
Towards the use of Qualitative Reasoning for supporting
Information Technology Management

Ricardo M. P. de Alcântara and Germana M. da Nóbrega
Mestrado em Gestão do Conhecimento e da Tecnologia da Informação – Universidade Católica de Brasília (Brazil)

e-mail: piquet@tba.com.br, gmnobrega@pos.ucb.br

Paulo Salles
Instituto de Ciências Biológicas – Universidade de Brasília (Brazil)

e-mail: paulo.bretas@uol.com.br

Abstract

Building up human resources for Information Technol-
ogy management and improving web services would
benefit if causality was taken into account. In fact, op-
eration manuals and handbooks seldom explore causal
relations involving components like Web Servers, Ap-
plication Servers and Database Servers in tasks such as
capturing messages, monitoring and capacity planning.
Indeed, causality is sometimes only implicit in docu-
ments or in the everyday practice of companies. In this
paper we discuss the use of qualitative reasoning tech-
niques for managing IT using an implemented simula-
tion model as illustration. We argue that having explicit
representations of objects, configurations and causal re-
lations typically found in qualitative models may be of
great importance for understanding IT systems and use-
ful for training support and operation teams.

Introduction
As a crucial part of business activities, managing IT services
is often a complex task for financial banks. Requirements
on this kind of service are always broad and problems may
cause loss of customers and money. IT services include a
variety of components. For example, in order to provide
costumers means for paying bills, consulting balances or
making investments a set of Web transactions is required.
Web components involved include Web Servers, Applica-
tion Servers, Network, and Database Servers. Monitoring
and control are necessary to keep up with the quality of ser-
vices provided by the financial banks.

Currently, operation and support teams should monitor
messages coming from each of the components and integrate
them. Such information is managed without any reference to
related events, limiting thus the effectiveness of environment
management. A number of initiatives have been developed
to overcome such difficulties. One of such initiatives is the
IT Infrastructure Library - ITIL1, which offers documents to
be used in the implementation of a framework for IT Service
Management (van Bon 2005). ITIL includes two important
titles, service delivery and service support. Service deliv-
ery includes several disciplines like problem management

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

1http://www.itil.org.uk/

and incident management. Service support includes other
disciplines like capacity management and availability man-
agement.

The dynamics engendered for delivering services to cus-
tomers seems to establish a causal chain between its com-
ponents. As many components are simultaneously affected,
we assume that such a chain, if rendered explicit, might help
managers and support teams to understand and solve prob-
lems. Using traditional approaches in this area, such as clus-
tering messages, has proven to be of difficult implementa-
tion due to the huge number of messages and informations
available to the decisions makers. In this context new ap-
proaches have to be considered. In this paper we propose
to address some disciplines from ITIL by using Qualitative
Reasoning (QR) techniques (Weld & de Kleer 1990). Partic-
ularly, we focus on capacity management and incident man-
agement, because these two areas include investigation and
diagnosis tasks and performance management. The main
motivation for exploring QR in this new area comes from
successful stories in different contexts in which understand-
ing of the system behaviour is grounded in a description of
system structure, that is, of components and relations be-
tween them. This understanding enable different applica-
tions, for example, diagnosis (Heller 2001) and education
(Salles & Bredeweg 2003).

This paper is organized as follows: in section 2, we
present the context for this study and details of the problem.
We justify the use of a qualitative approach to IT problems
in section 3 and in section 4 we describe a qualitative simu-
lation model. In section 5 we present some simulations and
the results are discussed in section 6. Finally in section 7 we
present our conclusions and mention ongoing work.

Incident Management in Web Environment
Infrastructure

Customers using a Web browser execute transactions in Web
pages. These pages are requested to a Web Server, which
sends pages to the customer. The Web Server requests ser-
vices to an Application Server through an internal Network.
Business programs in the Application Server need data to
process and, in turn, request services from the Database
Server, which gets data either from buffer memory or disks
and deliver them back to the Application Server.

Figure 1: Simplified representation of components involvedin Web transactions.

As it occurs, for instance, in a financial bank, the in-
formation flow of the Web transactions is depicted in Fig-
ure 1 which shows the dependence among the components
(Armstronget al. 2005, Chapter 1:Overview, Section
Container, SubsectionContainer Services). A business
program can either access or not the Database Server. If
not, the program returns returns its results to the Web Server,
which in turn sends the new page to the customer’s browser.
If a Database Server has to be accessed, the control is passed
through, and the application program waits for an answer.
We identify casual chains among the following internal parts
of database components:

• SQL - this part is responsible for interpreting SQL state-
ments and to determine the amount of data to be analyzed;

• Buffer - after a SQL statement is interpreted, the database
manager looks into buffer to get data;

• IO device - if data is not found in buffer, they should be
searched in the IO devices; getting data from the IO de-
vice is slower than getting them from buffers.

