri and 
Rj cover the entire domain of the causal variables which 
corresponds to condition (i) in the definition of the test input 
(an assumption which may be relaxed in the otherwise 
identical discriminability/detectability analysis presented in 
[Dressler-Struss 03]).  

We only mention the fact, that, when applying tests in 
practice, one may have to avoid certain stimuli because they 
carry the risk of damaging or destroying the system or to 
create catastrophic effects as long as certain faults have not 
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been ruled out. In this case, the admissible test inputs are 
given by some set Radm ⊆ DOM(vcause), and we obtain  

DTIadm, ij = Radm \ pcause(pobs(Ri) 
�

 pobs(Rj)) . 
In a similar way as DTI ij, we can compute the set of test 

inputs that are guaranteed to create indistinguishable 
observable responses under both hypotheses, i.e. they 
cannot produce observations in the difference of the 
relations: 

(pobs(Ri) \  pobs(Rj)) ∪ (pobs(Ri) \  pobs(Ri)). 
Then the non-discriminating test inputs are 

NTI ij =  
DOM(vcause)\ pcause((pobs(Rj)\ pobs(Ri)) ∪ (pobs(Ri)\ pobs(Rj))) 

All other test inputs may or may not lead to discrimination. 

Lemma 2 
The set of all possibly discriminating test inputs for a pair 
of hypotheses { hi, hj}  is given by 

PTI ij = DOM(vcause)\ (NTI ij  ∪ DTI ij ) . 

The sets DTI ij for all pairs { hi, hj}  provide the space for 
constructing (minimal) discriminating test input sets. 

Lemma 3 
The (minimal) hitting sets of the set { DTI ij}  are the 
(minimal) definitely discriminating test input sets.  

A hitting set of a set of sets { Ai}  is defined by having a 
non-empty intersection with each Ai. (Please, note that 
Lemma 3 has only the purpose to characterize all 
discriminating test input sets. Since we need only one test 
input to perform the test, we are not bothered by the 
complexity of computing all hitting sets.)  

This way, the number of tests constructed can be less than 
n2 - n. If the tests have a fixed cost associated, then the 
cheapest test set can be found among the minimal sets. 
However, it is worth noting that the test input sets are the 
minimal ones that guarantee the discrimination among the 
hypotheses in H. In practice, only a subset of the tests may 
have to be executed, because some of them refute more 
hypotheses than guaranteed (because they are a possibly 
discriminating test for some other pair of hypotheses) and 
render other tests unnecessary. 

The computation is based on operations on relations, such 
as intersection and projection, and will usually practically 
work only on finite relations. Qualitative abstraction can 
generate such representations for continuous models and, 
hence, enable a broad applicability of the algorithm. The 
many existing test generation algorithms for digital circuits 
are specializations of it (provided they are sound and 
complete). Of course, they can exploit the special Boolean 
domain and, hence, may be more efficient than our general 
algorithm. 

The algorithm has been implemented based on software 
components of OCC’M’s RAZ’R ([OCC’M 05]) which 
provide a representation and operations of relations as 
ordered multiple decision diagrams (OMDD). The input is 
given by constraint models of correct and faulty behavior of 
components taken from a library which are aggregated 
according to a structural description. These models are the 

same ones that can and have been used for model-based 
diagnosis and detectability and discriminability analysis. 

It is important to note that the required operations on the 
relations are applied to the observable variables only 
(including the causal variables). The projection of the entire 
relation Ri to this space can be understood as producing a 
black box model that directly relates the stimuli and the 
observable response. In many relevant applications, this 
space will be predefined and small. For instance, when 
testing of car subsystems exploits the on-board actuators 
and sensors only, this may involve some 10 - 20 variables or 
so. The entire workshop diagnosis task has more potential 
probing points, but still involves only a small subset of the 
variables in the entire behavior relation Ri. 

In practice, we did not encounter computational 
limitations in the test generation step, given the projection 
(pobs(Rj). The bottleneck lies in the construction of Rj, which 
is given as a compositional model and its projection 
(pobs(Rj). It is obvious that computing the join and 
eliminating the unobservable variables can and should be 
done in an interleaved way. However, even though the 
overall result of this construction may be very small, 
intermediate results can grow big and sometimes too big 
even for a representation as an OMDD. Developing good 
heuristics to avoid the explosion of the space requirement is 
complicated by the fact that the number of nodes in the 
OMDD, which represents the relation as a graph, is not 
simply a function of the number of tuples in the relation. It 
can be strongly dependent on structural features, 
predominantly the on the order of the variables in the graph, 
in a way that is not understood well. 

