
Abstract 
Extracting useful information from the 
environment has an important effect over the 
autonomous robot navigation process.  
In this paper, we describe a hybrid representation 
model for robot navigation in indoor environments, 
which uses local reference systems as basic 
elements. We present a model, which integrates 
quantitative and qualitative information, relating in 
a natural way the different working scales of an 
autonomous robot navigation system. 
An algorithm for the extraction of local reference 
systems from the environment is showed. 
Integration of quantitative and qualitative 
information, obtaining a hybrid description of the 
world, is explained. We also describe an algorithm 
to extract a topological map as a natural extension 
from the hybrid description. 
Finally, we will show how a cognitive map can 
emerge from the hybrid description and the 
topological map. 
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1 Introduction 
It is known that to carry out a successful navigation in 
complex environments, mobile robots must acquiere and 
maintain internal maps of the environment. This task is not 
a trivial process and many factors affect the reliability of 
these world models. Different solutions have been 
developed attending to the kind of world model managed by 
the robot. These solutions can be divided into three main 
strategies: quantitave (metric), qualitative and hybrid 
approaches. 

Quantitative models represent the environment from the 
metric information obtained by the sensors. The major 
exponent of this strategy is the grid-based model, introduced 
by Moravec and Elfes [1985]. This model represents the 
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environment by a grid of cells where each cell has a value 
representing the probability of occupancy of the 
corresponding space in the world. Other metric approaches 
that do not use occupancy grids are [Giralt et al., 1979, 
Lozano-Pérez, 1981, Brooks, 1982, Crowley, 1985, Kosaka 
and Kak 2001]. Metric structures are difficult to apply in 
large environments. They have a high computational cost 
and the accuracy of the navigation is affected by odometric 
and sensor errors. 

Qualitative models focus on the boundaries of the objects, 
making divisions of the space more or less detailed, in a 
manner inspired by cognitive processes used by humans. 
The qualitative concept of a topological map, which 
represents the world using nodes (places) and arcs 
(relations), has been used in several approaches, such as the 
one introduced by Kuipers [1978, Kuipers and Byun, 1988, 
Kuipers and Levitt, 1988]. Another model is defined in 
[Freksa et al., 2000], where schematic maps are used to 
reason about relative positions and orientations. Other 
qualitative models have been carried out by [Jungert, 1988, 
Davis, 1991, Holmes and Jungert, 1992, Zheng and Tsuji, 
1992, Schlieder, 1993, Sutherland and Thompson, 1993, Dai 
and Lawton, 1993, Park, 1994, Escrig and Toledo, 1998]. 
Qualitative models are robust against incomplete data; 
however, problems arise when they try to distinguish 
between different but similar places to localize the robot 
position in the map. 

More recently, hybrid approaches have been used to 
overcome the problems of the metric and topological 
models. Hybrid models try to combine the best of each 
approximation. One of the first models for map building 
was proposed by Thrun [1998], which combines the 
occupancy grids with topological maps. Other hybrid 
models can be found in [Arleo et al., 1999, Zanichelli, 1999, 
Musto et al., 1999, 2000, Kuipers, 2000, Remolina and 
Kuipers, 2002, Tomatis et al., 2003]. 

The work presented in this paper can be viewed as a 
hybrid approach, since we will relate geometrical 
information obtained from the environment with the 
corresponding qualitative representation. The process of 
extract useful information from the environment has an 
important effect over the final robot operation. In this paper, 
we remark the importance of a natural integration between 
metric and qualitative information. We have also looked for 
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a representation useful to carry out autonomous robot 
navigation using qualitative spatial reasoning. 

In Figure 1, we can see a diagram where we show the 
model presented here. At the first level, nearest the world, 
we cope with metric information. However, we do not use a 
global reference system to merge that metric information to 
build a map, but we extract local reference systems and join 
them by means of their relative orientations, constructing a 
geometrical representation. In the next level, we extract 
qualitative features, which are used to identify the local 
reference systems. This level is interrelated with the 
geometrical representation giving a hybrid description of the 
environment. This description can be used by a qualitative 
reasoning process to carry out local path planning and 
navigation. 

