
Using Polynomial Approximations to Discover Qualitative Models

Reha K. Gerçeker
reha@computer.org

Dept. of Computer Engineering, Boǧaziçi University
Bebek 34342, Istanbul, Turkey

A. C. Cem Say
say@boun.edu.tr

Dept. of Computer Engineering, Boǧaziçi University
Bebek 34342, Istanbul, Turkey

Abstract
Automating the discovery of qualitative models from obser-
vations is a difficult problem of machine learning and vari-
ous algorithms have been proposed for the solution of this
problem in the literature. In this paper, we present a new al-
gorithm called LYQUID, which uses polynomials fitted on
observed numerical data as approximations to the underlying
real world functions; constraint discovery is then performed
over those polynomials. LYQUID is shown to be a fast and
successful learning algorithm even in the presence of a high
level of noise.

Introduction
Formulating and solving differential equation systems be-
longing to real world problems lie at the heart of many, if
not all, engineering disciplines. However, situations arise
frequently where it is difficult to even formulate an ODE for
a given system, let alone solve it to reveal the exact functions
for its variables. In such cases, moving into the qualitative
domain helps not only with the modeling problem but also
allows simulation of the system with less precise informa-
tion.

System identification deals with the problem of discover-
ing the mathematical model of a system from observed input
and output variables. The main problem in system identifi-
cation problems is the size of the initial search space. Nar-
rowing down the huge search space into descriptions of pos-
sible models is called structural identification; deciding for
the precise model from that subset is a problem of parame-
ter estimation. In this respect, qualitative modeling is a re-
ally expressive tool in representing structure in the structural
identification stage. Using qualitative modeling, it is possi-
ble to express relationships between system variables with-
out ever having to find out what they precisely are. There-
fore, discovering the qualitative model of a physical system
is an important step in understanding the underlying mecha-
nism which determines the system’s behavior.

Different aspects of qualitative reasoning and benefits of
qualitative reasoning based approaches for system identifi-
cation are examined thoroughly by Travé-Massuyès, Ironi
and Dague (Travé-Massuyès, Ironi, & Dague 2004). Sim-
ilarly, Bratko and Šuc have reviewed different techniques

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

used in learning qualitative models in detail (Bratko & Šuc
2004).

This paper proposes a new methodology, which is called
LYQUID, for automated discovery of a qualitative model
from observed numerical data. Constraints on the proper-
ties of the observed data are lowered to a minimum; neither
the observed quantities must be sampled with the same fre-
quency nor the samples have to be equally spaced in time.
Even absence of samples at some intervals could be toler-
ated. Moreover, the intuition behind the algorithm proves
to be very strong against noise over the samples. The same
intuition also lowers computational complexity; LYQUID’s
complexity at the model discovery stage is free of the num-
ber of observed samples.

A New Algorithm: LYQUID
Recalling the Taylor series, it is possible to approximate
arbitrary functions with polynomials and there are various
ways of fitting polynomials over sampled data using least
square error techniques (Ralston & Rabinowitz 2001). With
this intuition, LYQUID first approximates observed vari-
ables using polynomials that are functions of time and then
uses the fitted polynomials during the identification process.
In fact, the name LYQUID arises from a combination of the
word poLYnomial with QUalitative system IDentification.

LYQUID uses orthogonal polynomials, which results in
better numerical solutions, when fitting polynomials to sam-
pled data. We have adopted an algorithm for curve fitting
from Ralston and Rabinowitz (Ralston & Rabinowitz 2001),
who have discussed least square error techniques in great
detail. Similar mathematical texts should be consulted for
details of polynomial curve fitting using orthogonal polyno-
mials.

LYQUID requires quantitative data, which are sampled
over time from the observed system, as input. It is neither
mandatory to have equal number of samples for each vari-
able nor necessary to have the samples equally spaced over
time for the purpose of the algorithm. The samples together
with the timepoints of measurements are input to the algo-
rithm. The unit of each observed variable and a multipli-
cation table of the specified units are also provided to the
algorithm as inputs.

The output of LYQUID is a qualitative model expressed
in QSIM’s well–known vocabulary (Kuipers 1994). Con-



sidering the availability of numerical data for process-
ing, LYQUID enhances its output by suggesting land-
mark values for constants and functions for monotonic re-
lationships. In other words, it is very much possible to
use LYQUID’s output with semi–quantitative extensions of
QSIM like Q2 (Kuipers 1994) and Q3 (Berleant & Kuipers
1997).

