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Abstract

This paper presents a method for evaluating qualitative orders
of magnitude information in multi-attribute decision-making.
It allows the selection of an alternative from among a set of
alternatives. These are characterized by having all descrip-
tors defined in orders of magnitude. A representation for the
different alternatives by means of k-dimensional labels is pro-
posed, each of these standing for the conjunction of k labels
corresponding to the qualitative information considered. A
method is given for choosing the best alternative based on
comparing distances against a reference k-dimensional label.
For this reason, a distance is introduced that enables a total
order to be defined for the set of alternatives. Finally, the
method based on this order is proposed and its consistency
established.

Introduction
In multiple attribute decision-making processes, the evalua-
tion of alternatives depends on the previous valuation of in-
put factors or variables [4], [9]. In some cases, the available
information cannot be expressed with real numbers. The
choice of the methodology used is dictated by the scale type
on which the information is represented. The multi-attribute
decision method presented in this work is especially suit-
able when aiming at an evaluation from the qualitative or-
dinal descriptions of the variables involved. These ordinal
scaled descriptions are considered in the case in which nu-
merical values are not precisely known, or when orders of
magnitude and variable tendencies are more relevant than
their exact values.

This work is the adaptation of previous work, based on in-
terval algebra, to the case of variables defined over absolute
orders of magnitude spaces [6].

In addition, this work considers the hypothesis that the
value assigned to the alternatives is an increasing function
with respect to the input variables, i.e. the greater the in-
put variable values the higher the corresponding alternative
values. In the case of having decreasing dependency with
respect to some variables, each of these variables will be re-
placed by its opposite, changing the positive/negative sign
of its values.

The proposed method is based on the synthesization of the
initial information via a k-dimensional label, which can be
seen as a rectangle, and its evaluation by means of a distance

to a reference k-dimensional label. This in turn is based
on a qualitative generalization of a type of goal program-
ming method known as the reference point method for vec-
torial optimization and decision-making support [3], [6],[7].
In general, reference point methods for optimization inRn

choose the points at the shortest distance from a previously
fixed reference point as the optimal alternative (the ”goal”to
be reached) [2].

In this work, optimization in the set of existing alterna-
tives is performed by selecting not an independent fixed
reference, but a ”realistic” reference for the problem to be
solved: with respect to the natural order, the proposed ref-
erence is the supreme reference for the set of available al-
ternatives, guaranteeing consistency with the order between
rectangles.

The proposed methodology may be of interest to very dif-
ferent areas. Concretely, applications in candidate assess-
ments (students in learning processes, recruiting processes)
as well as project management (architectonic, civil engineer-
ing and business projects) can be considered [5]. It may also
be of interest in decision-making processes in areas such as
finance and marketing [1].

Section 2 presents some features related to the qualita-
tive models of absolute orders of magnitude, and Section
3 provides a qualitative representation of alternatives ina
partially-ordered set. Section 4 defines some possible dis-
tances inRn, whether weighted or not, and one of these in
particular is proposed. In Section 5, a total order in the set
of alternatives is defined in such a way that the set of labels
corresponding to the available alternatives becomes a chain
(ranking), and the alternative chosen is that represented by
the maximum for this chain.

The consistency property for the method of choice is es-
tablished. Analysis of the necessary conditions under which
consistency can hold leads to the determination of the refer-
ence as the supreme of the set of labels corresponding to the
available alternatives. Lastly, conclusions and open prob-
lems are presented.

Absolute Orders of Magnitude Models
The one-dimensional absolute order of magnitude model [8]
works with a finite number of qualitative labels obtained via
a discretization of the real line. The number of labels chosen
to describe a real problem is not fixed, but depends on the



characteristics of each represented variable.
Let us consider a set of landmarks{a1, . . . , an+1} to de-

fine the set of basic labelsS∗ = {B1, . . . , Bn} (see Figure
1), whereBi = [ai, ai+1], i = 1, . . . , n.

a1 a2 an an+1. . .

