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Abstract

The intrinsic diagnostic limitations of traditional
ECG’s have motivated the development of novel
methods for electrocardiac imaging. In particular,
body surface potential maps are becoming avail-
able, as well as epicardial maps obtained nonin-
vasively from body surface data through mathe-
matical model-based reconstruction methods. Such
maps can capture a number of electrical conduc-
tion pathologies that can be missed by ECG’s anal-
ysis, but their introduction into the clinical prac-
tice is still far away as their interpretation requires
skills that are possessed by very few experts. This
paper describes a research effort towards the real-
ization of an automated electrocardiac map inter-
pretation tool. More precisely, its focus is on acti-
vation isochrone maps. Starting from original 3D
epicardial data gathered over time, we exploit nu-
merical and qualitative information to build the sur-
face maps, and to extract the wavefront propaga-
tion and velocity patterns, as well as other salient
features that characterize the heart electrical activ-
ity. To this end, a set of spatial objects at different
abstraction levels is built along with a neat hierar-
chical network of spatial relations and qualitative
functional similarities between them. Spatial Ag-
gregation results to be a natural conceptual frame-
work to define, extract, and make features available
for reasoning tasks.

Keywords: imaging, qualitative reasoning, spatial
reasoning, electrocardiology.

1 Introduction
During the last decade, noninvasive functional imaging tech-
niques, such as computerized tomography and magnetic res-
onance, have increasingly replaced pure anatomical imaging
for medical diagnosis as they are capable to provide both very
detailed anatomical images and spatio-temporal measures of
physiological parameters that characterize the activity of dif-
ferent organ areas. In Electrocardiology, unfortunately, simi-
lar directly applicable techniques are not yet available. Nev-
ertheless, the heart electrical function may be noninvasively

evaluated by reconstructing spatio-temporal information of
the epicardial activity from body surface mapping.

The research effort currently devoted to the development
of novel methods for electrocardiographic imaging [Ra-
manathan et al., 2004] is strongly motivated by the intrin-
sic diagnostic limitations of traditional electrocardiograms
(ECG’s), for which, however, an interpretative rationale is
well-established. Infact, ECG’s provide only a low resolu-
tion projection on the chest surface of the heart electrical ac-
tivity: on the one hand, due to the distance of the electrodes
from the cardiac bioelectric sources, the informative content
of the electrical signals recorded on the chest is necessarily
weak. On the other hand, when probing is limited to a small
number of sites on the chest, as in clinical ECG’s protocols,
a few electrical conduction pathologies (arrythmias, infarcts,
Wolf-Parkinson-White syndrome just to cite some) may re-
main undetected.

A higher resolution projection of the cardiac electrical ac-
tivity is obtained by body surface mapping (BSM): electrical
potential is simultaneously recorded from a few hundreds of
sites on the entire chest surface over a complete heart beat
[Taccardi et al., 1998]. But, the most of information useful to
localize anomalous conduction sites is got when mappings of
the significant physical variable values are given, and visual-
ized, as close as possible to the heart where such phenomena
originate, and where any necessary surgical intervention has
to be extremely focussed.

Thanks to the latest advances in scientific computing, given
as inputs (i) body surface potentials and (ii) the geometric re-
lationship between the chest and the heart, epicardial electri-
cal data may be noninvasively reconstructed by using mathe-
matical models and numerical inverse procedures [Colli Fran-
zone et al., 1985; Oster et al., 1997]. Moreover, mathemati-
cal models are crucial to highlight, through numerical sim-
ulation, the links between the observable patterns (effects)
and the underlying bioelectric phenomena (causes). Although
still progressively being improved, the interpretative rationale
for electrocardiac maps defined by expert electrocardiophys-
iologists with the helpful support of applied mathematicians
is significant enough to be actually used. However, its intro-
duction into the clinical practice is not yet at hand because
the ability to both extract salient visual features from electro-
cardiographic maps and relate them to the underlying com-
plex physiological phenomena still belongs to very few ex-



perts [Taccardi et al., 1998]. Thus, the need to bridge the
gap between the established research outcomes and clinical
practice.

This paper describes a piece of work that fits into a long-
term research project aimed at delivering an automated elec-
trocardiac map interpretation tool to be used in a clinical con-
text. To this end, Qualitative Reasoning (QR) methodolo-
gies, and the Spatial Aggregation (SA) approach can play a
crucial role in the identification of spatio-temporal patterns
and salient features in the map. Let us remind that the ap-
plication of QR methods is not new in Electrocardiology as
demonstrated by a number of automated interpretation tools
of traditional ECG’s [Bratko et al., 1989; Weng et al., 2001;
Kundu et al., 1998; Watrous, 1995].

