
Toward Intelligent Drawing Constraints

Ronald W. Ferguson, Neil Cutshaw, and Huzaifa Zafar

Visual Thinking Group, College of Computing, Georgia Institute of Technology
801 Atlantic Drive, Atlanta, GA 30332 USA

{rwf, amator, huzaifaz}@cc.gatech.edu

Abstract
Diagrammatic problem solving in domains such as
architecture and design often involves continual redrawing
of existing figures. Drawing programs, such as Visio and
CorelDraw, accommodate redrawing using secondary
correction techniques. These techniques act when a visual
element is moved or changed, making additional changes to
the drawing that maintain key preexisting visual
relationships. These techniques include low-level
constraints, such as snap and glue, and domain-specific
glyphs with built-in constraints. As useful as these
secondary correction techniques are, they sometimes
operate in unintuitive ways, interfering with the flow of
problem-solving. Here, we describe our plans to increase
the effectiveness of secondary correction by making such
constraints congruent with the place vocabulary of the
domain in question. We introduce the idea of place
vocabulary constraints (PVCs) that translate a particular
place vocabulary into a set of geometric constraints. We
argue that PVCs may provide a better mechanism for
secondary correction during redrawing because multiple
geometric constraints can be handled by a single place
vocabulary constraint, because place vocabulary constraints
are more congruent with users’ expectations, and because
they provide a better mechanism for explaining such
constraints to the user.

Introduction
As part of our research on diagrammatic reasoning systems
that dynamically interact with human problem solvers, we
are studying how drawing systems may conserve particular
visual relations during redrawing. Problem solving with
diagrams often require continual redrawing, and so it is
useful to think about the ways in which redrawing aids or
inhibits problem solving. One clear problem is that while
the changes the user is attempting to make to the diagram
are often based on the problem domain, he or she must
often make the changes at the purely geometric level,
which can introduce problem-solving disfluencies.

One way to get around this difficulty may be to assume
that all modifications are congruent with the domain’s
place vocabulary (Forbus, 1983). A place vocabulary is a
set of related qualitative spatial relations for a particular
problem-solving domain. For example, for a clock domain,
the “meshing” and direction of gears is a crucial
relationship (Forbus, Nielsen, & Faltings, 1991).The
advantage of using place vocabularies to guide diagram
redrawing is that each relationship in the place vocabulary

may encapsulate any number of low-level geometric
relations. For example, the meshing of single gear tooth
and gap may involve a number of line segments and angles
that must be of equivalent dimensions.

In the research described here, place vocabularies are
integrated into a drawing system by reusing existing
diagrammatic inferencing rules. We start with the rules
used by our diagrammatic reasoning engine, GeoRep
(Ferguson & Forbus, 2000), which infer place vocabulary
relations from line drawings. We then capture critical low-
level visual relations given as triggers in those rules, and
enforce them in the current drawing. In the completed
version of the project, the constraints will be integrated
into GeoRep’s truth-maintenance system, allowing place
vocabulary constraints to be assumed and retracted based
on the current diagram context. We believe that place
vocabulary constraints will be easier for users to work with
when they redraw diagrams. Because the constraints are
derived from existing GeoRep rules, we also believe that
they will be easy to develop and extend.

Diagram Redrawing in Problem Solving
Visual problem solving with diagrams often involves
continual redrawing. For example, a software engineer
may redraw a system diagram to take account of new
inputs or outputs, or to break out the design of a particular
module. Alternatively, an architect may expand and re-
orient the shape of a family room in a floor plan,
interactively reasoning about how expanding the room
changes the character of the adjacent kitchen. Redrawing
can occur for several reasons – it may involve changes to
make the diagram more aesthetically pleasing, but also
may involve changing the diagram to work though a set of
alternatives, or to create a new diagram from a similar
older diagram.