B1 Bn

Figure 1: The discretization

The complete Orders of Magnitude Space (OM) spaceS
is defined asS = S∗ ∪ {[Bi, Bj ]/Bi, Bj ∈ S∗, with i <
j}, being[Bi, Bj ] the label corresponding to the minimum
closed interval of the real line that containsBi andBj . So, if
Bi = [ai, ai+1], Bj = [aj , aj+1], then[Bi, Bj ] = [ai, aj+1]
[8].

In this paper, variables can be defined in spaces with dif-
ferent granularity (different number of basic labels) and they
can therefore have different sets of landmarks.

Alternatives representation: the partially
ordered setE

In the proposed multi-attribute decision making problem,
each alternative is characterized by the values ofk attributes
or input variables, and these values are given by means of
qualitative labels belonging to different orders of magni-
tude spaces. So, each alternative is represented by ak-
dimensional label.

Let Si be the orders of magnitude space associated to the
variablei with set of basic labelsSi∗.

The set of alternativesE is defined as:

E = S1 × . . . × Sk =

= {(E1, . . . , Ek) | Ei ∈ Si ∀i = 1, . . . k} . (1)

Eachk-dimensional label(E1, . . . , Ek) is interpreted as
a set ofk qualitative labels (each associated to an input vari-
able) that define an alternative in such a way that, on every
variable, higher values always mean better results [2].

The order relation≤ that respects this fact is considered:
E = (E1, . . . , Ek) ≤ E′ = (E′

1, . . . , E
′

k) means that al-
ternativeE′ is better than alternativeE. This order relation
is built from the total order relation≤ in R, which in turn,
induces an order relation between basic labels in eachSh∗:

Bi ≤ Bj ⇐⇒ x ≤ y ∀x ∈ Bi,∀ y ∈ Bj ⇐⇒ ai+1 ≤ aj .
(2)

This induces a partial order in each componentSh (see
Figure 2):
Let E = [Bi, Bj ] andE′ = [B′

i, B
′
j ] be two labels inSh,

with Bi, Bj , B
′
i, B

′
j ∈ Sh∗; then:

E ≤ E′ ⇐⇒ Bi ≤ B′

i andBj ≤ B′

j . (3)

This order is extended to the cartesian productE :

(E1, . . . , Ek) ≤ (E′

1, . . . , E
′

k)

⇐⇒ Ei ≤ E′

i, ∀i = 1, . . . , k. (4)

This relation is an order relation inE , but a partial or-
der, since there are pairs of non-comparable k-dimensional
labels.
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Figure 2: The partial order≤ in E

Distances in the setE
A method is presented for computing distances betweenk-
dimensional labels. Although the analytic expressions of
these distances, and so their qualitative interpretations, are
different, all are mathematically equivalent in the sense that
the open sets of the induced topologies are the same.

Non-weighted distances
Let (Mi, di)i=1,...l a family of matric spaces, where, for
eachi, Mi is a non-empty set anddi a distance defined in
Mi. Let’s consider the three classical distances inR

l, that is
to say, the Euclidean distancede, the distance of the maxi-
mumdm, and the distance of Manhattands.

Proposition 1 The cartesian product
l

∏

i=1

Mi is a metric

space with the distances built from the distancesdi in Mi

and either the Euclidean distance or the distance of the max-
imum, or the distance of Manhattan inR

l:

de((x1, . . . , xl), (y1, . . . , yl)) =

√

√

√

√

l
∑

i=1

d2
i (xi, yi) (5)

dm((x1, . . . , xl), (y1, . . . , yl)) = max
i=1,...,l

{di(xi, yi)}) (6)

ds((x1, . . . , xl), (y1, . . . , yl)) =
l

∑

i=1

di(xi, yi) (7)

Proposition 2 Given a setX, and a metric space(M,d),
any injective mappingΦ : X ↪→ M induces a metric space
structure inX, by means ofdX(x, y) = d(Φ(x),Φ(y)).