In each of these internal parts we identify a process: pro-
gram quality influencing the SQL efficiency, memory avail-
able influencing the buffer efficiency, and the rate of up-
graded IO devices influencing the IO device wait. These
three processes influence the database behaviour (Sanders
2003), which, by their turn, influence the behaviour of the
application server and are depicted in Figure 1. These pro-
cess are further investigated below.

The database performance relies on the basic principle
that retrieving data from memory is better than retrieval from
disk (IO devices), since this activities are often more time
consuming, and are likely to cause delay in the whole pro-
cess (IO wait). It is a widely accepted rule that IO wait
should be avoid. Whenever IO waits are pending, applica-
tion programs remain in waiting state, until they receive a
successful response from the Database Server and may con-
tinue to run.

The most important process for the database performance
is the program quality influencing the SQL efficiency. SQL
efficiency depends on the balance between good and bad
programs. The quality of the program code is assessed by
the amount of rows that a database analyses in order to re-
trieve a result. A good program requires a smaller number

Table 1: Illustrating customer table.

of rows to retrieve data than a bad one. Often programmers
produce bad programs when they mis-encode the SQL state-
ment. In this case, it is likely that many of the retrieved rows
will be discarded until the query result is returned.

Consider the following example involving a bad program.
Let Table 1 represent a customer table, described by the
columnsid, name andaddress.
Suppose this table is indexed by theid column. An appli-
cation programmer writes the following SQL statement:

Select id, name, address where name = Pedro

Since the table is indexed by theid, the database manager
system (DBMS) in Database Server will read all the existing
rows from the table in order to select those having “Pedro”
as aname. As the whole table will be searched probably the
data are not in buffer memory and the disk has to be searched
to retrieve the required information. SQL efficiency can be
calculated from the amount of data searched by good and
bad programs. If the former is greater than the latter, the
Database Server has good or excellent efficiency, otherwise
has bad or very bad efficiency.

In addition to the program quality influencing the SQL
efficiency, two other relevant processes for the database per-
formance have the following effects:

1. changes in the database buffer memory availability: in-
creasing memory may improve buffer efficiency;

2. Technological updating IO devices may change the sys-
tem’s IO wait: incorporation of technological inovations
may reduce IO wait.

Noticed that these two processes result from actions origi-
nated outside the database system. In fact they are not under
the responsibility of database support team.

IT infrastructure problems have to be tackled before they
reach other system components. In the context of propaga-
tion of problems, it is not surprising that sometimes an event

is misinterpreted by a human operator and that actual prob-
lems are only detected after a phone call from a customer to
the help-desk.

Another relevant aspect of Web transactions management
and IT management in general is the difficulty for training
people that are able to deal with so many different compo-
nents. Ranging from general to more specific components,
the support team includes many person-levels for monitor-
ing and solving problems. In general component-specific
experts acquire problem solving skills by hands on training,
because much of such knowledge cannot be found in manu-
als or textbooks, or sometimes it is spread over a number of
sources. It may happen also that IT management knowledge
is implicit and related to the specific company environment.

From the description above, a remarkable feature of IT
management is that much of the knowledge used in man-
agerial activities is heuristic and based on (expert) com-
monsense. In fact, although manuals present details about
the functioning of the components and procedures to check
them up, at a higher level of organization in a company of-
ten require problem solving skills aquired by hands on train-
ing. It is also remarkable the fact that IT support workers
often have to decide using incomplete knowledge, initially
presented as verbal descriptions of the problems. Finally,it
is possible to identify causal relations between the elements
found in a typical setting of IT administration. This situa-
tion can be illustrated by relation involving the internal parts
of the Database Server component and its relationship with
an application server. Software companies offer a number
of manuals to describe the behaviour of their products inter-
nal parts but do not describe how these parts influence each
other. A great deal of information involved in software per-
formance is discussed within user groups or in companies
Web sites (Sanders 2003).

IT services can be further improved by the addition of
new approaches to the traditional techniques of capturing
messages and taking actions without a general view of the
business services and processes involved. In the next section
we justify the use of a Qualitative Reasoning approach for
modelling these problems.

A Qualitative Modelling Approach
Qualitative Reasoning (QR) is an area of Artificial Intelli-
gence that deals with representations of continuous aspects
of the world to support reasoning with little information. A
number of techniques and modelling paradigms have been
developed for QR (Weld & de Kleer 1990) and an updated
overview of the achievements of the area can be found in
(Bredeweg & Struss 2003). In this section we discuss as-
pects of the representational apparatus for QR modelling,
particularly the one developed for this work, the Qualitative
Process theory - QPT (Forbus 1984).