Finally, we mention that probabilities (of hypotheses and 
observations) can be used to optimize test sets ([Struss 94a], 
[Vatcheva-de Jong-Mars 02]).  

3 Different Kinds of Irrelevant Causal 
Variables  

The abovementioned algorithms aim at reducing the costs of 
testing by reducing the number of tests to be performed, 
given sets of observable and causal variables. This means, 
the test inputs are tuples of values for all available causal 
variables, and the guarantee for discrimination is related to 
all specified observables. However, it may be the case, that 
the test is redundant in the sense that already of subset of 
inputs and/or observations would provide the same informa-
tion for discrimination. This is important, because costs are 
often related to the number of stimuli and observation 
actions. If we can reduce individual tests to the necessary 
stimuli and/or observations only, this will contribute to 
reducing costs for testing.  

In the following, we will provide the foundations for 
reducing the set of input variables. More details can be 
found in [Strobel 04]. 

Let DTI ij ⊆ DOM(vcause) be the set definitely discrimi-
nating test inputs. The question is whether there is a 
subvector v’ cause ⊆ vcause that can be ignored in some way 
without losing discrimination information provided by the 



test. Rather than computing the set of test inputs for various 
subsets of the causal variables to answer this question, we 
will identify irrelevant causal variables by analyzing DTI ij.  

A closer look reveals that a causal variable can be 
irrelevant in different ways that have a different impact on 
the generation and application of tests. Let us first illustrate 
these cases by simple examples and then define them 
formally. 

Suppose you want to test whether the light bulb L in the 
tiny circuit of Figure 2 works or is defect (open). The 
possible stimuli are opening and closing of switches S1 and 
S2, and L can be observed. If we assume that resistor R is 
not too small, all one has to do is close S1 and observe 
whether or not L is lit (assuming there is a voltage supply). 
For this test, the position of S2 is totally irrelevant: 
whatever its state may be, it does not influence the actions 
we have to perform.  

Regarding the circuit in Figure 3, we can observe the 
following: the position of switch S1 is irrelevant in the sense 
that we can test lamp L regardless of whether it is up or 
down. However, it is not totally irrelevant: in contrast to the  
first case, the appropriate test inputs depend on the position. 
For S1 up, S2 must be closed; otherwise, S3 has to be 
closed. This means, the position of S1 has to be known in 
order to perform a test, but it does not have to be influenced 
which allows for omission of an action. We call such a 
variable weakly irrelevant (in the lack of a better term). 

 
The same circuit can be used to illustrate a third kind of 

irrelevance of a causal variable: the position of S2 is 
irrelevant if S1 is in down position. Hence, it is not totally 
irrelevant, but only under certain conditions. This is still 
practically important, because once the condition is 
satisfied, we can save by avoiding actions related to S2’s 
position. This variable is conditionally irrelevant, and so is 
S3’s position, of course.  

To generalize the intuition gained from the examples and 
to formalize them: for some subvector  v’ cause ⊆ vcause we 
distinguish the following cases (for which  Figure 4 shows 

abstract examples): for all value assignments from 
DOM(v’ cause), DTI ij can contain  

i. the same set of stimuli for the remaining causal 
variables (total irrelevance) 

ii. some set of stimuli for the remaining causal 
variables (weak irrelevance) 

iii. the same set of stimuli for the remaining causal 
variables under some restriction of the values of 
the remaining causal variables (conditional 
irrelevance).  

Figure 4 displays the sets DTI in the plain of causal 
variables (not the plain of all observables as Figure 1), 
where the vertical axis corresponds to the irrelevant variable 
(or subvector of variables) v’ cause, while the horizontal axis 
represents the remaining ones. In case (i), DTI is the cross 
product of the entire domain of v’ cause and a certain value 
assignment to the remaining variables. Case (ii) can be 
characterized by the fact that the projection of DTI to v’ cause 

covers the entire domain. And case (iii) implies that DTI has 
a subset that is obtained as the cross product DOM( v’ cause) 
and a set of tuples of the remaining variables (indicated by 
dotted lines in Figure 4).  
This motivates the following definitions: 

Definition (Irrelevance of causal variables)  
Let DTI ⊂ DOM(vcause) be the complete set of definitely 
discriminating test inputs for two hypotheses. A subset of 
causal variables v’ cause ⊆ vcause is called: 
(i) totally irrelevant if  
  DTI = pvcause\v’cause (DTI) x DOM(v’ cause) 
(ii) weakly irrelevant if 
   pv’cause (DTI) = DOM(v’ cause)  
(iii) conditionally irrelevant if there is a non-empty 
subset DTI’⊂ DTI such that 

DTI’  = pvcause\v’cause (DTI’ ) x DOM(v’ cause) 

As suggested by Figure 4, there are implication relations 
among the three types of irrelevance, which can be easily 
proved based on the above definition. 