SA is a computational framework specifically designed
for reasoning about spatially distributed data [Yip and Zhao,
1996; Bailey-Kellogg et al., 1996; Huang and Zhao, 2000],
and provides a suitable ground to capture spatio-temporal ad-
jacencies at multiple scales. Its hierarchical strategy in ag-
gregating spatial objects to abstract a field at different levels
emulates the way experts usually perform imagistic reason-
ing about fields, that is (1) searching for regularities, and (2)
abstracting structural information about the underlying physi-
cal processes. In outline, SA transforms a numeric input field
into a multi-layered symbolic description of the structure and
behavior of the physical variables associated with it. This re-
sults from successive transformations of lower-level objects
into more and more abstract ones by exploiting distinctive
qualitative equivalence properties shared by neighbor objects.
The main advantage offered by a SA-like method over con-
ventional visualization ones lies in its capability of preserving
and representing spatial relations between geometrical ob-
jects at different abstraction levels. This facilitates the au-
tomated extraction of features and general rules necessary to
infer the causal relationships between pathophysiological pat-
terns and wavefront structure and propagation.

This paper is focussed on activation time maps at epicar-
dial level, as they are a synthetic representation of the spatio-
temporal aspects of the propagation of the electrical excita-
tion. It describes how the most significant features that char-
acterize such phenomena and reveal either their normality or
abnormality, such as wavefront breakthrough and extinction
regions, minimum and maximum propagation velocity pat-
terns, are defined within the SA conceptual framework, and
extracted from the epicardial electrical data. Let us empha-
size that SA-like procedures make information on both the
internal structure of objects and neighborhood relations be-
tween them available in a structured and hierarchical way. As
a consequence, the relevant information for performing rea-
soning tasks can be promptly located and used.

2 Describing ventricular excitation through
features abstracted from the activation map

Experimental and model-based studies recently carried out
show that the spread of the excitation within the heart is
not uniform: both anisotropic conductivity properties and the
fiber structure of the tissue affect the wavefront propagation.
To investigate this spatio-temporal process electrocardiolo-

gists use a well-established parameter that is also important
for the diagnosis of cardiac rhythm, namely the activation
time.
Definition 1. Let x be a point of the myocardium Ω ⊂ R3,
the heart’s muscular wall. The activation time τ(x) is the
instant at which the excitation front reaches x, causing it to
depolarize.
Definition 2. An activation map is a contour map of the acti-
vation time built on a reference surface, where each contour
line aggregates all and none but the points that depolarize at
the same instant.

Since wavefront propagation is a 3D process, which is
quite difficult to be visualized within the volume Ω, activa-
tion maps are built on reference surfaces, usually the exter-
nal/internal boundaries of Ω (epicardial/endocardial surfaces,
respectively), but also transverse and longitudinal intramural
sections. The activation time can be either experimentally
measured by advanced optical techniques, or computed from
the epicardial potential data when these are available over
a whole beat. Activation maps contain a lot of information
about the wavefront structure and propagation: subsequent
isochrones represent the wavefront kinematics as a sequence
of snapshots.

The isochrone distributions are complex, with several dis-
tinct areas showing different propagation patterns that the ex-
pert analysis may reveal: the locations on the considered sur-
face where wavefront breaks through and vanishes, the local
fiber direction, the wavefront propagation pathways, and the
regions with high, low or null conductivity. Thus, such kinds
of maps have a clear and strong diagnostic value: by compar-
ison with a nominal activation map, anomalous conduction
patterns and regions with altered conductivity can be easily
detected and classified.
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Figure 1: Model ventricle 3D geometry: the mesh is shown
on the most external and internal ventricle layers.

Sophisticated mathematical models of the ventricular excita-
tion that take into account both fiber architecture and con-
duction anisotropy exist [Henriquez, 1993; Henriquez et al.,
1996; Roth, 1992; Colli Franzone et al., 1998]. Herein, we
consider simulated data obtained by the model proposed by
[Colli Franzone et al., 1998]. Figure 1 illustrates a 3D sim-
plified ventricular geometry. Its discretization was carried out
by 90 horizontal sections, 61 angular sectors on each section,
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Figure 2: (a) Anterior and posterior orthogonal projections of the activation map (solid thick lines) drawn on the external
boundary of the 3D mesh (thin lines). (b) Cylindrical projection of the same isomap; maximum velocity propagation pathways
(thick dashed lines) from wavefront breakthrough (A) to extinction (B) locations are sketched.

and 6 radial subdivisions of each sector. A numerical simula-
tion, based on an anisotropic bidomain model of the ventricle
tissue, was carried out on this mesh: the potential u(x, t) was
computed over a whole beat at each node xi. Hence, the ac-
tivation time τ(xi) was obtained as the instant of minimum
time derivative of each electrogram u(xi, t).