 
Figure 1. The model presented in this paper. 

On top of the hybrid description, we construct a 
topological map. This topological map addresses global path 
planning and fixes the mid-term objectives. 

Finally, integrating the qualitative representation and the 
topological map, we will obtain a cognitive map of the 
world, which relates in a natural way the different working 
scales of an autonomous robot navigation system. 

In the next section, we will describe how we acquire and 
manage the geometrical information obtained from the 
world. Then, in section three, we will explain the process 
used to extract qualitative features from the geometrical 
data, modelling a hybrid representation of the environment. 
Afterwards, the creation of the topological map on top of the 
hybrid description will be showed. Finally, conclusions and 
future work will be explained. 

2 Geometrical information 
We are using in our research a commercial mobile robot 
simulation software, called Webots, developed by 
Cyberbotics2 Ltd. We are working with a simulated robot, 
which has a 360º laser range finder sensor. Throughout this 
paper, we will restrict ourselves to the interpretation of the 
data extracted from the simulation by that laser sensor, 
although part of the work presented here is also being tested 
in a real robot. 
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We have made three basic assumptions about the kind of 
data the laser can detect in order to simplify the 
environment where the robot will navigate: 

• The laser is placed at a fixed high from the floor, 
covering a horizontal line. All the objects existing 
in the world can be detected in this line. 

• Objects do not have interior holes. This assumption 
is done to avoid the robot hitting with an object not 
detected. 

• Corners are always of 90 degrees. This assumption 
has been imposed to reduce the complexity of the 
environments. In future works, we will include 
corners with different angles. 

The laser sensor extracts a vector of distances where we 
can obtain a geometrical description of the environment 
(Figure 2). Now, we will formalize this information in order 
to lay the foundations for later explanations. 

• Each sensor reading can be viewed as a pair of 
elements representing a polar coordinate <di, ai>, 
where di is the distance to an obstacle obtained by 
the laser sensor and ai the angle of that reading. 

• With two sensor readings, i and j, we can obtain 
the distance between them, d(i,j), and the angles α, 
β, γ formed by these points and the robot, by means 
of the triangulation technique. We will use the 
cosine and sine formulas. 

d(i, j)2 = di2 + dj2 – 2·di·dj·cos(α) 

d(i, j) / sin(α) = di / sin(γ) = dj / sin(β) 

 

Figure 2. Geometrical information obtained from a laser sensor. 

From this geometrical data, we will construct a hybrid 
spatial representation. In the next section, we will show how 
we can accomplish this representation. 

3 Hybrid Representation 
The hybrid representation defined in this paper relates 
geometrical information with the relevant aspects of the 
environment in a given qualitative representation. A 
qualitative representation can be defined as the 
representation which makes only as many distinctions as 
necessary to identify objects, events, situations, etc. in a 
given context [Hernández, 1994]. Qualitative representation 
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describes relevant aspects of the environment focusing on 
the boundaries of objects. 

First, we need to provide some definitions needed to 
relate each qualitative feature with its correspondent 
geometrical information, 

DEFINITION 1. A distinctive point dp Є DP, is the 
bound between two detectable objects in a given context. 

Where DP is the set of all the distinctive points defined. 

DEFINITION 2. The level of granularity G defines the 
precision used in the sensor measurements. 

In our case where a laser sensor is used, the level of 
granularity is defined by the angle between two consecutive 
measures. An increase in the granularity determines a 
smaller angle. The robot can adjust the granularity adapting 
the computations to the complexity of the environment or 
the necessity of the robot to detect specific small features. 