Lemma 4  
If v’ cause is totally irrelevant  

� v’ cause is also conditionally irrelevant. 
If v’ cause is conditionally irrelevant  

� v’ cause is also weakly irrelevant. 

The goal of identifying sets of irrelevant causal variables 
seems to imply that one has to consider the power set of the 
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weak irrelevance (ii), and conditional irrelevance (iii) 



causal variables. However, this is not the case due to the 
following lemma. 

Lemma 5  
(v1) and (v2) are both totally irrelevant  
  ⇔ v’ cause = (v1, v2) is totally irrelevant. 
(v1) and (v2) are both weakly irrelevant  
  ⇔ v’ cause = (v1, v2) is weakly irrelevant. 

This allows us to investigate this kind of irrelevance 
independently for each variable and then comprise them in 
one set which makes the check linear in the number of 
causal variables. However, the lemma does not apply to 
conditionally irrelevant variables. 

Remark 
If (v1) and (v2) are both conditionally irrelevant, then 
v’ cause = (v1, v2) is not necessarily conditionally inde-
pendent.    

Obviously, to establish conditional irrelevance of the pair 
of variables, the conditions for the irrelevance of the two 
variables would have to have a non-empty intersection. But 
Figure 3 provides an example in which they are even 
exclusive: the position of S2 is irrelevant under conditions 
that require a particular state of S3 and vice versa.  

4 Test Reduction 
Based on the definitions and lemmata in the previous sec-
tion, we developed algorithms for the automated reduction 
of tests. Whether they have been generated by an algorithm 
like the one sketched in section 2 or by human experts is 
irrelevant, as long as they can be represented in the rela-
tional style. 

Firstly, we exploit lemma 5: we start with the test input 
set for a maximal set of causal variables and then analyze 
irrelevance of each single causal variable. 

Secondly, we check for weak irrelevance first, because 
lemma 4 allows ruling out also the other kinds of irrele-
vance in the negative case. This check can be based directly 
on the definition of weak irrelevance and is formally descri-
bed as follows. 

Lemma 6  
Let vk be a causal variable, pk the projection to this 
variable, and DTI a set of definitely discriminating test 
inputs. 
If  pk (DTI)  = DOM (vk) 
     then vk is weakly irrelevant to DTI. 
If  pk (DTI)  ≠ DOM (vk) 

then vk is not weakly, conditionally, or totally 
irrelevant to DTI. 

In case of a weakly irrelevant variable we can check for 
conditional and total irrelevance. To get the idea underlying 
this test, a glance at the abstract example of Figure 4 may be 
helpful. We have to check whether there exists a non-empty 
DTI´ ⊂ DTI   such that 
 p-k (DTI´ ) × Dom(Vk) ⊂ DTI´, 

where p-k is the projection to the causal variables except vk: 
vcause\ { vk} . 
We do so by computing the projection of the maximal DTI´ 
 DTI´-k := p-k (DTI´) 
and checking whether it is empty, and we compute it by 
computing its complement.  

DTI´-k comprises all value assignments to vcause\{ vk}  that 
when combined with arbitrary values of vk always yield a 
test input of DTI. Hence, its complement contains all value 
assignments that can be combined with at least one value of 
vk to yield a test input that does not lie in DTI, but in its 
complement:  
 DOM(vcause\{ vk} )\ DTI´-k =     
  { v-k,0 ∈DOM(vcause\{ vk} )�∃  vk,0 ∈DOM(vk) ∧ 
          v-k,0 ° vk,0 ∈ DOM(vcause)\ DTI} . 
But this is the projection of the complement of DTI: 
  p-k (DOM(vcause)\ DTI). 
This yields the following lemma which underlies the second 
check. 