Quantity values are used in QPT to represent possible
qualitative states a quantity can be found. Qualitative val-
ues are actually combinations of two values, magnitude and
derivative. The former represents the ‘amount’ of stuff, and
the latter, the direction of change. Possible values of magni-
tudes are, for instance,small, large, normal; for deriva-
tives, the standard values are positive, zero and negative,

meaning the variable is increasing, stable and decreasing.
The set of possible of qualitative values of quantities is rep-
resented as a set of possible qualitative states the quanti-
ties may assume, calledquantity space (see e.g. (Forbus
1984)). For example, the entitybank account can be asso-
ciated to the quantitybalance. Magnitudes of this quantity
may draw on the quantity space QS =zero, small, average,
large wherezero andaverage are points that represent ab-
sence of money or, lets say, the yearly average amount of
money found in that bank account, andsmall andlarge are
intervals with infinite possible numerical values below and
above the average balance.

Two modelling primitives are of special interest:direct
influences, posed by processes, that adds or removes stuff
from the directly influenced quantities, andqualitative pro-
portionalitiesor indirect influences, that propagate changes
initiated by processes. Direct influences, modelled by I+
and I-, mean that the influencing quantity (a rate) is used to
calculate the influenced quantity derivate value. For exam-
ple, if I+(X,A) and this is the only direct influence on X, the
derivative of X takes the value of the rate A. If the latter has
a positive value, X increases. Similarly, if I-(X,B), this is the
only influence on X and the rate B has a positive value, then
B decreases by an amount equal to B’s value.

Qualitative proportionalities, in turn, are modelled by P+
and P- and establish a relation between two quantities in a
way that the influenced quantity gets the derivative sign of
the influencing quantity. For instance, if P+(C,X) and this
is the only indirect influence on C, this quantity will change
in the same direction as X. Thus, if X is increasing, C will
also increase. Similarly, if P-(D,X), this is the only influence
on D and X is changing, then D will change in the opposite
direction.

Direct influences and proportionalities have both mathe-
matical and causal meanings. The former are qualitative rep-
resentations of ordinary differential equations, where con-
straints are put on the derivative of a quantity. Qualitative
proportionalities carry much less information: they repre-
sent some (maybe unknown) monotonic function that relates
two quantities in a way that they either change in the same
or in opposite directions. The causal meaning of direct in-
fluences and proportionalities is very clear: causality is di-
rected and in both cases, I±(Q,R) and P±(S,Q), the second
argument always influence the first one, never the contrary.
This is how causal chains are built up: a direct influence
changes the derivative of an influenced quantity and this
change propagates to other quantities via qualitative propor-
tionalities. For example, consider the following model:

I+(Balance,Deposit); I-(Balance,Debt);
P+(Manager satisfaction, Balance); P-(Financial costs, Balance)

This model allows for predictions such as “If the rate of
deposits is greater than the debt rate, then the balance in-
creases. If the balance is increasing, the manager satisfac-
tion is increasing too, and the financial costs for the cus-
tomer are decreasing”. If the causal chain is examined in the
opposite direction, the model supports explanations such as
“The financial costs of bank operations are increasing and

the manager satisfaction is decreasing because the balance
is decreasing. It is happening because the debts within this
period are greater than deposits.”

For this work we use Garp3 workbench for qualitative rea-
soning and modelling (Bredeweget al. 2006). This new
software combines the qualitative simulator Garp (Bredeweg
1992) and the related tools Homer (Machado & Bredeweg
2002) and VisiGarp (Bouwer & Bredeweg 2001). Garp3 al-
lows for ontologies like QP theory and other to be used for
building qualitative models, and has been used in a number
of modelling activities. An interesting feature of qualitative
models is compositionality, that is, the possibility of assem-
bling partial models into more complex models. This work
adopts the compositional modelling approach (Falkenhainer
& Forbus 1991), so that model building is like building a li-
brary ofmodel fragments, that can be combined into differ-
ent simulation models about the same domain of knowledge.

Garp3 uses three types of model fragments (static, process
and agent) to capture different types of knowledge. Simula-
tions always start the description of an initial scenario from
which the simulator select appropriate model fragments for
dynamically build a model. From the knowledge available
in the active model fragments, Garp computes the values for
the quantities and create the possible states derived from the
scenario. A qualitativestate can be defined by the qualita-
tive values of the quantities, and lasts a certain time period.
Garp looks for possible transitions and computes again the
values of the quantities, given the conditions found in each
state, in order to produce new states. Garp iteratively com-
putes new values for the quantities and creates new states,
until no more transitions are possible. The full picture of
the simulation, thebehaviour graph, consists of all possible
states and state transitions, given the knowledge encoded in
the library and the conditions of the system specified in the
initial scenario. Each sequence of states is abehaviour path
and normally ends in equilibrium states.