2.1 The feature extraction problem
Contour lines are the first result from processing the input ac-
tivation time data. Figure 2 highlights what are the pieces of
information that we want to extract from contour maps. Fig-
ure 2(a) shows the anterior and posterior orthogonal projec-
tions of the activation map on the external ventricle boundary.
In order to have a unique global view with minimal spatial
distortion, we consider a cylindrical projection of this map
(Fig.2(b)). Reasoning on panel (b), the expert would: i)
identify point A where the excitation starts from, ii) identify
regions where contours are more scattered/dense as regions
where propagation is faster/slower, iii) sketch the maximum
velocity propagation pathway towards the site B where ex-
citation vanishes. Therefore, the feature extraction problem
is equivalent to the following one: given the activation time
field, build an activation map, and search for those geometric
patterns or spatial objects that characterize salient aspects of
the wavefront propagation process. More precisely,

• given in INPUT:

– the discretized geometry data, i.e. the set of the
surface mesh nodes Ωh = {xi}i=1..N ,

– the activation data {τi}i=1..N , where τi = τ(xi),
– a time step ∆τ to uniformly scan the time range

[0, T ];

• provide as OUTPUT:

– the sequence of wavefront snapshots:
Ik = {x | τ(x) = k∆τ}k , k = 1, .., nτ

– the wavefront breakthrough region:
Rb = {x | τ(x) = min τ}

– the wavefront extinction region:
Re = {x | τ(x) = max τ}

– the propagation velocity patterns.

2.2 The Spatial Aggregation framework
The problem above, i.e. the extraction of both wavefront
structure and propagation from raw epicardial data, is solved
through a sequence of intermediate representations that grad-
ually identify the geometric patterns, the spatial relations be-
tween them, and the global dynamical behavior. The adopted
ontological framework is that one underlying the Spatial Ag-
gregation approach: geometric patterns, or spatial objects,
are built up from a given input field by applying an iterative
procedure that transforms lower-level abstract objects, called
spatial aggregates, into ones at a higher abstraction level.
Neighborhood relations play a crucial role in extracting the
necessary structural and behavioral information for perform-
ing a specific task: on the one hand, intra-relations bind a
set of contiguous spatial aggregates into a single object; on



Figure 3: Isopoints (dots) and their ngraph (thin solid lines).
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Figure 4: Isochrones abstracted as strong adjacencies between isopoints.

the other hand, inter-relations highlight the connectivity and
interactions between the spatial objects aggregated at the pre-
vious level. The former kind of relation is called strong adja-
cency, and the latter one weak adjacency.

In outline, the overall process iterates three main steps: ag-
gregate, classify, and redescribe. The aggregate procedure
makes the spatial contiguity between field objects explicit
by encoding it in a neighborhood graph (n-graph). Then,
the application of a strong adjacency relation on contigu-
ous elements represented by the n-graph defines equivalence
classes characterized by a distinctive property. The equiv-
alence classes are finally transformed into new higher-level
spatial objects through the redescribe operator. The three
steps are repeated until the desired structural and behavioral
information is obtained.

The hierarchical structure of the whole set of built spatial
objects allows us to state a bi-directional mapping between
higher and lower-level aggregates, and, then, it facilitates the
identification of the piece of information relevant for a spe-
cific task.

3 Extracting wavefront structure from
epicardial data

The isochrone shapes and distributions built on ventricular
external and internal surfaces, and on intramural sections, de-
fine the wavefront structure. Then, its reconstruction turns
into 2D contouring problems.

3.1 From epicardial data to activation isochrone
maps

Proper definitions and algorithms to soundly tackle the con-
touring task for generic geometrical domains within the SA

framework have been given and discussed in [Ironi and Ten-
toni, 2003a; 2003b]. In outline, SA contouring is performed
in four main steps:

1. Pre-processing of the activation data to generate the set
of isopoints P for the required levels. The set P is
built by comparison of the values at the mesh nodes with
the required levels, and by linear interpolation of mesh
nodal values.

2. Definition of the spatial contiguities between isopoints,
i.e. construction of the n-graph NP (Fig. 3). The re-
sulting n-graph must ensure that the spatial contiguity of
points in NP also respects their nearness in terms of the
associated functional values: a Delaunay triangulation
is accordingly adjusted to guarantee a proper represen-
tation.