For many drawing systems, however, the process of
redrawing introduces disfluencies. One problem in
redrawing is that a single change at the conceptual level
may require many low-level geometric modifications, each
of which must be done separately. Widening a door in an
architectural plan, for example, might involve lengthening
the top and bottom of the door and moving the left and
right sides. Although a linear stretching of the door might
work in some cases, not all horizontal dimensions would
be affected in the same way. For example, if the door
contains a doorknob, the door could be widened, but the
doorknob would not change dimensions, and might remain

a fixed distance from one side of the door, rather than a
proportional distance from the side of the door. In the
process of making these changes, however, the process of
redrawing should avoid engaging the problem solver in
unrelated subsidiary tasks.

Drawing programs attempt to reduce these disfluencies
with mechanisms that make secondary corrections based
on the user’s direct modifications. Secondary corrections
are geometric changes that are not directly manipulated by
the user, but which make the rest of the diagram congruent
with the changed elements. In general, these techniques are
either low-level geometric constraints that are applied
universally, or domain-dependent glyph-based constraints.

Low-level geometric constraints, such as “snap and
glue,” impose simple geometric constraints on new or
modified visual elements in a global fashion. By imposing
these constraints universally, it is more likely that the
diagram as a whole will have a consistent style. For
example, by restricting a line segment’s orientation to one
of several preset angles, or its endpoints to particular
points on a grid, the eventual appearance of the whole
diagram will be more consistent. Similarly, if one end of a
line segment is “glued” to a polygon, the line segment can
follow the polygon as it is moved around, eliminating the
need for users to perform the correction themselves. Low-
level constraints have been available since the time of the
very first computer-based drawing systems (Sutherland,
1963).

Low-level geometric constraints have several
advantages. First, they do not depend on the domain of the
drawing, but can be applied universally. In addition, they
are easily understood by the user, or can be made
understandable with forms of passive feedback that do not
interfere with the drawing process. For example, the grid
used for snapping endpoints can be shown in the
background, or the point of attachment can be briefly
highlighted when a line segment is attached to a polygon.
Additional audio cues may also be given. Finally, because
they are relatively simple, when these constraints are
inappropriate for the diagram domain, the user can usually
turn them off.

The central problem with low-level constraints is their
universal application across the figure. In many diagrams,
different constraints may be needed for different parts of
the same figure. For example, when block shapes
represents a pair of software modules and a connecting
arrow represents a communication link between them, it
makes sense that the arrow should be stretched to follow
the block shapes as it is moved. However, if a polygon
represents a block mass and an attached arrow represents a
force on that mass, stretching the arrow may imply a
change in the amount of force, and so the arrow should be
moved, but not stretched. For this reason, globally-
enforced low-level constraints may increase the
disfluencies in problem-solving when they act against the
intent of the user.

One technique for handling the contextual nature of
these constraints is to handle secondary corrections with
custom glyphs, which are pre-built shapes that have

domain-specific constraints on how they may be modified.
These constraints are specifically tied to the domain. For
example, the glyphs for logic circuits may allow gate
glyphs to be rescaled, but not stretched along a single
dimension.

In practice, custom glyphs can be difficult to create and
extend. In systems such as Microsoft Visio, the constraints
on such glyphs must be programmed in Visual Basic,
although some general constraints (such as maintaining the
same size aspect along vertical and horizontal dimensions)
can be handled through dialogues. Because the constraints
are often specified in terms of a set of low-level geometric
constraints attached to a particular glyph, there is
insufficient domain knowledge attached to the glyph to
either extend the constraints to similar glyphs or to explain,
in domain-specific terms, why particular constraints are
being enforced for the glyph.

In this context, it is useful to consider an intermediate
form of secondary correction, one that is more context
sensitive than low-level geometric constraints, and is less
brittle and more extensible than custom glyphs.