The next section presents the implementation of a qual-
itative model about the problems described in section 2 in
Garp3 and section 5 presents some simulations with the
model.

A Qualitative Model for IT Management

We describe in section 4.1 the proposed qualitative model by
means of its building blocks (i.e., entities/agents, quantities
and quantity spaces), providing an explanation of its pur-
pose. Then, in section 4.2, we explore these building blocks
to present some model fragments and a scenario.

Defining building blocks

The purposes of the model are to show how distinguished
processes, managed by different teams, may influence the
performance of a database responding to requests from Web
programs and to provide support for the idea that being
aware of the underlying causal chain might be relevant for
supporting management of computational services.

The hierarchy of entities included in the model, as well as
description for each entity are provided in Table 2.

Table 2: Entity summary.

Servgbd
Servgbd

Sql
Sql

Part of

Sql efficiency

Rate
Excellent
Good
Reasonable
Bad
Very bad

Bad programs rate

Zp
Plus
Zero

Good programs rate

Zp
Plus
Zero

Figure 2: Process fragment showing the program code qual-
ity influencing SQL efficiency.

In addition, Table 3 shows quantities that we assign to
those entities, along with quantity spaces and a description
for each quantity.

Model fragments and a scenario
Figure 2 illustrates the process model fragment showing
SQL efficiency influenced by the quality of program code:
I-(SQL efficiency, bad programs rate), I+(SQL efficiency,
good programs rate).

The inequality [good programs rate < bad programs rate]
included in the model fragment means that SQL efficiency is
under risk, because more bad programs are being produced
by the development team for accessing the Database Server
than good ones, and a large amount of data to be analyzed
is expected. The static model fragment in Figure 3 shows
that whenever SQL efficiency is low, the amount of data that
should be searched is large: P- (SQL data, SQL efficiency).
An inverse correspondence is included to relate the values
of the two quantities. For example, an excellent efficiency
corresponds to very few SQL data analyzed by the database.

The amount of searched data due to a SQL statement af-
fects the buffer hits rate and the database efficiency for an-
swering queries because as many data are unnecessarily ana-
lyzed to each statement, it is likely that they are not in buffer:
P-(buffer efficiency, SQL data) and P- (DB efficiency, SQL

Table 3: Quantity summary.

Servgbd
Servgbd

Sql
Sql

Part of

Sql efficiency

Rate
Excellent
Good
Reasonable
Bad
Very bad

Sql data

Tlmf
Too much
Lot
Medium
Few
Very few

Figure 3: Static fragment relating SQL efficiency and the
amount of retrieved data from queries.

Memory
Memory

Buffer efficiency and returned buffer data

Servgbd
Servgbd

Buffer
Buffer

Part of

Buffer efficiency

Rate
Excellent
Good
Reasonable
Bad
Very bad

Returned buffer data

Lmfc
Paradise
Lot
Medium
Critical
Zero

Memory available

Mzp
Plus
Zero
Min

Figure 4: Agent fragment: a process changing buffer mem-
ory.

data). This happens because buffer usually keeps only data
often accessed. As more data are read from disk, they are
moved to the buffer. The buffer has a bounded memory to
store data, so that as new data arrive, less recently required
data are discarded from the buffer.

The above explanation leads us to the consequences of the
process on other database internal services. The greater the
number of times data is searched and found in buffer, the
greater the amount of data returned from the buffer and the
greater the efficiency of the database server for answering
queries. These relatios are captured by the following pro-
portionalities: P+(returned data buffer, buffer hits rate) and
P+(DB efficiency, returned buffer data). In case that few
data is found in buffer, it is necessary to find them in IO
devices (disk): P-(IO device activity, returned buffer data).
The greater the activity of the IO device, the greater the IO
device wait and worse the database efficiency: P+(IO device
wait, IO device activity) and P-(DB efficiency, IO device
wait).

The amount of IO device wait affects the rate of both good
and bad programs requests the database in a similar way: P-
(good programs rate, IO device wait), P-(bad programs rate,
IO device wait). This happens because IO device wait halt
indirectly many database resources so that the system be-
come overcharged and new applications have to wait more
time to do database requests. This is a constraint of the
model. If IO device wait variable reach a “too much” value,
no more programs are to be accepted by the database, and
if this situation lasts for a while the database will suffer an
abnormal end, or the whole system halts.