DEFINITION 3. Two distinctive points will be 
neighbours if there is not any other distinctive point in the 
space situated between them, 

dpi, dpj Є DP are neighbours  ¬∃ dpk Є DP / i < k < j 

where i < k < j means that a distinctive point dpk is 
situated between the distinctive points dpi and dpj. 

DEFINITION 4. A reference system is composed by 
two distinctive points, which are neighbours, 

RSij = {(dpi, dpj) / dpi, dpi Є DP ∧ dpi, dpj are neighbours} 

The hybrid representation described in this paper uses 
reference systems as the basic construction blocks. It is by 
means of reference systems that we combine the 
geometrical information with the qualitative representation. 
Now, we shall explain the complete process needed to 
extract reference systems. 

3.1 Extracting Reference Systems 
The complete algorithm for the extraction of reference 
systems is showed in Figure 3, 

1.Obtaining the vector of distances from the laser sensor 
2.Calculating the vector of differences between adjacent distances
3.Filtering the vector of differences to eliminate spurious errors 
4.For each position in the vector of differences 
5.  Extract distinctive points 
6.Creating the current view 
7.Extracting reference systems from the current view 
 

Figure 3. Algorithm to obtain the reference systems. 

We start from the vector of distances given by the sensor. 
Then, we calculate the differences between adjacent 
distances creating a new vector of differences. This vector 
of differences is filtered in order to eliminate erroneous 
measures. The filtering process calculates the similarity of 
each difference with respect to their neighbours, eliminating 
the discordant values. The number of neighbours examined 
is given by a window, whose size is determined by the level 
of granularity. Afterwards, we shall extract, for each 
position in the vector of differences, the distinctive points, 
which will be used to define the reference systems. 

Form the data provided by the laser sensor used in this 
work, we can define a qualitative representation, which 
identifies concave and convex corners as the distinctive 
points of the environment. The identification process is 
carried out as follows, 

The Concave corners can be detected as a change in the 
sign of two consecutive differences from positive to 
negative values (Figure 4). 

 

Figure 4. Concave corner extraction. 

For the Convex corners, we can find two possibilities 
depending on the position of the robot with respect to the 
corner (Figure 5). In the Figure 5a, the robot can detect the 
two sides of the corner, finding a change in the differences 
from negative to positive values. In Figure 5b, there is a 
jump between two consecutive differences. Both cases are 
detected as convex corner. 

  
a) b) 
Figure 5. Convex corner extraction. 

The example showed in Figure 5a could be confused with 
the situation appeared when the beam of the laser forms a 
perpendicular line with an obstacle (Figure 6). In order to 
differentiate this case from the real convex corner we 
compute the angles formed by the beam and the obstacle by 
the triangulation technique. If these angles are different than 
90, we will be in the real convex case. 



 

Figure 6. Differentiation between a convex corner and the 
perpendicular line formed by a laser beam and an object. 

At this point, the algorithm has extracted a set of 
distinctive points from the sensor data. The description of 
each distinctive point is given by a set of three elements 
<DPi ,Di, Ai>, where DPi is the kind of distinctive point and 
the pair (Di, Ai ) represents the polar coordinate where it has 
been located. 

The next step of the algorithm creates a vector, called the 
current view, which represents the hybrid information 
extracted from a particular location of the robot in the 
environment (Figure 7). 

 
+ + + DPn - … - DP1 + + + 
            

Figure 7. An example of the vector, which represents the current 
view of the robot. The DPi symbols represents distinctive points 

and the + and – symbols symbolize positive and negative distance 
differences, respectively. 

Each cell of this vector represents a sensor reading 
translated into a hybrid representation. We notice that we 
can add to this view the sign of the differences calculated in 
the distance difference vector (in those positions where 
there is not a distinctive point), and we could use this view 
to identify the current robot position, useful in the 
navigation process. 

The distinctive points extracted from the environment are 
used directly to define reference systems. A reference 
systems is composed by two distinctive points which are 
neighbours, therefore, we will take each pair of consecutive 
distinctive points extracted from the current view. In Figure 
8, we can see an example of an environment, which is 
explored by the robot. We remark that depending on the 
level of granularity defined, some characteristics could be 
missed.  

