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The functioning and development of living organisms is
controlled by large and complex networks of genes, pro-
teins, small molecules, and their interactions, so-called ge-
netic regulatory networks. The concerted efforts of genet-
ics, molecular biology, biochemistry, and physiology have
led to the accumulation of enormous amounts of data on
the molecular components of genetic regulatory networks
and their interactions. Notwithstanding the advances in the
mapping of the network structure, surprisingly little is un-
derstood about how the dynamic behavior of the system
emerges from the interactions between the network compo-
nents. This has incited an increasingly large group of re-
searchers to turn from the structure to the behavior of genetic
regulatory networks, against the background of a broader
movement nowadays often referred to as systems biology
(Kitano 2002).

In addition to powerful experimental tools, the study of
the dynamic behavior of genetic regulatory networks also re-
quires the support of mathematical and computational tools.
Since most networks of biological interest consist of a large
number of molecular components involved in complex feed-
back loops, predicting the behavior of the system by intu-
ition alone quickly becomes unfeasible or fraught with er-
ror. The use of mathematical models in combination with
computer tools allows for the precise and unambiguous de-
scription of a network and the systematic prediction of its
behavior.

A variety of methods for the modeling, analysis, and sim-
ulation of genetic regulatory networks have been proposed
in the past forty years (de Jong 2002; Hasty et al. 2001;
McAdams & Arkin 1998; Smolen, Baxter, & Byrne 2000).
The classical approach towards the modeling of genetic reg-
ulatory networks is based on the use of ordinary differential
equations in combination with numerical simulation. For
most networks of biological interest this approach is difficult
to put to work in practice though. Numerical simulation re-
quires quantitative data on kinetic parameters and molecular
concentrations, which are generally absent, even for well-
studied model systems. Moreover, for many purposes it is
more important to have a qualitative understanding of the
connection between the dynamics of the system and the net-
work structure than to be able to make precise, quantitative

predictions.

For all of these reasons, there has been a constant and
growing interest in qualitative methods for the modeling
and simulation of genetic regulatory networks and other net-
works of biological interactions (see (de Jong & Ropers
2006; Gagneur & Casari 2005) for recent reviews). From the
end of sixties onwards, several approaches have been pro-
posed in mathematical and theoretical biology, most notably
Boolean networks (Kauffman 1969; 1993) and generalized
logical models (Thomas 1973; Thomas & d’Ari 1990). Our
own work has taken a similar point of view, but has been
based on the use of a particular class of piecewise-affine
differential equation (PADE) models proposed in the early
seventies by Glass and Kauffman (1973). The PADE mod-
els make similar modeling abstractions as the logical mod-
els, but are closer to the kinetic models traditionally used.
Moreover, the fields of qualitative reasoning (QR) and hy-
brid systems theory (HST) provide appropriate concepts and
techniques to study the dynamics of PADE models.

During my presentation, I will give a rapid introduction to
the mathematical properties of PADE models of genetic reg-
ulatory networks. In particular, I will show that the phase
space can be subdivided into hyperrectangular regions in
each of which the system reduces to a linear and uncou-
pled system of ordinary differential equations with an ex-
tremely simple local dynamics (Glass & Kauffman 1973).
Since the reduced system will vary from one region to an-
other, the global dynamics may be quite complex however.
Moreover, discontinuities may occur at the boundaries be-
tween regions, which need to be handled with care in order
not to lose dynamical phenomena of biological interest. We
have shown how the latter problems can be treated in a math-
ematically rigorous and practically useful way by extending
the differential equations to differential inclusions (Casey,
de Jong, & Gouzé 2006; Gouzé & Sari 2002).