In addition, the model includes two external processes
that affect the database performance. These processes are
often under the responsibility of different teams that usually
are unaware of each other’s accomplishments.

We firstly create an agent allowing to simulate the pro-
cess of changing buffer memory, considering that increasing
memory for buffer may improve its efficiency (Figure 4).

Secondly, we create another agent allowing to simulate
updating IO devices. In this case, we consider that tech-
nological updating IO devices may change the system’s IO
device wait (Figure 5).

Device upgrade
Device upgrade

Io device activity and io device wait

Servgbd
Servgbd

Input output device
Input output device

Part of

Io device activity

Tlmf
Too much
Lot
Medium
Few
Very few

Io device wait

Tlmf
Too much
Lot
Medium
Few
Very few

Io device upgraded

Maf
Many
Average
Few

Io device upgrade

Mzp
Plus
Zero
Min

Io obsolete device

Maf
Many
Average
Few

Figure 5: Agent fragment: a process of technological IO
devices upgrade.

Servgbd
Servgbd

Buffer
Buffer

Sql
Sql

Input output device
Input output device

Servappl
Servappl

Part of

Part of

Part of

Uses

Buffer efficiency

Rate
Excellent
Good
Reasonable
Bad
Very bad

Sql efficiency

Rate
Excellent
Good
Reasonable
Bad
Very bad

Io device activity

Tlmf
Too much
Lot
Medium
Few
Very few

Db efficiency

Rate
Excellent
Good
Reasonable
Bad
Very bad

Figure 6: Scenario setting services at an intermediate level.

In order to create a scenario for simulating the system
behaviour we suppose that new applications have been de-
ployed and the relationship between good and bad programs
is deliberately left unspecified so the simulation should
demonstrate all three possibilities: [good programs < bad
programs], [good programs = bad programs] and [good
programs > bad programs]. The scenario defines that the
remaining database services are working at an intermediate
level (Figure 6).

Model Simulation
The database performance is strongly affected by decisions
made during SQL statement interpretation and, as suggested
before, by the amount of data that should be searched for
each interpreted SQL statement. This is represented in
the simulation deployed in section 5.1, pointing out to the
(in)equalities between good and bad programs. The result-
ing causal model, following the compositional modelling
approach (Falkenhainer & Forbus 1991), is shown in Figure
7.

Moreover, two external factors, represented by Garp3
agents introduced in section 4.2, may also affect the database
performance (amount of available memory and IO devices

Figure 7: General view of the causal model in Garp3.

1

2

3

4 5

67

8

9

10

11

12

13

14

15

16

1718

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

Figure 8: Full state graph for the SQL efficiency simulation.

technology). In section 5.2 and section 5.3 we discuss these
changes whenever they occur during the simulation.

SQL efficiency simulation
Figure 8 contains the state graph of the full simulation result-
ing from the scenario introduced in section 4.2, considering
the relationship between good and bad programs.

States 1, 2, and 3 represent possible behaviours assum-
ing [good programs < bad programs], [good programs =
bad programs] and [good programs > bad programs] respec-
tively. The situation in state 2 shows the system in equilib-
rium: the system processes the same amount of SQL well-
coded programs and bad-coded ones, allowing the database
to work normally such as to answer to the queries under an
acceptable buffer efficiency level, with the activity of IO de-
vices at an intermediate level. We can say that data requested
to the DBMS are in part responded by means of data already
stored in the memory and in part by means of data retrieved
from the disk.

The situation described in state 3 changes to the one de-
scribed in state 5, and from here to a variety of behaviour
paths. SQL efficiency improvement shown in states 3 and 5

Figure 9: Value histories of behaviours path initiated in state
3.

has the following consequences:

1. decrease of the amount of data that should be searched
(SQL data);

2. improvement of buffer efficiency (buffer efficiency);

3. decreasing of IO activity (IO device activity); and

4. improvement of efficiency in database response (db effi-
ciency).

Value histories in Figure 9 show the transition from state
3 to state 5 and four equilibrium possibilities in states 28,
36, 42 and 38, derived from state 5.

The positive value (a triangle upwards) of the derivative of
quantities good and bad programs comes from the negative
proportionality engendered by the quantity IO device wait.
This positive value suggests that when [good programs > bad
programs], the database is capable of responding to more
good and bad programs with good or excellent efficiency
(measured by db efficiency).

Equilibrium states 28, 36, 42 and 38 are distinguished by
the level of the systems’s final state. QuantitiesSQL effi-
ciency, buffer efficiency, returned buffer dataand db effi-
ciencyhave values ranging fromgood to excellent in these
states. Quantity values ofSQL data, IO device activityand
IO device datarange fromfew to very few.