 

Figure 8. Example of environment with 8 distinctive points. 

The set of distinctive points, extracted from the 
environment showed in Figure 8, will be the next: 

{ (A , A0 , D0),  (B , A1 , D1),  (C , A2 , D2),     
 (D , A3 ,D3),  (E , A4 , D4),  (F , A5 , D5),     
 (G , A6 , D6),  (H , A7 , D7) } 

where, 

A, B, C, D, E ,F ,G ,H are distinctive points; 

(Ai, Di) are the polar coordinates of each distinctive 
point. 

We distinguish eight distinctive points, and we will 
identify seven reference systems composed by the 
distinctive points AB, BC, CD, DE, EF, FG, GH.  

In addition, a distinctive point can be on the right, on the 
left or on the same position with respect to the middle of the 
vector, which represents the current view. This information 
is used to obtain the present position of the robot with 
respect to a reference system looking at the current view the 
situation of the distinctive points, which forms that 
reference system (Figure 9b). 
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Figure 9. a) Robot positions with respect to the reference system AB 
extracted from an obstacle; b) current view of the robot where the 

position of the robot with respect to the reference system AB is 
obtained (the middle position of the current view is indicated by a 

shadow cell). 

Therefore, the robot can be situated in five different 
positions with respect to a reference system: right, right-
middle, middle and left-middle (Figure 9a). The different 
positions of the robot with respect to all the reference 
systems obtained in the current view are calculated to 
determine the present location of the robot. 

3.2 Tracking Reference Systems 
Every time the robot moves through the environment, it 
looks for the new location of the old reference systems. 
Furthermore, it looks for new reference systems. 

The displacement of the reference systems is tracked by 
the robot using the successive views obtained from the 
environment. Considering that A and B are two consecutive 
distinctive points in the current view, therefore if the robot 

90 
90

A B 

C 
DE 

F 

G H 

B 

A

  1 

  3 

  4 

  5 

Obstacle

  2 



moves towards its right, the distinctive points inside the 
view will move towards the left in the successive views 
(Figure 10a), likewise if the robot turns towards its leftt, the 
distinctive points will move towards the right (Figure 10b). 

<< A  << B  
a) Right turn 

A >>  B >> 
b) Left turn 

Figure 10. Displacement of the distinctive points after a right or 
left turn of the robot. The symbols << and >> indicate the direction 

of the displacement. 

In Figure 11, displacements corresponding whit a forward 
or backward movements of the robot are showed. In a 
forward movement, distinctive points will move towards the 
extreme of the vector. In a backward movement, distinctive 
points will move towards the centre of the vector. 

<< A  B >>  A >>  << B  
a) Forward b) Backward 

Figure 11. Displacement of the distinctive points after a forward 
or backward movement of the robot. The symbols << and >> 

indicate the direction of the displacement. 

The size of the tracking window where the robot looks for 
the new position of the distinctive points in the successive 
views is configurable taking into account the velocity of the 
robot movements and the level of granularity. We can 
characterize this concept as follows: the size of the tracking 
window is directly proportional to the product of the 
velocity of the robot and the granularity. 

4 Cognitive Map 
In the previous sections, we have showed the extraction of 
reference systems from the environment using geometrical 
data and qualitative features. In this section, we will show 
how we can combine reference systems to construct a map 
of the world. This map is a hybrid description; however, it 
contains the bases for the extraction of a topological 
description. 

The final cognitive map will emerge from the integration 
between the qualitative representation contained in the 
hybrid description and the topological map. This cognitive 
map connects in a natural way places, transitions and 
topological relations. 

4.1 Relating Reference Systems 
While the robot is moving through the world, reference 
systems are being extracting from the successive views. 
Therefore, we need to relate them in order to create a world 
map. 