Fitting Piecewise Polynomials
One of the parameters of LYQUID is the degree of polyno-
mials used in curve fitting. When this degree increases, the
accuracy of the fit automatically increases; remember that
the degree of Taylor series expansion tends to infinity. How-
ever, with high degree approximations, there is also the pos-
sibility of overfitting unnecessarily to noisy data. Therefore,
this parameter should be tuned according to the complexity
of input data; it is referred to as d for the rest of the paper. d
determines the accuracy of the approximation and there are
two main factors that hinder accuracy:

• d being insufficiently small for the input time interval. As
an example to the problem here, consider the sine wave.
Using perfectly clean samples from the sine wave and set-
ting d = 5, unfortunately, it is not possible to have a
polynomial fit with an acceptable square error over the
whole [−π, π] interval; a single fifth degree polynomial
approximates the sine wave with reasonable error only on
[− 1

2π, 1
2π] and additional polynomials are needed in or-

der to approximate the rest of the wave. A single seventh
degree polynomial, on the other hand, gives a low error
approximation over the whole [−π, π] interval.

• Noise over the samples. A polynomial of degree d may
actually be sufficient to fit perfectly clean samples on a
time interval. However, data are never such clean and
square error of the approximation could still be high be-
cause of noise over data samples.

Inaccuracy caused by the first problem is not tolerable,
whereas, inaccuracy related to noise must be allowed to
some extent. When d is fixed to some value, the only way to
increase accuracy of the fit is to increase the number of poly-
nomials used in approximation, by splitting the large input
time interval into smaller sub–intervals. This corresponds
to using piecewise polynomials rather than fitting a single
polynomial on all of the samples.

LYQUID uses Algorithm 1 to divide a large time inter-
val into smaller sub–intervals to increase the accuracy of ap-
proximation. A parameter called Tolerance is used to de-
cide whether the error of approximation is acceptable or not.
When the error is not acceptable, LYQUID splits the time
interval at the midpoint and fits two polynomials on both
the new sub–intervals. In order for this split to be accepted,
the accuracy after the split must be improved; parameters
Improvement and SplitImprovement determine the ac-
ceptable rate of improvement. Otherwise, the split is re-
jected and a single polynomial is fitted on the whole interval.
If the actual cause of inaccuracy in an approximation is the
noise over the data, then this mechanism of accepting or re-
jecting a split makes sure that the split is really necessary. As

a final remark, it should be noted that the partitioning algo-
rithm does not require that the fitted piecewise polynomial
be continuous at transition points between sub–intervals.

Algorithm 1 Interval partitioning algorithm
partition is a {start, stop, poly, error} tuple
intervals and result are stacks of partition
P ← d–degree polynomial on S[1..N ]
e← square error of P on S[1..N ]
intervals.push {1, N, P, e}
while intervals.empty is false do

interval← intervals.pop
e← interval.error
c← interval.stop - interval.start + 1
if (e/c) ≤ Tolerance then

result.push interval
else

ini← interval.start
fin← interval.stop
mid←

�
ini+fin

2

�
P1← d-degree polynomial on S[ini..mid]
e1← square error of P1 on S[ini..mid]
P2← d-degree polynomial on S[mid + 1..fin]
e2← square error of P2 on S[mid + 1..fin]
chgInTotalErr ← (e− (e1 + e2)) / e
chgInInterval1← (e− 2 e1) / e
chgInInterval2← (e− 2 e2) / e
if chgInTotalErr ≥ Improvement or

chgInInterval1 ≥ SplitImprovement or
chgInInterval2 ≥ SplitImprovement

then
intervals.push {mid + 1, fin, P2, e2}
intervals.push {ini, mid, P1, e1}

else
result.push interval

end if
end if

end while

Polynomial Operations
After piecewise polynomial approximations are computed
for every observed variable, LYQUID no longer uses the
numerical data samples for any purpose. In other words,
LYQUID performs all identification functions based on the
computed polynomials. Therefore, this subsection is de-
voted to a brief discussion of polynomial operations.