3. Classification of the contiguous isopoints represented in
NP . P is partitioned into equivalence classes that are
built by applying a strong adjacency relation based on
topological adjacency properties rather than a metric dis-
tance.

4. Construction of the isocurves (Fig. 4). The equivalent
classes defined at the previous step are redescribed as
polylines, whose vertices are isopoints and whose edges
are instances of the strong adjacency relation holding be-
tween them. Let us observe that a single wavefront snap-
shot Ik may consist of more connected components I ik

k

(see, for example, the isocurve labelled 80 in Fig. 4).
Thus, Ik = ∪ik=1,..,nk

Iik

k , where nk is the number of
connected components.



Figure 5: Weak adjacency graph betwen isopoints.
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Figure 6: (a) Spatial, and (b) symbolic representation of NI .

3.2 Spatial adjacency relations between isochrones
To identify the salient features that characterize wavefront
propagation, steps analogous to 2-4 given above are iterated
until the relevant pieces of information are made available
at the desired high-level as aggregate objects. Then, after
isochrones Ik have been abstracted by exploiting both con-
tiguity and strong adjacency between isopoints, the next step
deals with the construction of a neighborhood graph,NI , that
encodes curve contiguity. To this end, a straightforward strat-
egy consists in exploiting weak adjacency relations between
isochrone constituent isopoints.

Definition 3. Given the set of isopoints P and their n-graph
NP , we say that x, y ∈ P are weakly adjacent if they are
contiguous within NP but not strongly adjacent (Fig. 5)1.

Definition 4 (n-graph of isochrones). Two isochrones I ′ and
I ′′, with respective time labels τ ′, τ ′′, are contiguous if:

1) |τ ′ − τ ′′| = ∆τ , and

2) there exists at least one couple of isopoints x, y weakly
adjacent, where x ∈ I ′ and y ∈ I ′′.

Spatial contiguity between isocurves is then represented by
NI that encodes any one of these weak connections. Figure
6 depicts a spatial (panel A) and a symbolic (panel B) rep-
resentation of NI . In the latter representation, graph nodes
represent isochrone connected components, and edges state
neighborhood relations between them.

1Let us highlight that Fig. 5 differs from Fig. 3 as the intra-
relations binding isopoints within an isocurve are not considered.

Let us emphasize that the graph NI encodes both a spatial
contiguity relation and a temporal order between isochrones.

4 Extracting wavefront propagation from
isochrone maps

The ordered time sequence of the wavefront snapshots, their
velocity properties, as well as the breakthrough and extinction
regions are the features that define the wavefront propagation
as it is observed on the surface considered.

4.1 Breakthough and extinction regions
The breakthrough and extinction regions where excitation
arises and, respectively, vanishes are easily characterized as
the subsets Rb and Re of Ωh which are earliest and last acti-
vated.

Let us define a quantity space of the time variable:
Qτ = {τmin τmed τmax}, and a mapping q : [0, T ] → Qτ

such that q : [0, ε] → τmin, q : ( ε, T − ε) → τmed,
q : [T − ε, T ] → τmax

2.
Let us consider the lowest-level spatial objects defined by the
original mesh nodes Ωh = {xi}. Then, the mesh itself de-
fines the spatial contiguity between points, i.e. the related
n-graph, and new spatial objects are abstracted by applying
the following strong adjacency relation:

Definition 5. xi, xj ∈ Ωh are similarly-activated if they are
contiguous within the mesh AND qτ(xi) = qτ(xj).

2ε is a suitable numeric tolerance (herein, ε = T/100)
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Figure 7: A, B respectively denote breakthrough and extinction regions. Wavefront fragments qualitatively characterized by
νmax are represented by the set of velocity vectors plotted in their constituent isopoints. Maximum propagation velocity bands
are filled in gray.

As a consequence, Rb, Re are the redescribed objects that
correspond to the earliest-activated (τmin) and last-activated
(τmax) classes. In Figure 7 such regions are labelled A and
B, respectively. In this case, B is one single point, located
on the top edge of the surface boundary beyond the last con-
tour, while A consists of a whole mesh element whose ver-
tices coincide with the sites where the electrical stimulus was
applied.