Place Vocabulary Constraints
We are currently building a drawing system that can
perform secondary corrections using place vocabulary
constraints (PVCs). These constraints perform secondary
corrections on the diagram, but base these corrections on
the place vocabulary of the diagram domain. For example,
a line segment that is connected to the midpoint of second
segment will not change if the second segment is moved.
If, however, the first segment is identified as a wire, and
the second as part of a logic gate, we extend the segment to
preserve the connected relationship between the wire and
the gate. PVCs attempt to preserve the visual relationships
that support the current diagram interpretation.

PVCs are implemented on top of the GeoRep
diagrammatic reasoning engine (Ferguson & Forbus,
2000), a system that produces a diagram representation
from a set of low-level visual elements. For example, given
the SR flip-flop logic circuit in Figure 1, GeoRep produces
the representation in Figure 2. GeoRep is designed to
explore the relationship between early visual perception
(which detects a set of qualitative visual relationships, such
as parallel relations) and visually-driven reasoning tasks,
such as circuit design. GeoRep has been applied to several
domains, including logic circuits, military planning
diagrams (Ferguson, Rasch, Turmel, & Forbus, 2000),
abstract psychological stimuli (Ferguson, 2000), and
simple juxtaposition-based physics diagrams (Ferguson &
Forbus, 1998).

GeoRep has a two-level architecture (Figure 3).The first
level represents domain-independent visual structure,
white the second represents high-level visual relations.

The first level, the low-level relational describer
(LLRD), creates a description of the low-level visual
relations shown to be used in early qualitative perception.
These relations include such relations as connectivity,

parallelism, and boundary descriptions. These relations are
based on those known to be found in early vision.

The second level, the high-level relational describer
(HLRD), uses the low-level description as the basis for a
high-level, domain dependent place vocabulary.

GeoRep uses a set of rules, called a visual domain
theory, to represent the relationships between a set of low-
level visual relations derived from human perception and
the higher-level place vocabulary for the domain. A
particular rule in the visual domain theory will collect a set
of low-level relations, perhaps also making additional
visual tests, and use them to infer a particular spatial
relationship.

How PVCs work with GeoRep
The architecture of the GeoRep-PVC system is given in
Figure 4. Here, the place vocabulary constraints are
enforced by a new geometric constraint engine that
interacts with the HLRD and the drawing interface.

As can be seen in the figure, the PVC system mediates
between the low-level and high-level relational description
in GeoRep, capturing visual relations as they are used by
the HLRD to recognize place vocabulary relations, and
then enforcing those relations using a constraint engine.
For each rule, the PVC system determines which triggering
visual relations can be enforced (such as corner or
parallel), so that when a rule fires, constraints are set up

based on those used to identify the glyph or the place
vocabulary.

An example of how constraints are derived from a
GeoRep rule is shown in Figure 5. This example shows a
simple rule that is used to recognize a particular kind of
NAND gate. This rule checks two attachment relations
between an arc and a segment, one parallel relationship,
one corner relationship, a polyline relationship, and one
abuts relationship between a circle and arc. When the rule
fires, GeoRep-PVC automatically creates new constraints
based on those relations. The set of constrainable relations
are defined in advance, and instances of constrainable
relations are detected in each rule during rule compilation.
A similar set of constraints (not shown) are created for the
wire connected to the output of the NAND gate, enforcing
the radial connection between the circle and the segment
representing the output wire.

The effect of these constraints on drawing is
demonstrated in Figure 6. When the bottom segment of the
NAND gate is moved, the set of constraints modify the
drawing to ensure that the result is still a NAND gate, and
that the wire is still attached to the output of the gate.

The constraints themselves are handled via a constraint

Figure 1: SRFF logic circuit diagram.