Being able to check equality of polynomials is the funda-
mental requirement in LYQUID. Even though two polyno-
mials are equal only when their coefficients are equal, it is
generally the case that curve fitting do not produce such ex-
act matches. In other words, some margin of error must be
tolerated. When comparing two polynomials p(t) and q(t)
on a time interval [a, b], LYQUID uses this error criterion:

e =

∫ b

a
[p(t)− q(t)]2dt

b− a

equal(p, q) =
{

true if e ≤ iTolerance
false otherwise

(1)

iTolerance is another parameter of the algorithm. Similar
to Tolerance, which appeared in Algorithm 1, iTolerance



specifies the tolerable square error per unit time during
model discovery. It is possible to set these parameters to
different values.

During identification, LYQUID has to perform different
types of operations on polynomials. These operations are
addition, subtraction, multiplication, translation, synthetic
division, differentiation and integration. All of these oper-
ations require a basic a manipulation of polynomial coeffi-
cients. Even though it is also dependant on the polynomial
representation, it is straightforward to implement listed op-
erations in O(d2) time, where d is the degree of the operated
polynomials.

For monotonic function constraints, LYQUID needs to
check whether or not a polynomial is positive or negative
on a time interval [a, b]. This check translates into checking
existence of polynomial roots on [a, b]. It is possible to find
the number of roots of a polynomial on an interval [a, b] by
using properties of a mathematical concept called the Sturm
sequences. It is also possible to create a Sturm sequence
from an arbitrary polynomial in O(d2) time (Ralston & Ra-
binowitz 2001).

Generation of Hidden Variables
Most of the real world qualitative models involve rela-
tionships between observable variables and some hidden
variables. Discovering such relationships is the essence
of learning qualitative models. This subsection explains
how LYQUID generates hidden variables; they are gener-
ated from polynomial representations of observed variables.
Note that, among the generated variables, only the ones
which are involved in the discovered constraints are included
in the output model.

Apart from looking for equalities between polynomials
using the error criterion in (1), LYQUID requires that units
of the compared polynomials match in order to conclude that
an equality exists. Units of the observed variables are pro-
vided by the user, whereas, units of the generated variables
must be automatically assigned by LYQUID.

The units of polynomials change only when they are dif-
ferentiated or multiplied. Units are stored by LYQUID in
such a way that time derivatives of the same unit are main-
tained as an ordered list. Therefore, whenever LYQUID gen-
erates a derivative, unit of the polynomial is lowered one
level in the list; a new entry is appended to the list if neces-
sary. Multiplication table of units, which is provided as input
by the user, is used in the case of multiplication. LYQUID
allows a multiplication only if the result of the multiplied
units exist in this table.

LYQUID first generates derivatives of observed variables
by differentiating their polynomials. First o ≤ d deriva-
tives are computed, where o is a parameter of the algo-
rithm. Whenever a constant is found in the derivative chain,
LYQUID stops seeking into higher orders.

Composites are then generated as products of sums.
LYQUID allows only a single appearance of an observed
variable or one of its derivatives in a composite variable.
Moreover, another parameter c ≤ n is used to limit the size
of composite variables, where n is the number of observed

variables. Setting c > n is equivalent to setting c = n be-
cause of the single appearance limitation. When generating
sums and differences, all possible combinations of variables
with matching units are taken into consideration. When gen-
erating products as composites, only the ones whose units
could be determined from the multiplication table are cre-
ated.

At the time of constraint discovery, size of the set of vari-
ables plays an important role in the complexity of the proce-
dure. The problem here is to determine the number of vari-
ables after hidden variable generation when starting with n
observed variables. In the worst case, all observed variables
have a common unit and when c = n, the number of vari-
ables after generation of sums is equal to 1

2 (o + 1)(3n − 1).
When c < n, the number of variables could be written with
a tighter bound: O(nc(o + 1)). Assuming that the multipli-
cation table allows multiplication of a sequence of at most
m units, it is definite that the size of the final set of variables
is O((nc(o + 1))m). Remember that when c = n, the size
of variables is inevitably exponential with n.

Model Discovery
LYQUID’s model discovery is a generate–and–test proce-
dure where every possible constraint is tested to see if it truly
exists. For LYQUID, checking existence of a constraint is
equivalent to checking whether or not two polynomials with
common units are equal according to Equation 1. This is ba-
sically done in three steps: (i) create an intermediate polyno-
mial according to the nature of the constraint, (ii) determine
the unit of this polynomial, (iii) if units of the intermediate
and target polynomials match, compare the polynomials. If
an equality is found at the end, proposed constraint is added
to the output model.