Particularly, the analysis of the end state 28 shows that
data buffer may reach an excellent performance due to SQL
efficiency improvement. However, even when buffer has ex-
cellent efficiency level, the IO disk activity may yet be signi-
ficative. Efficiency of database response (db efficiency) has
an excellent level and the quantity for IO activity (IO de-
vice activity) has valuefew (but notvery few). This state

Figure 10: Value histories of path behaviours initiated in
state 1.

suggests that IO activities, provided they occur at adequate
levels, do not cause problems to the efficiency of database
response, correctly corresponding to the reality. The func-
tioning of the database may vary within several different
levels of excellence without compromising the response of
carried out requirements, i.e., if SQL efficiency is average
or greater, the database performance may be acceptable for
its invokers. In this favorable situation, the manager may
administrate the database performance aiming to reach the
maximum performance level, if this is a requirement for the
company.

The situation described in state 1 [good programs < bad
programs] accounts for less possible behaviors, since it is
bounded by the following correspondence conditions:

1. if the IO level is too much [IO device wait = too much],
the system becomes overcharged and new applications
spend more time to do database requests. If this situa-
tion lasts for a while the database will suffer an abnormal
end or the whole system halts;

2. even within very high levels of IO activity, some data is
still retrieved from buffer. Thus, [returned data buffer >
0].

Changes in quantity values following state 1 are show in
Figure 10. This figure also shows eight possible end states
derived from state 1.

A possible behaviour path in this simulation can be de-
scribed as follows:

• [1 → 7] - due to the arrival of more bad than good pro-
grams, SQL efficiency is decreased and ends up in a sta-
bility state with valuebad, the same assumed by the quan-
tity buffer efficiency. The IO activity variable is increased
and changes its value tolot. Finally, database efficiency
response (db efficiency) remains stable with valuebad.

1

2 3 4

5 6

7

8

9

10

11

12

13

Figure 11: Simulation showing changes in the amount of
memory due to the action of an external agent.

The analysis of this path points out to a degradation of
database services and to equilibrium at a lower level. The
negative proportionality engendered by the quantityIO
device waitwithin the good and bad programs variables,
lead them to a stable state at a lower level. This happens
because the new IO wait level avoids the processing of
the same quantities of good and bad programs previoulsy
processed. The smaller rate of program arrival offsets the
degradation of database services that had happened due to
the greater amount of bad programs.

The condition “returned data buffer > 0” is observed by
the absence of this value and by the absence of the value
very bad to the variable “buffer efficiency”, since there is
a correspondence between them. The other states obtained
from this scenario show possible intermediate levels and dif-
ferent final equilibrium levels.

Buffer memory changing simulation

In order to run simulations using the memory agent shown
in Figure 4, we create three sub-types of model fragments
by assigning the agent values plus, minus and zero, in or-
der to represent, respectivelly, increase, decrease and stable
memory situation. The simulation shown in Figure 11 con-
siders the three possibilities, under the condition that SQL
efficiency process is balanced, that is, [good programs rate
= bad programs rate].

State 1 shows a situation in which memory is decreasing.
Few outcomes are possible due to the following constrain-
ing conditions:(i) [returned data buffer > 0] and(ii) [when
IO device wait = too much then good programs and bad pro-
grams rate = 0]. Due to memory decrease, the derivative
of bad programsandgood programsis negative, showing a
decrease of database requests due to the degradation of its
services.

Another situation is the one starting in state 3 that shows a
number of possibilities coming from the increase of memory
available for buffer. One of these behaviour paths is shown
in Figure 12.

As a consequence of memory increasing, it is possible to
execute more programs, since the buffer efficiency has im-
proved, as revealed by the positive sign of the derivative of
variables good and bad programs. SQL efficieny remains
unchanged since the decrease of IO device wait equally af-
fects bad and good programs. Memory increase progres-

Figure 12: Value histories describing changes in quantities
along the behaviours path initiated in state 3, in a simulation
with buffer memory increasing.

sively improves buffer efficiency, as well as database re-
sponse efficiency.

IO device updating simulation

The third simulation shows the effects of an external agent
acting for updating IO devices (disks). For a single data set
to be read, the device activity is greater for obsolete disks
than for new ones. As a consequence, obsolete disks cause
greater IO wait than new disks, with respect to the same
amount of IO requirements. As shown in Figure 5, we create
a Device Upgrade Agent, which implements the IO devices
updatings rate.

This process influences both the amount of up dated and
the amount of non-up to date IO devices. An inverse corre-
spondence was created beween the amount of upgraded IO
devices and obsolete IO devices, because of their comple-
mentary values.