Therefore, it is possible to define a distance in the set of
k-dimensional labelsE by using the mappingΦ from E into
the cartesian product ofRk for k copies ofR, Φ : E ↪→
R

k × R × · · · × R given by

Φ(E) = Φ((E1, . . . , Ek)) =

Φ([Bi1 , Bj1 ], . . . , [Bik
, Bjk

]) =

Φ([ai1 , aj1+1], . . . , [aik
, ajk+1]) =

(c(E), l1(E), . . . , lk(E)), (8)

where

c(E) =

(

ai1 + aj1+1

2
, . . . ,

aik
+ ajk+1

2

)

(9)

is the center of thek-rectangleE and

l1(E) = aj1+1 − ai1 , . . . , lk(E) = ajk+1 − aik
(10)



are the lengths of the sides ofE.
This mapping is evidently injective, given that any rect-

angle with sides parallel to the coordinate axis is determined
by its center and the lengths of its sides. Therefore, from
proposition 2, any distance inRk × R × · · · × R induces a
distance inE .

From proposition 1, distances in the productR
k × R ×

· · ·×R can be built fromde, dm ords and different distances
in each factor ofRk, R,. . . ,R.

When the Euclidean distance is taken in the first factor of
the productRk ×R× · · · ×R, the distance of Manhattan in
the otherk factorsR and the distanceds of proposition 1 for
their combination, the corresponding distance inE is:

dEs(E,E′) = ds(Φ(E),Φ(E′)) =

deuc(c(E), c(E′)) +

k
∑

i=1

|li(E) − li(E
′)|. (11)

This distance provides an intuitive notion of proximity be-
tweenk-dimensional rectangles, since it takes into account
the position of their centers, related to the magnitude of the
alternatives, and the lengths of their sides, related to theim-
precision of the data of the input variables. Moreover, this
distance applied to the case of maximum precision, in which
the intervals are reduced to points, is precisely the Euclidean
distance inRk.

Weighted distances
If in the k-dimensional labelsE = (E1, . . . , Ek) each of the
labelsEk has a different importance, due to the fact that dif-
ferent variables have different relevance for the evaluation,
a set of positive weightsα1, . . . , αk can be considered. Dis-
tances inE taking into account these weights can be built
by changing the injectionΦ by a weighted injection. Tak-
ing Ψ(E) = (c(E), α1l1(E), . . . , αklk(E)), the following
weighted distance is obtained:

dEsw(E,E′) = ds(Ψ(E),Ψ(E′)) =

deuc(c(E), c(E′)) +

k
∑

i=1

αi |li(E) − li(E
′)|, (12)

If it is also wished to weight the distance between the cen-
ters of the rectangles with respect to the lengths of the sides,
it is only necessary to add a numberβ > 0 to the set of
weights and choose a suitable weighted injection to obtain:

dEsw(E,E′) = βdeuc(c(E), c(E′)) +
k

∑

i=1

αi |li(E) − li(E
′)|. (13)

Choice of the best alternative
Starting from a distance inE and a referencek-dimensional
labelE , a total order£ can be defined inE , such that the set
of labelsE1, . . . , En corresponding to the available alterna-
tives become a chain:Ei1 £· · ·£ Ein . Then alternativeEin

corresponding to the maximum of the chain will be chosen.

A total order in E
Let E ∈ E be anyk-dimensional label and let us call it the
reference label.

Let d be any of the distances defined inE in Section 4,
then the following binary relation inE :

E ¹ E′ ⇐⇒ d(E′, E) ≤ d(E,E) (14)
is a pre-order, i.e. it is reflexive and transitive.

This pre-order relation induces an equivalence relation in
E by means of:

E ≡ E′ ⇐⇒ [E ¹ E′ , E′ ¹ E]

⇐⇒ d(E′, E) = d(E,E). (15)

Then, in the quotient setE/≡ the following relation be-
tween equivalence classes:

class(E) £ class(E′) ⇐⇒ E ¹ E′

⇐⇒ d(E′, E) ≤ d(E,E) (16)

is a total order relation.
In this way, given a set of alternativesE1, . . . , En, these

can be ordered as a chain with respect to their proximity to
the reference label: class(Ei1) £ · · · £ class(Ein). Al-
ternatives belonging to the same equivalence class, i.e. al-
ternatives at the same distance fromE, will be regarded as
alternatives with the same value, therefore, from now on an
abuse of notation will be made by changing¹ into £:
Ei1 £ · · · £ Ein .