 (SYSTEM-OUTPUT WIRE-S11)
 (SYSTEM-OUTPUT WIRE-S15)
 (INPUT-LABEL <POSITIONED-TEXT-3> WIRE-S1 "S")
 (INPUT-LABEL <POSITIONED-TEXT-4> WIRE-S10 "R")
 (INTERNAL-CONNECTION WIRE-12)
 (INTERNAL-CONNECTION WIRE-11)
 (SYSTEM-INPUT WIRE-S10)
 (SYSTEM-INPUT WIRE-S1)
 (NAND-GATE NAND-GATE-2)
 (NAND-GATE NAND-GATE-1)
 (OUTPUT-LABEL <POSITIONED-TEXT-1> WIRE-S11 "~Q")
 (OUTPUT-LABEL <POSITIONED-TEXT-2> WIRE-S15 "Q")

Figure 2: Representation produced by GeoRep

LLRD HLRD

line drawing

visual
elements

low-level
visual

relations
place

vocabulary

visual
operation
library

visual
domain
theory

Figure 3: A simplified schematic of GeoRep's
architecture.

LLRD HLRDvisual
elements

low-level
visual

relations
place

vocabulary

visual
operation
library

visual
domain
theory

interactive
drawing
interface

TCON
Constraint
Engine

contrainable
relations

visual element
modifications

Figure 4: The PVC version of GeoRep adds an interactive
drawing interface and a TCON-based constraint engine to
the GeoRep architecture. The HLRD rules create the place
vocabulary constraints, which are then dynamically
enforced by the TCON constraint engine.

engine based on CONLAN (Forbus, 1981), called TCON
(Forbus & de Kleer, 1993). TCON has a number of useful
characteristics that it inherits from CONLAN. First,
individual constraint templates can be reused as needed
and new constraint templates can be created by
aggregating previously-defined templates. TCON, like
many constraint languages, is based on the insights of an
earlier constraint system which was also used for
geometric constraint processing and simulation, ThingLab
(Borning, 1981).

We have extended TCON by interfacing it with the
HLRD in GeoRep, and by enhancing its conflict-handling
mechanism. In the original TCON, conflicts between
constraints are handled by an individual handler. In the
TCON version used in GeoRep-PVC, contradiction
handlers depend on the set of constraints being used, and
there are “handler stacks” for each constraint that allow
multiple resolution methods to be tried for any particular
set of conflicting constraints. For example, in the
correction methods we currently use, we prefer to retain
corner constraints over perpendicular constraints.

In the full version of GeoRep-PVC, we expect there will
be two more critical additions. First, the rules used by the
HLRD and the constraint system will be richer than those
in the original GeoRep. Second, the constraints will be
attached to the dependency network created by the HLRD.

The reason for the richer rules is that most of the rules
used for glyph recognition by GeoRep are not specific
enough. While they are sufficient for recognizing
particular glyphs in situations where near-misses are not
available, they do not fully test the set of relations that a
human would in recognizing a particular glyph. For
example, in recognizing a NAND gate, the output circle
should be much smaller than the arc it abuts. However, that
is not currently checked. This results in potential false

positives for recognition, and also means that the NAND
gate in underconstrained for some types of redrawing.

GeoRep used sparse rules, in part, because glyph
recognition in GeoRep was brittle. However, recent work
in our lab by Bokor & Ferguson (2004) has shown that
relatively rich rules can be used if combined with a
probabilistic weighting mechanism. When this system is
integrated into GeoRep-PVC, it should be possible to have
rich rules that are neither brittle, nor are underconstrained
in the drawing interface.

The second addition, attaching PVC constraints to
dependency network nodes, will allow the system to
assume or retract PVCs based on the diagram context. If
changes to the diagram change the glyph interpretations,
constraints attached to those interpretations will no longer
be enforced. For example, if a segment in a NAND gate is
removed, the system will retract the NAND gate
interpretation for the figure. When the NAND gate
interpretation is retracted, all constraints based on that
interpretation will also be retracted. The result of this will
be that when a figure is changed in a way that eliminates
its previous interpretation, it will be possible to manipulate
it in a way that would have violated the previous
constraints.