In order to obtain from the simulation all the possible be-
haviours engendered by the IO devices updating process,
three sub-types of model fragments for the Upgrade Agent
were created, reflecting the following situations:(a) the IO
devices updating is carried out under a positive rate - more
up dated IO devices increases;(b) there is a negative rate -
obsolete IO devices increases and up dated ones decreases;
and(c) the rate shows an equilibrium between updating and
obsolescence of devices.

The simulation (Figure 13) produces all possible behavi-
ous considering of the three possible situationsIO device up-

1

2

3
4

5 6

7

8

9

Figure 13: Behaviour graph of the IO device upgrade agent
simulation.

Figure 14: Value histories of behaviour paths initiated in
state 3 - more device upgraded.

gradehas value plus, zero and minus representing whether
or not the IO devices updating process is being adequately
accomplished, i.e., if the amount of devices becoming ob-
solete as years goes by is greater, equals or lower than the
amount of up to date devices.

The set of value histories in Figure 14 shows possible out-
comes of the situation described in state 3 ([IO device up-
grade = plus]). This way, the simulation emphasizes what
may happen if equipment is updated.

Three behaviour paths are possible [3→ 4 → 7], [3 → 4
→ 9 → 7] and [3→ 4 → 8 → 7]. One might notice that
the decrease of IO devices activity (for the same amount of
requests) decreases the IO wait time and, as a consequence,
allows more good programs nd bad programs to be executed
in the environment.

Discussion
The main goal in constructing and simulating the model de-
scribed in this paper is to illustrate the causal relation ex-
isting between internal parts of the Database Server and to

highlight the various possibilities of equilibrium that might
be reached without the need of interrupting systems’ ser-
vices or without the need of reaching an excellent level. De-
crease or increase in the performance of an internal com-
ponent part may propagate to other parts of the system by
means of some causal relation. In some points of such
causal chain, system performance may become critical and
the whole system is likely to stop. These behaviour changes
in the Database Server may affect the behaviour of related
components, for example, the Application Server. However,
as shown by the simulations, there is great deal of different
equilibrium situations, in which different levels of service
can be achieved before stopping the whole system.

According to the ontology adopted for this work, the QP
theory, processes are the primary cause of changes in the
system. Three processes were included in this model:(i)
good and bad programs influencing SQL efficiency,(ii)
management of buffer memory, and(iii), technological up-
dating of IO devices. The effect of these processes may
propagate and affect the database services behaviour and
other components that depend on them. Improving the
whole system requires adequate management.

Process(i) follows from the amount of requests addressed
to the database by the Web application Server, specifically
by bad and good programs aiming at responding to new busi-
ness needs. The amount of requests follows from the usage
level of the services offered by the financial bank, via Web
pages. Therefore, a number of activities related to this pro-
cess are under the bank’s control (for example, the devel-
opment of good and bad programs), while other activities
are beyond bank’s control, such as the amount of users (and
programs fired by them) addressing requests to the database.

Process(ii) is usually under the supervision of a sys-
tem operation support team that determines changes in the
amount of memory available for buffer, according to the
amount of memory remaining in the server that runs the
database.

Process(iii) is usually under the responsibility of a
hardware-storage team, which determines device updating
according to availability of resources for investment and to
machines life-time.

Lack of knowledge on how these three processes inter-
act and may affect of the considered processes affect the
database performance may lead to situations as those de-
scribed by the model simulations. The worse case, not con-
sidered in the simulations, is the one in which simultane-
ous changes occur in all the three processes, while the dis-
tincted teams ignore what is happening within the environ-
ment. According to the change management discipline from
ITIL (van Bon 2005), every change within the environment
should be assessed by those in charge of a specific process
with respect to its impact, better time for tasks to be accom-
plished, and other factors. However, difficulties are expected
because change management rules recommend that impacts
are assessed in accordance to the requiring area, and each
area is only able to foresee impacts following directly from
its actions, that is, within its expertise. Integration of differ-
ent areas is urgently required.

The construction of the presented model and the interpre-

tation of simulations confirm our initial intuition and lead
us to formulate the following hypothesis: awareness about
causal chains relating components that shape the bank’s
computational system could support decision making of
teams responsible for maintaining the environment, as well
as help them to foresee incidents that may interupt compu-
tational services offered by the bank.

In order to improve the model, one possibility is to model
the inner parts of the Application Server and the Web Server,
providing an inner causal chain for each component, and
also to model how possible behaviour changes the efficiency
of the Database Server might affect the Application Server,
or yet the Application Server affects the Web Server and
vice-versa.