Assuming that their units are common, when checking ex-
istence of an add constraint between three polynomials p(t),
q(t) and r(t), for example, LYQUID creates the intermedi-
ate polynomial by adding p(t) and q(t). Then, the target
polynomial, which will be used in comparison with this in-
termediate polynomial, is r(t). LYQUID also checks the
other two possibilities in which the intermediate polynomial
is obtained by adding p(t) and r(t) or adding q(t) and r(t).
The target polynomials in these cases are q(t) and p(t) re-
spectively. If one of the comparisons results in an equality of
the intermediate and target polynomials, an add constraint is
included in the output model. Other constraint types require
a different way of obtaining the intermediate polynomial,
however, the main idea is always the same.

Monotonic function constraints, on the other hand, are a
little different. First of all, unit checking is not done when
testing M+ and M− constraints. As a first requirement, the
product of the derivatives of the involved polynomials must
be positive or negative on the questioned time interval. This
should remind the reader of the discussion about polynomial
roots appearing in the section about polynomial operations.
Secondly, if the involved polynomials in the constraint are
p(t) and q(t), there should be a third polynomial f(t) such
that p(t) = f(q(t)) satisfying the error criterion. This re-
quirement is inherent from QSIM’s definition of M+ and
M− relationships. Given p(t) and q(t), the degree of f(t) is



first decided from the degrees of p(t) and q(t); unkown coef-
ficients of f(t) are then calculated by setting partial deriva-
tives of the error criterion in Equation 1 to zero.

Since variables are approximated by piecewise polynomi-
als, LYQUID has to test existence constraints on multiple
time intervals. Assuming that piecewise polynomials con-
sist of k sub–parts at maximum, k has to appear as a linear
factor in the complexity of the discovery stage. Therefore,
it is important to put an upper bound on k. In the general
case, it is impossible to estimate k precisely; however, it is
possible to put a bound on k using the maximum number of
extrema taken on by any one of the observed variables.

Assume that one of the observed variables attains at most
x local extrema during the observation interval [a, b]. Then,
it is possible to say that every observed variable consists of
at most x + 1 monotonically increasing or decreasing sec-
tions, which connect subsequent local extrema. Fitting poly-
nomials on such increasing or decreasing sections generally
yields very good approximations. Therefore it is reasonable
to conclude that k is O(x) if not exactly x + 1.

Evaluation of constraints in multiple time intervals re-
sults in three levels of strength for constraints. These lev-
els are determined by the user through the use of three ra-
tios, RP ≤ RL ≤ RD, each of which are real numbers in
[0, 1]. Assume that a constraint exists on s of the total k
sub–intervals; LYQUID calculates the ratio R = s/k and
decides that (i) constraint is definite if R ≥ RD, (ii) con-
straint is likely if RL ≤ R < RD, (iii) constraint is possible
if RP ≤ R < RL. If R < RP , then the constraint does not
exist in LYQUID’s terms.

LYQUID in Pseudo–Code

Algorithm 2 makes references to subroutines starting with
Generate. They are related to the generation of hidden vari-
ables which is discussed in the related section. There are
also references to subroutines starting with Check. These
routines work with the principles explained in the previous
section and they return a set of constraints if a qualitative re-
lationship is found between the input variables and an empty
set otherwise. The discovered qualitative relationships are
appended to a list of constraints, which contains the qualita-
tive model of the observed system once the algorithm stops.

When a constraint is newly discovered by one of the
Check subroutines and the new constraint involves an auto-
matically generated hidden variable, LYQUID appends the
qualitative constraints, which are necessary to create the au-
tomatic variable, to the list of constraints. This makes sure
that the qualitative constraints that result in creation of a new
automatic variable do not appear in the output qualitative
model when the new variable is not bound to the model with
a different constraint. LYQUID also makes sure not to ap-
pend artificial discoveries to the list of constraints. For ex-
ample, when a generated variable auto1 is the sum of two
observed variables x and y, CheckSum(x, y, auto1) would
return a valid qualitative relationship without LYQUID’s in-
ternal redundancy checking.