Finally, attaching PVC constraints to the dependency
network will allow the system to explain the constraints it
is enforcing in terms of the domain, not simply in terms of
the geometric constraints themselves. For example, if the
user asks why a wire’s position was changed, the
geometric explanation might be “because this circle was
moved, and because this segment must stay connected to
this circle, we stretched the segment.” With a link to the
knowledge-rich dependency network, it should be possible
to say instead something like “because the NAND gate

(a)

(grule ((attached ?line1 ?arc)
 (attached ?line3 ?arc)
 (:different ?line1 ?line3)
 (:test parallel? ?line1 ?line3)
 (polyline-member ?line1 ?polyline)
 (polyline-member ?line3 ?polyline)
 (number-of-segments ?polyline 3)
 (polyline-member ?line2 ?polyline)
 (:different ?line1 ?line2)
 (corner ?line1 ?line2)
 (:different ?line3 ?line2)
 (abuts ?circle ?arc)
 (:gentemp ?gate-name "NAND-GATE-"))
 (:assume-with-implications
 (represents (composite ?polyline ?arc ?circle)
 (nand-gate ?gate-name))
 ((represents-specific-part ?line2
 (input-plate ?gate-name))
 (represents-specific-part ?circle
 (output-circle ?gate-name)))))

attached

attached

parallel

corner

abuts

(b)

Figure 5: How PVC constraints are derived from existing GeoRep visual domain
rules. Figure (a) shows an unmodified GeoRep rule for recognizing a NAND gate.
When this rule is run with the PVC system, it automatically creates a set of constraints
(b) based on those in the rule.

moved, we stretched the wire to ensure that it was still
connected the GATE’s output.”

Related Work and Discussion
GeoRep is only one in a series of recent diagrammatic
reasoning systems that integrate knowledge-based
reasoning with geometric or spatial reasoning. These
systems include the Electronic Cocktail Napkin (Gross,
1996), Quickset (Cohen et al., 1997), several systems by
Davis (2002), and sKEA (Forbus & Usher, 2002).

GeoRep-PVC owes a great debt to many constraint-
based systems that have gone before, starting with
ThingLab (Borning, 1981). Systems such as Sketchpad
(Sutherland, 1963) demonstrated the general utility of low-
level constraints in drawing systems, while others such as
Geometer’s Sketchpad (Scher, 2000) demonstrated the use
of knowledge-based constraints in a particular domain.

The difference between GeoRep-PVC and previous
systems are 1) that it is part of an attempt to link place
vocabularies, as defined in qualitative spatial reasoning,
with user interfaces; and 2) that the system integrates the
constraint system with a symbolic reasoning system, in
part to provide better explanations about the constraints to
users.

This work is part of a much larger effect to create an
advanced diagrammatic reasoning architecture (ADRA).
As part of this new architecture, we have developed an
incremental spatial reasoning mechanism that allows
dynamically changing input (Ferguson, Bokor, Mappus, &
Feldman, 2003), and a mechanism for probabilistic
recognition of glyphs (Bokor & Ferguson, 2004).
Additional work is underway on an attention model for the
system, and on integration of the spatial reasoner with our
regularity-detection module, MAGI (Ferguson, 1994).

(a)

(b) (c)
Figure 6: Example of PVCs in action. In (a), the user draws a NAND gate and an output
wire using the built-in drawing tools. The system recognizes the NAND gates and
automatically creates a set of constraints based on the relations that contributed to the
recognized glyph. In (b), the user grabs and drags a single line segment to the bottom of
the screen. In (c), the system uses constraints derived from the original recognition rule
to change the other visual elements to retain the NAND gate and output wire
interpretation.

Continued development should lead to an effective
system that can be used in a variety of domains. Our initial
prototype of the system (as demonstrated here) is
complete, and we are expanding the set of figures it
handles. Once this is done, we will test it with users to
refine its capabilities.

References
Bokor, J. L., & Ferguson, R. W. (2004). Integrating

probabilistic reasoning into a symbolic diagrammatic
reasoner. Paper presented at the Qualitative Reasoning
Workshop, Evanston, IL.