Concluding remarks
In this paper we argue on the potencial of qualitative mod-
elling approach to deal with capacity and incident man-
agement of Information Technology services. We describe
a problem firstly in terms of services offered by a finan-
cial bank having its Web Server, Application Server and
Database Server as components that allow customers to re-
quest services via Web pages. A qualitative model was de-
veloped considering yet two related components, internally
located in the bank’s IT infra-structure, namely, Application
Server and Database Server, along with three processes that
influence the database performance. These are degaged from
deploying the Database Server component into three inter-
nal parts. Out of these three processes, model simulations
are presented and then interpreted.

Model construction and simulation analysis gave us ini-
tial elements to assess the potential of qualitative modelling
to address IT services management, providing to different
teams of workers a view of the services they have to regu-
late. This might aid support experts to disseminate technical
information.

The model presented in the paper for illustrating the ac-
tivities of a Database Server along with its causal relations
may be refined. There are many other relevant components,
and many other processes that might be supervised on the
thread from data request to the Database Server up to its re-
sponse. As the goal here is to open up a discussion on the
application of QR to the field, we are aware that model ex-
tension and evaluation is still needed to confirm our initial
assumptions. That is part of our ongoing work.

Instead of replacing existing techniques for capturing and
treating messages from IT components, the use of QR for
IT services management, as suggested in this paper, intends
to complement the set of existing tools to improve manage-
ment. The explored building blocks, as well as those that
might yet be built, consider automation already existent in
the environment, and also look foreward to envisage what
could yet be (semi-)automated with the use of AI techniques
for supporting human work, and for helping understanding
of the environment’s behaviour.

Finally for as far as we can see now, maintenance and
control of technological services and the implementation of
effective IT management are goals pursued by many compa-
nies nowadays (beyond banks), and are among their priori-

ties. As such, further efforts might be invested for investi-
gating under what conditions qualitative modelling of Web
transactions and other services might be exploited by banks
and other companies.

Acknowledgements
Ricardo Alcantara is grateful to Banco do Brasil for the sup-
port provided during his master science course.

References
Armstrong, E.; Ball, J.; Bodoff, S.; Carson, D. B.;
Evans, I.; Green, D.; Haase, K.; and Jendrock, E.
2005. The J2EE 1.4 Tutorial. Sun Microsystems.
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/.
Bouwer, A., and Bredeweg, B. 2001. Visigarp: Graphical
representation of qualitative simulation models. In Moore,
J. D.; Redfields, G. L.; and Johnson, J. L., eds.,Artificial
Intelligence in Education: AI-ED in the Wired and Wireless
Future. Amsterdam (The Netherlands): IOS Press.
Bredeweg, B., and Struss, P., eds. 2003.Current Topics in
Qualitative Reasoning, volume 24.
Bredeweg, B.; Bouwer, A.; Jellema, J.; Bertels, D.; Lin-
nebank, F.; and Liem, J. 2006. A new workbench for
qualitative reasoning and modelling. InECAI Workshop
MBS06 (submitted).
Bredeweg, B. 1992.Expertise in qualitative prediction of
behavior. Ph.D. Dissertation, Department of Social Sci-
ence Informatics, University of Amsterdam, Amsterdam
(The Netherlands).
Falkenhainer, B., and Forbus, K. 1991. Compositional
modeling: finding the right model for the job.Artificial
Intelligence51:95–143.
Forbus, K. 1984. Qualitative process theory.Artificial
Intelligence24:85–168.
Heller, U. 2001.Process-oriented Consistency-based Di-
agnosis: Theory, Implementation and Applications. Ph.D.
Dissertation, Technical University of Munich.
Machado, V. B., and Bredeweg, B. 2002. Investigating the
model building process with HOMER. In Bredeweg, B.,
ed.,Proceedings of the International Workshop on Model-
based Systems and Qualitative Reasoning for Intelligent
Tutoring Systems, 1–13.
Salles, P., and Bredeweg, B. 2003. A case study of collab-
orative modelling: building qualitative models in ecology.
In Hoppe, U.; Verdejo, F.; and Kay, J., eds.,Artificial In-
telligence in Education: Shaping the Future of Learning
through Intelligent Technologies, 245–252. Osaka (Japan):
IOS-Press/Ohmsha.
Sanders, R. E. 2003. Basic performance tuning.DB2
Magazine8(3).
van Bon, J. 2005.IT Service Management: An Introduction
Based on ITIL. The Netherlands: van Haren Publishing.
Weld, D., and de Kleer, J., eds. 1990.Readings in Quali-
tative Reasoning about Physical Systems. San Mateo, CA:
Morgan Kaufmann.