In order to describe the qualitative dynamics of the sys-
tem, we have adapted traditional QR concepts like qualita-
tive states, transitions between qualitative states, and state
transition graphs (de Kleer & Brown 1984; Kuipers 1986;
Forbus 1984) to the particular constraints of the PADE mod-
els. The relation between PADE models and state transi-
tion graphs can be formalized by means of the notion of dis-



crete abstraction, familiar from theoretical computer science
and used for similar purposes in HST (Alur et al. 2000).
We have shown that the resulting state transition graph, and
thus the qualitative dynamics of the system, are invariant for
large ranges of parameter values which can be expressed in
the form of inequality constraints (de Jong et al. 2004b).
Whereas exact numerical values for the parameters are usu-
ally not available, the weaker information required for the
formulation of the inequality constraints can often be ob-
tained from the experimental literature. Moreover, these
constraints can be used for the actual computation of the
state transition graph by means of simple, symbolic rules.

The above approach towards the qualitative simulation
of genetic regulatory network has been implemented in the
computer tool Genetic Network Analyzer (GNA) (Batt et
al. 2005b; de Jong et al. 2003).1 The state transition
graphs for networks with more than fifteen genes usually
consist of several hundreds or even thousands of states,
which make them too large to be analyzed by visual inspec-
tion alone. We have therefore coupled GNA with model-
checking tools for the automated verification of dynamical
properties expressed in temporal logic (Batt et al. 2005a;
2005b), following similar ideas in QR (Shults & Kuipers
1997) and in HST (Alur et al. 2000).

GNA has been used for the analysis of several genetic
regulatory networks, such as the networks controlling ini-
tiation of sporulation in the soil bacterium Bacillus sub-
tilis (de Jong et al. 2004a) and quorum sensing in the
pathogenic bacterium Pseudomonas aeruginosa (Usseglio
Viretta & Fussenegger 2004). We currently focus on its ap-
plication in the context of the nutritional stress response of
Escherichia coli, a well-known model bacterium. In partic-
ular, we have developed qualitative models of the adaptation
of the growth of an E. coli cell upon depletion of the carbon
sources in its environment. This carbon starvation response
is controlled by a large and complex regulatory network that
we are modelling in a step-wise, modular fashion. This has
resulted in PADE models of about a dozen genes that ac-
count for some well-known properties of the response of the
cell to a lack of carbon sources (Ropers et al. 2006). In
addition, we have made novel predictions that are currently
being tested experimentally, by measuring the time-course
of gene expression with the help of so-called gene reporter
systems. These experimental tools allow the dynamics of
the state variables to be monitored with high precision and
high sampling density.

The experimental data obtained in this way will not only
allow us to validate the PADE models of the carbon starva-
tion response network, but also provide input for the revision
and completion of the models. Along these lines, we have
started to work on the identification of PADE models of ge-
netic regulatory network from time-course gene expression
data. Adapting existing approaches in HST (Ferrari-Trecate
et al. 2003) to the particular constraints of the class of mod-
els we consider, an algorithm for the identification of reg-

1GNA is currently distributed by the company Genostar SA, but
remains freely available for non-profit academic research purposes
(http://www-helix.inrialpes.fr/gna).

ulatory interactions between genes in the network has been
developed (Drulhe et al. 2006). Ideally, future extensions
of this algorithm should take into account a priori knowl-
edge on existing, experimentally validated interactions and
propose minimal extensions of the model to account for con-
flicts between predictions and observations. Such a network
identification approach would be an important step in clos-
ing the empirical cycle running from models to data, and
back.

In summary, in my presentation I will show how ideas
that originated in QR and HST have been put to use in a
particular application domain, the analysis of genetic regu-
latory networks. Instead of reusing standard QR and HST
approaches, which usually apply to generic classes of mod-
els, we have developed tailored algorithms that maximally
exploit the favorable mathematical properties of the class of
PADE models we consider (see, e.g., (Nishida & Doshita
1995; Sacks 1990) for ideas similar in spirit). In combi-
nation with model-checking tools for the automated verifi-
cation of model properties, this strategy has allowed us to
improve the scalability of qualitative simulation and make
biologically relevant predictions.
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