Overall Complexity

The number of partitions generated by Algorithm 1 is O(x),
which means that the main while loop of the algorithm will
run O(x) times. The polynomial fitting algorithm adopted
from Ralston and Rabinowitz (Ralston & Rabinowitz 2001)
takes O(Nd2) time, where N is the number of processed
samples. Then, overall complexity of this initial stage is
O(n xNd2).

Complexity of the hidden variable generation stage is
O((nc(o + 1))mx d2). If the number of variables prior to
constraint discovery is v, then there could be at most O(v2)
binary constraints and O(v3) ternary constraints. Even
though the dominant term arises from binary constraints and
actual complexity is much lower because of unit checking,
it is safe to express complexity of the discovery stage as
O(v3x d2). As a result, the overall complexity of LYQUID
is

O(n xNd2 + (nc(o + 1))3mx d2) (2)

The dominating term here is the second operand of the
sum inside the brackets and it belongs to the model discov-
ery procedure. This term is a polynomial of n whose power
is determined by parameters of the algorithm. It is important
not to have N as a factor in this dominating term because N
is capable of growing quite large.

Algorithm 2 LYQUID
V ← ∅ (set of variables)
for k = 1 to n do

ppoly ← new piecewise polynomial fitted to
n

t
(k)
i , x

(k)
i

oN(k)

i=1

var ← new variable, whose unit is u(k), represented by ppoly
V ← V ∪ var

end for
V ← V ∪GenerateDerivatives(V, o)
V ← V ∪GenerateSums(V, c)
V ← V ∪GenerateProducts(V, c, M)
C ← ∅ (list of constraints)
for all (v1, v2) ∈ V do

Ctemp ← CheckEquality(v1, v2)
if Ctemp 6= ∅ then

Vprune ← v2 ∪ {v | v is derived from v2 or involves v2}
V ← V − Vprune

C ← C ∪ Ctemp

end if
end for
for all v ∈ V do

C ← C ∪ CheckConstant(v)
end for
for all (v1, v2) ∈ V do

C ← C ∪ CheckDerivative(v1, v2)
C ← C ∪ CheckMonotonic(v1, v2)

end for
for all (v1, v2, v3) ∈ V do

C ← C ∪ CheckSum(v1, v2, v3)
C ← C ∪ CheckProduct(v1, v2, v3)

end for



Related Work
In terms of input and output of the algorithm, LYQUID re-
sembles the QMN algorithm (Džeroski & Todorovski 1995).
It is another generate–and–test based learning method which
extracts qualitative models from numerical behavior. The
logic behind QMN is very similar to LYQUID’s logic; how-
ever, rather than working on polynomials, QMN decides by
working on individual data samples. One of the disadvan-
tages of QMN is that its complexity involves N and N2 as
linear factors in front of expressions which are exponential
with n in the worst case. This is an important drawback
when N is large. LYQUID’s complexity involves N only
as a factor of n at the curve fitting stage and removes N
from the possibly exponential complexity of the discovery
stage. This means that the dominant term of complexity
of LYQUID is not dependant on N . Another disadvantage
of QMN is that its computation is based on individual data
samples making the algorithm prone to noise over the data;
on the contrary, LYQUID is a more robust algorithm which
uses an identification approach based on a polynomial inter-
polation of samples. Moreover, QMN requires samples to
be made at the same timepoints in order for them to be com-
pared, whereas, LYQUID is capable of using samples which
are measured at different timepoints. One final advantage of
LYQUID over QMN is that it uses units of variables in its
reasoning, which reduces the size of the variable and con-
straint spaces significantly.

LAGRANGE (Džeroski & Todorovski 1993; 1995) is an-
other identification algorithm which outputs ODEs rather
than QDEs. Its specification is very similar to QMN and
LYQUID in the way it introduces new variables. Differing
from QMN in its discovery stage, LAGRANGE generates
and tests numerical equations over its variable set by lin-
ear regression. This feature is reminiscent of LYQUID’s
polynomial regression. An upgrade of this method is LA-
GRAMGE (Todorovski et al. 2000), which uses multi–
dimensional polynomial approximations in calculating par-
tial derivatives of variables. However, unlike LYQUID,
these approximations bind variables between themselves,
rather than expressing them as functions of time. LYQUID
seems to be unique in that respect.