Lemma 7 
 Let vk be a causal variable, p-k the projection to the other 
causal variables, and DTI a non-empty set of definitely 
discriminating test inputs. Furthermore, let  
 DTI´-k := 

 DOM(vcause\ { vk} )\ p-k ( DOM(vcause)\ DTI ). 
 If  DTI´-k = ∅  
  then vk  is not conditionally or totally irrelevant to DTI. 
 If DTI´-k ≠ ∅  
  then vk is conditionally irrelevant to DTI  
 If DTI´-k = p-k (DTI) 

  the vk is totally irrelevant to DTI. 

Please note that DTI´-k represents the condition under 
which vk is irrelevant. This can be used for investigating the 
relationship of these conditions for different causal varia-
bles. The third implication of the lemma simply reflects the 
fact that total irrelevance is obtained if the condition comp-
rises all value assignments to the other causal variables that 
occur in DTI. 
 This establishes an algorithm for determining whether a 
causal variable is irrelevant and if so, of what type: 

IF pk (DTI) = DOM(vk) 
 THEN 
  IF DTI´-k = ∅    

THEN “WEAKLY IRRELEVANT” 
ELSE IF DTI´-k = p-k (DTI) 

THEN ”TOTALLY IRRELEVANT” 
ELSE “IRRELEVANT UNDER DTI´-k”  

 ELSE “NOT IRRELEVANT” 

Based on the results of this algorithm, the irrelevant 
variables can be removed from DTI by projection yielding a 
simplified and cheaper test input set.  

What we have presented for the case of definitely 
discriminating test input sets can obviously be applied in the 
same way to possibly discriminating test inputs. 



5 Discussion and Future Challenges 
The generation of a set of test input sets (with or without the 
reduction described here) provides the starting point for 
different further processing and use of this information. One 
can select one test input from each set and generate a fixed 
sequence or decision tree of tests to be applied. The 
information could also be used in a dynamic way by making 
the choice of the next test dependent on the current 
situation. A characterization of the situation can involve two 
aspects: firstly, the hypotheses actually refuted so far. We 
emphasize again, that this is not completely fixed by the 
tests executed so far, because some of them may have 
refuted all hypotheses that they can discriminate, and also 
they may have refuted more hypotheses than were 
guaranteed to be refuted. Secondly, one can choose the next 
test based on the current state the system is in order to 
minimize the number of stimuli that have to be changed. 

 The different types of irrelevance have a different 
impact on these strategies. Obviously, totally irrelevant 
variables can be eliminated from the respective test inputs, 
i.e. they do not have to be considered for the respective test 
actions. However, unless they are irrelevant to all test input 
sets in the set, they have to be observed during the testing, 
because they may be weakly irrelevant to some test input 
sets and, hence, their value has to be known in order to 
determine the appropriate values for the other causal 
variables.  

Weakly irrelevant variables do not have to be influenced 
either in the respective test, but the appropriate values for 
the other variables have to be determined by restricting DTI 
for the next step to the current values of the weakly 
irrelevant variables.  

For conditionally irrelevant variables, it has to be checked 
whether the irrelevance condition DTI´-k is satisfied in the 
current situation, and if so, they do not have to be touched 
and an arbitrary assignment of values out of DTI´-k can be 
chosen for the relevant variables.  

In this paper, we focused on the reduction of the number 
and costs of stimuli actions. This is justified because their 
costs are often higher than those of observing the system 
response. Reducing also the cost associated with 
observations is nevertheless a task that needs to be 
addressed. However, the solution for the causal variables 
does not simply carry over, and the tasks are not 
independent: in principle, a reduction of the set of 
observables may require the presence of certain stimuli and 
vice versa. 

Another challenge is to investigate how serious a 
fundamental limitation of our approach is (and to overcome 
it if necessary and possible): the behavior representation in 
terms of relations and, hence, a rather static view on the 
system to be tested. If dynamic features are relevant, they 
can be accommodated by including derivatives in the set of 
model variables. Another solution is to base the behavior 
representation on transitions. Since they can be represented 
again by relations (linking the states “before”  and “after” ) 
the described representations and algorithms remain 
applicable. 

We have explored the latter solution by transforming 
models given as finite state machines into such a 
representation. This is done to investigate whether and to 
what extent the solution can be applied to testing of 
software. This provides a challenge in itself, mainly 
because of the difficulty in establishing appropriate fault 
hypotheses: While for many physical devices, such 
hypotheses are determined by the ways the components 
wear and fail, the ways in which software can fail spans an 
infinite space and may include structural faults. An 
extension of the test generation and reduction methods to 
include software would be highly attractive because it 
would allow to test embedded software and its physical 
context in an integrated way.  
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