To relate two reference systems they have to be adjacent, 
that is, they have to share a distinctive point. We will use 
two measures obtained from the geometrical representation 
to situate a new reference system with respect to a previous 
one. 

Given two reference systems AB and CD, we connect 
them by means of (Figure 12), 

• The angle between both reference systems, that is, 
the sum γAB + βBC 

• The distance between the distinctive points B and 
C. 

  

a) b) 
Figure 12. Relating reference systems: a) extracting relevant 

information from the triangulation technique; b) relating reference 
system BC with the reference system AB by means of the distance 

between BC and the angle formed by γAB + βBC 

An important concept, called place, appears when we 
create the relations between reference systems. Relations 
between reference systems define places in the map. 

DEFINITION 5. Two reference systems will be related 
if they share a distinctive point 

DEFINITION 6. A place is the space situated inside the 
area described by the minimum polygon formed by a set of 
reference systems consecutively related. Inside a place, the 
robot can see all the distinctive points belonging to that 
place. 

While the robot moves through the environment, new 
information can be acquired and the existing places can be 
modified (nonmonotonic reasoning). These modifications 
will be imposed by the observance of the previous 
definitions during the navigation process. 

DEFINITION 7. A reference system is open if the robot 
can pass through it. 

DEFINITION 8. A transition between two places is 
done by traversing an open reference system shared by the 
two places. 

As an example, in Figure 13, the reference systems AB, 
BC, CD and DA define the place ABCD. While the robot 
pass through the open reference system AB, new distinctive 
points are found creating a new place AEFB. The polygon 
AEFBCD is not a place because it has two subsets of related 
reference systems. 
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Figure 13. Definition of places. 

4.2 Obtaining the Topological Map 
The algorithm used for the creation of the topological map 
is showed in Figure 14. This algorithm works using the 
reference systems obtained by the algorithm described in the 
section 3.1. 

1.Relating reference systems 
2.Creating places 
3.Making the correspondence between places and nodes 
4.Making the correspondence between transitions and arcs 

Figure 14. The algorithm for the extraction of the topological map 

The topological map is extracted directly from the places 
defined in the previous section. Each place corresponds with 
a node in the topological map. In addition, the transitions 
between two places define the arcs of the topological map. 
Each arc stores the relation between the two places, 
indicating the kind of movement that the robot has to do to 
traverse them. 

In Figure 15, we can see an example of an environment 
where places have been marked and the topological map is 
showed. The relation between this places and the 
topological map can be seen in a clear way. 

 
Figure 15. Extraction of the topological map. 

With the model described in this paper the number of the 
places extracted (and the correspondent size of the 
topological map) is given by the complexity of the 
environment. 

5 Conclusions and Future Work 
In this paper, we propose a hybrid representation for 
autonomous robot navigation in indoor environments, which 
uses local reference systems as the basic construction 
blocks. We integrate metric and qualitative information, 
relating in a natural way the different working scales of an 
autonomous robot navigation system. We also have 
described the creation of a topological map as a natural 
extension from the hybrid description. 

Furthermore, we have showed how a cognitive map can 
emerge from the combination of the hybrid description and 
the topological map. We have obtained this cognitive map 
proceeding in two steps: (1) we have extracted a hybrid 
representation reflected in the successive current views 
observed by the robot, (2) we have extracted a topological 
map on top of the hybrid representation by means of the 
relations between local reference systems. 

The work reported on this paper is in progress. We are 
testing this model in a simulation software and in a real 
robot to extract a complete set of results, as the efficiency or 
the complexity, about the maps obtained. We are also 
examining the influence of wrong sensor data in the map 
creation. In addition, we are studying the application of 
qualitative spatial reasoning to plan the movements of the 
robot during its exploration of the environment. Moreover, 
future works will focus on the integration of several kinds of 
qualitative representation and qualitative reasoning inside 
the model presented here. 
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