4.2 Propagation velocity bands: a qualitative
approach

As the spatio-temporal progression of the isochrones, en-
coded by NI , is available, we can identify another important
feature of the excitation process, that is the wavefront velocity
patterns. This is achieved in two main steps by (1) identifying
isochrone segments characterized by the same qualitative ve-
locity value, and (2) by classifying them in accordance with
their propagation direction. Let us remind that the wavefront
motion is a 3D process, therefore the velocity here consid-
ered is the wavefront apparent surface velocity along the out-
ward normal to the front. If x ∈ Ik, its velocity v(x) is
directed as the outward normal to Ik, and has a magnitude
v(x) = 1/|∇τ(x)|, where ∇τ(x) is the gradient of τ(x) and
is numerically approximated.

Algorithm 1. Wavefront fragment extraction.

Let us define a quantity space Qv = {νmin νmed νmax} of
qualitative values that velocity magnitude may assume.

For each given isochrone I:

1. Denote by v(I) the velocity magnitude range, that is:
v(I) = [V I

min, V I
max] where V I

min = min
x∈I

v(x),

V I
max = max

x∈I
v(x).

2. Define a mapping µI : v(I) → Qv such that
µI : [V I

min, V I
min + δ] → νmin,

µI : (V I
min + δ, V I

max − δ) → νmed,
µI : [V I

max − δ, Vmax] → νmax
3 .

3δ is a suitable numerical tolerance (herein, δ = 0.15 ∗ (V I

max −

V I

min))

3. Consider the isochrone constituent points, whose spatial
contiguity is encoded by their strong-adjacency graph
NP |I , and define the following relation between them:
Definition. ∀x, y ∈ I contiguous within NP |I , we say
that they have the same velocity if µIv(x) = µIv(y).

4. Apply the above relation, build velocity equivalence
classes, and call each new object a front fragment.

5. Repeat points 1-4 for all isochrones.

6. Denote byW the set of all the generated front fragments.

A front fragment is spatially represented by the set of velocity
vectors associated with its constituent points. Spatial conti-
guity of front fragments is inherited from NI and encoded in
NW by making each fragment contiguous to all the fragments
of contiguous isochrones. Since the constituent points of a
front fragment w have the same qualitative velocity value, we
can refer to such value as the front fragment velocity magni-
tude νw ∈ Qv .

Algorithm 2. Propagation velocity pattern extraction.

1. Define the propagation direction of a front fragment w ∈
W as the direction of the vector u(w) :=

∑
x∈w v(x).

2. Define a similarly advancing relation inW×W to high-
light velocity homogeneities:

Definition. ∀w, w′ ∈ W contiguous withinNW , we say
that they are related if they are advancing in a similar
direction and with same qualitative velocity magnitude:

u(w) · u(w′) > 0 AND νw = ν′w.

3. Build equivalence classes and abstract them as new ob-
jects that we call velocity bands.

Figure 7 shows the features extracted from the given activa-
tion time data that are relevant for diagnostic purposes: (i) the
propagation velocity pattern, i.e. the front fragments qualita-
tively characterized by νmax, and the resulting νmax-bands,
(ii) the breakthrough and extinction regions (A and B, respec-
tively).

5 Conclusions
This piece of work represents the first step towards the real-
ization of a tool for the automated interpretation of electro-



cardiac maps. Herein, we focus on the extraction, from acti-
vation time data given in surface mesh nodes, of spatial ob-
jects at different abstraction levels that correspond to salient
features of wavefront structure and propagation, namely ac-
tivation map, beakthrough and extinction regions, front frag-
ments, and propagation velocity bands. Let us remark that the
proposed algorithms are not domain dependent but applicable
to the more general context of the analysis and interpretation
of numerical fields associated with propagation phenomena,
e.g. reaction-diffusion systems.

The work is done within the SA conceptual framework,
and exploits both numerical and qualitative information to de-
fine a neat hierarchical network of spatial relations and func-
tional similarities between objects. Such a network provides
a robust and efficient way to qualitatively characterize spatio-
temporal phenomena. In our specific case, it allows us to
identify the locations where the wavefront breaks through or
vanishes, its propagation patterns, and the regions where elec-
trical conductivity properties are qualitatively different. Such
pieces of information are essential in a clinical context to di-
agnose ventricular arrhythmias as they can localize possible
ectopic sites and highlight abnormal propagation of the exci-
tation wavefront, such as slow conduction, conduction block,
and reentry. With the aim of building a diagnostic tool, more
work needs also to be done to identify such phenomena, and
to extract additional temporal information from sequences of
isopotential maps built from epicardial potential data. Fur-
ther work will be devoted to design and implement methods
for the automated interpretation of activation maps. This re-
quires to define a vocabulary of features, as well as methods
for their comparison with the features extracted from different
raw epicardial data sets, either simulated or measured. To this
end, a necessary step will deal with the detection and filtering
of faulty and noisy electrical signals.
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