Consistency of the method of choice
The method of choice of the best alternative via a distance
to a reference label is really necessary when no alternative
is better than all the rest with respect to every variable, i.e.,
when the set{E1, . . . , En} has no maximum with respect
to the order relation≤.

But when{E1, . . . , En} has a maximumEm with respect
to ≤, that is to say, when there already exists a priori an
alternativeEm better than the others, the proposed method
for choice will be consistent if it provides the sameEm as
the best alternative. Formally, given anyE1, . . . , En ∈ E :

∃m ∈ {1, . . . , n} Ei ≤ Em ∀ i = 1, . . . , n

=⇒ Ei
£ Em ∀i = 1, . . . , n (17)

The following proposition determines the construction of
the reference labelE for any set of labelsE1, . . . , En which
have a maximum with respect to the partial order≤ :

Proposition 3 If for any set of k-dimensional labels
E1, . . . , En with maximumEm the labelE = Em is cho-
sen as reference, then the property of consistency is accom-
plished. Otherwise, this property can not be assured.

The first statement is trivial, becaused(E,E) = 0 ≤
d(E,Ei)∀i = 1, . . . , n. In the caseE 6= Em, a counterex-
ample of the property of consistency can always be found.
In particular, for the distancedEs introduced in Section 4.1,
the following counterexample can be considered (see Figure
3):
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Figure 3. Counterexample of the consistency

Being E1, E2 the alternatives andE the chosen reference
label, we haved(E1, E) = 3, d(E2, E) = 3.5, so the ”near-
est” toE is E1, i.e. E2 £ E1, and, nevertheless,E1 ≤ E2.

Selection of the reference label

The consistency of the proposed method determines the ref-
erence label in the case of a set ofk-dimensional labels with
a maximum, as has been proved. The natural generalization
to any set of labels is the following:

Given any E1, . . . , En, the supreme of these hyper-
rectangles with respect to the partial order≤ will be taken
(see Figure 4):

E = sup{E1, . . . , En}. (18)

That is to say, ifEr = (Er
1 , . . . , Er

k), with Er
h =

[Br
ih

, Br
jh

] for all h = 1, . . . , k, and for allr = 1, . . . , n,
thenE = (E1, . . . , Ek), where

Eh = [max{B1
ih

, . . . , Bn
ih
},max{B1

jh
, . . . , Bn

jh
}]. (19)

E1

E2

E3

sup{E1, E2, E3}

Figure 4: Reference label: the supreme

Note that in the case of rectangles with a maximum, this
supreme is in fact the maximum, so this choice of the ref-
erence rectangle holds the property of consistency of the
method.

Selection of the best alternative

Finally, the steps of the proposed method for selecting the
best alternative are:

• To fix a distanced in E : dEs.

• To build a reference labelE: the supreme of the set of
alternatives.

• To assign to eachk-dimensional labelE the value
d(E,E); so, the alternatives are ordered (with respect to
the defined total order) as a chain,

• To choose as the best alternative the maximum of the
chain, that is to say, the one (or ones) of minimum dis-
tance.

Conclusion
In this paper, a methodology is proposed for the evaluation
of multi-attribute qualitative alternatives based on the use of
distances to a reference point. The use of the appropriate
distance provides an intuitive notion of proximity between
alternatives and consistently maintains the maximum order
of magnitude label chains.

The presented methodology allows, on the one hand, the
imprecise concepts of the specific application to be handled,
and, on the other, the methods of ”goal programming” to be
generalized without the need for previous knowledge of the
ideal goal.

Future work will be carried out into the efficiency of other
qualitative distances in the methodology and the applicabil-
ity to different domains. In addition, a software tool imple-
menting the presented methodology is being developed as
part of the AURA research project.
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