Borning, A. (1981). The programming language aspects of
ThingLab, a constraint-oriented simulation laboratory.
ACM Transactions on Programming Languages and
Systems, 3, 355-387.

Cohen, P., Johnston, M., McGee, D., Oviatt, S., Pittman,
J., Smith, I., et al. (1997). QuickSet: Multimodal
interaction for distributed applications. In Proceedings
of the Fifth Annual International Multimodal
Conference (pp. 31-40). Seattle.

Davis, R. (2002). Position statement and overview: Sketch
recognition at MIT. Paper presented at the AAAI Spring
Symposium on Sketch Understanding, Palo Alto, CA.

Ferguson, R. W. (1994). MAGI: Analogy-based encoding
using symmetry and regularity. In A. Ram & K. Eiselt
(Eds.), Proceedings of the Sixteenth Annual Conference
of the Cognitive Science Society (pp. 283-288). Atlanta,
GA: Lawrence Erlbaum Associates.

Ferguson, R. W. (2000). Modeling orientation effects in
symmetry detection: The role of visual structure. In
Proceedings of the 22nd Conference of the Cognitive
Science Society (pp. 143). Hillsdale, New Jersey:
Erlbaum.

Ferguson, R. W., Bokor, J. L., Mappus, R. L., IV, &
Feldman, A. (2003). Maintaining spatial relations in an
incremental diagrammatic reasoner. In W. Kuhn, M.
Worboys & S. Timpf (Eds.), COSIT 2003, Spatial
Information Theory: Springer-Verlag.

Ferguson, R. W., & Forbus, K. D. (1998). Telling
juxtapositions: Using repetition and alignable difference
in diagram understanding. In K. Holyoak, D. Gentner &
B. Kokinov (Eds.), Advances in Analogy Research (pp.
109-117). Sofia, Bulgaria: New Bulgarian University.

Ferguson, R. W., & Forbus, K. D. (2000). GeoRep: A
flexible tool for spatial representation of line drawings.
In Proceedings of the 18th National Conference on
Artificial Intelligence (pp. 510-516). Austin, Texas:
AAAI Press.

Ferguson, R. W., Rasch, R. A. J., Turmel, W., & Forbus,
K. D. (2000). Qualitative spatial interpretation of
Course-of-Action diagrams. Paper presented at the

Intelligent Systems Demonstrations, 18th National
Conference on Artificial Intelligence, Austin, Texas.

Forbus, K. D. (1981). A CONLAN Primer (No. 4491): Bolt
Beranek and Newman Inc.

Forbus, K. D. (1983). Qualitative reasoning about space
and motion. In D. Gentner & A. Stevens (Eds.), Mental
Models (pp. 53-73). Hillsdale, NJ: Lawrence Erlbaum
Associates.

Forbus, K. D., & de Kleer, J. (1993). Building Problem
Solvers. Cambridge, MA: The MIT Press.

Forbus, K. D., Nielsen, P., & Faltings, B. (1991).
Qualitative spatial reasoning: The CLOCK project.
Artificial Intelligence, 51(1-3).

Forbus, K. D., & Usher, J. (2002). Sketching for
knowledge capture: A progress report. In Proceedings of
the 7th International Conference on Intelligent User
Interfaces (pp. 71-77). San Francisco.

Gross, M. D. (1996). The Electronic Cocktail Napkin: A
computational environment for working with design
diagrams. Design Studies, 17(1), 53-69.

Scher, D. (2000). Lifting the curtain: The evolution of the
Geometer's Sketchpad. The Mathematics Educator,
10(2), 42-48.

Sutherland, I. E. (1963). Sketchpad, a Man - Machine
Graphical Communication System. Unpublished PH.D.,
Massachusetts Institute of Technology, Cambridge, MA.

Acknowledgements
This research was supported by the National Science
Foundation under the Artificial Intelligence and Cognitive
Science program, as well as by Vulcan, Inc. through the
HALO II initiative.