The algorithms discussed upto this point, including
LYQUID, use numerical data samples in a rather quantita-
tive manner to produce their output. SQUID (Kay, Rinner,
& Kuipers 2000), on the other hand, also starts with numer-
ical data as input but does not perform what it calls raw data
matching; it rather focuses on qualitative aspects of the data
like trends and extrema, or envelopes that bound the trajec-
tory of variables. It then works by consequent forward and
reverse simulations to reduce size of the initially large model
space by refutation.

There are some algorithms which use qualitative, rather
than quantitative descriptions of behavior for identification.
Those methods, even if they accept numerical data as in-
put, convert their input into qualitative states before starting
identification. GENMODEL (Hau & Coiera 1993) is one
of the earliest of such methods, which constructs all pos-
sible constraints consistent with the input qualitative sam-
ples. It suffers from underconstrained models because it

lacks creation of hidden variables. QSI (Say & Kuru 1996)
solves the problem introducing hidden variables and itera-
tively does the same thing with GENMODEL until the dis-
covered model allows only the observed qualitative behav-
ior. Another method QOPH (Coghill, Garrett, & King 2002)
relies on Inductive Logic Programming, which is a rather
formal way deducing a model (hypothesis) that satisfies ob-
servations (evidence as qualitative states) given some back-
ground knowledge (QSIM state transition rules). Such a
general formulation of the problem allows usage of a gen-
eral purpose ILP technique as a solution.

Usage of units, commonly called dimensional analysis,
also appears in GENMODEL. MISQ (Richards, Kraan, &
Kuipers 1992) and QSI use a different type of dimensional
analysis in testing consistency of generated models. This
type of dimensional analysis checks for inconsistencies in
constraints involving time derivatives rather than units of
variables.

Experimental Results
LYQUID was tested on the U–tube, cascaded tanks and cou-
pled tanks models which are used as benchmark systems in
related literature (Kuipers 1994; Coghill, Garrett, & King
2002). The numerical data required for the experiments
were obtained by simulating physically realistic systems of
the three kinds. Apart from the clean data, noisy datasets
were obtained by adding Gaussian noise over the original
samples and LYQUID has been tested on both clean and
noisy data samples. Other types of experiments involve
datasets in which, (i) samples are obtained with different or
irregular sampling frequencies, (ii) there are time intervals
where some variables are not sampled.

Experiments on Clean Data
U–Tube U–tube data used in the experiments belong to
a cylindrical U–tube with 1.25 and 0.8 units of radii. Ini-
tial heights of the liquid columns in the tubes were 2.5 and
0.5 units respectively and the levels were sampled over time
with 0.01 second intervals for a total of 3 seconds. Recall
at this point that all U–tubes obey the following qualitative
model, which is unknown to LYQUID at any point:

d/dt(levelA, riseA) M−(levelDiff, riseA) (0, 0)
d/dt(levelB , riseB) M−(riseA, riseB) (0, 0)
add(levelB , levelDiff, levelA)

Using fifth degree polynomials for approximations and
6× 10−5 as iTolerance, LYQUID discovered the constraints
given in Table 1. Although the listed constraints are numer-
ous when compared to the general U–tube model, all of the
listed monotonic function constraints are correct for the spe-
cific numerical dataset. The functional relationships sug-
gested for the monotonic function constraints are not pro-
vided but the landmark pairs given in the table are the inter-
cepts of those unlisted functions. Note that the hidden vari-
ables riseA, riseB and levelDiff are discovered as dA, dB and
auto2 respectively; the two monotonic function constraints
which bind these hidden variables are also discovered. Be-
ing able to capture this detailed qualitative model from only
two observed variables is remarkable.



d/dt(A dA) M+(B auto1) (-4.5811 0.0000) (0.0000 2.7048)

d/dt(B dB) M-(B auto2) (1.9188 0.0000) (0.0000 2.7048)

add(A B auto1) M-(dA dB) (0.0000 0.0000)

minus(B -B) M+(dA auto1) (-99.6365 0.0000) (0.0000 3.8394)

add(A -B auto2) M-(dA auto2) (-0.0121 0.0000) (0.0000 -0.0040)

M-(A B) (2.7048 0.0000) (0.0000 6.6033) M-(dB auto1) (243.2531 0.0000) (0.0000 3.8394)

M-(A dA) (1.9177 0.0000) (0.0000 97.3223) M+(dB auto2) (0.0297 0.0000) (0.0000 -0.0040)

M-(A auto1) (4.5813 0.0000) (0.0000 6.6035) M-(auto1 auto2) (3.8377 0.0000) (0.0000 9.1624)

M+(A auto2) (1.9188 0.0000) (0.0000 -6.6034) M+(A dB) (1.9177 0.0000) (0.0000 -237.5864)

M+(B dA) (1.9217 0.0000) (0.0000 -2.4451) M-(B dB) (1.9217 0.0000) (0.0000 5.9695)

Table 1: Discoveries from the clean U–tube dataset

Cascaded Tanks In a cascaded tanks system, there are
two separate tanks with holes at their bases. There is an
inflow of liquid into the first tank and outflow from this first
tank pours into the second tank. The most general qualita-
tive model for a cascaded tanks system is the following:

d/dt(amountA, netflowA)
d/dt(amountB , netflowB)
add(outflowA, netflowA, inflow)
add(outflowB , netflowB , outflowA)
M+(amountA, outflowA) (0, 0)
M+(amountB , outflowB) (0, 0)

Dataset for the cascaded tanks experiment was created
by simulating a cascaded tanks system with two cylindrical
tanks whose radii are 1 and 0.75 units. The initial levels of
liquid in the tanks were 1 units each and amounts of liquid in
the tanks were sampled over time with 0.01 second intervals
for a total of 4 seconds. Inflow of liquid into the first tank,
which is the exogenous variable, was taken to be e − e−t.
Unit of inflow was specified as the derivative of the unit of
amounts. The sampled levels and inflow were supplied as
input to the algorithm.

LYQUID was tested on the cascaded tanks dataset with
fifth and eleventh degree polynomials separately. In both
cases iTolerance was set to 7× 10−5. Results that are
listed in Table 2 show that the hidden variables netflowA,
netflowB , outflowA and outflowB are discovered as dA, dB,
auto4 and auto16 respectively. The monotonic function
relationships between the amounts and outflows are also dis-
covered. Considering nature of the exponential function that
is used as inflow, the monotonic function constraint that re-
lates inflow and its derivative is also correct. Inspection of
the simulation data revealed that the three other monotonic
function constraints are also correct discoveries.

An important observation from Table 2 is the increase in
the accuracy of landmark pairs when eleventh degree poly-
nomials are used. Not only the accuracy of LYQUID’s nu-
merical suggestions improve but also LYQUID discovers an-
other true monotonic function constraint which was left un-
revealed otherwise. This improvement is obviously caused
by the increase of the accuracy of the polynomial approxi-
mations.

Some monotonic function constraints given in Ta-
bles 1 and 2 are redundant in the presence of some other
ones. LYQUID retains those redundant constraints in its out-
put because extra landmark pairs provided with them might

be necessary to eliminate possible spurious behaviors from
the qualitative simulation of the output model. It should also
be noticed that one of the monotonic function constraints
lacks landmark pairs in Table 2; this is because the inter-
cepts of the discovered relationship are inconsistent with the
M−.

Coupled Tanks In a coupled tanks system, two tanks are
interconnected with a horizontal pipe; there is an inflow of
liquid to one of the tanks and there is an outflow of liquid
from the other tank. A general qualitative model for the de-
scribed system is the following one:

d/dt(amountA, netflowA)
d/dt(amountB , netflowB)
add(flowAB , netflowA, inflow)
add(outflowB , netflowB , flowAB)
add(levelB , levelDiff, levelA)
M+(amountB ,outflowB) (0, 0)
M+(amountA, levelA) (0, 0)
M+(amountB , levelB) (0, 0)
M+(levelDiff, flowAB) (0, 0)

It is also possible to write the same model using pres-
sures as the hidden variables instead of levels. Notice that,
be it levels or pressures, these variables are introduced to
the model through monotonic function constraints. Since
LYQUID introduces hidden variables only through addition
or multiplication, without observing either the levels or pres-
sures, it is not possible to make LYQUID extract this general
model. This is why both levels and amounts of liquid in the
tanks were sampled while generation of the coupled tanks
dataset.

The dataset was created by simulating a coupled tanks
system with two cylindrical tanks whose radii are 1 and 0.8
units. The tanks were initially empty. Amounts and levels of
water in the tanks were sampled over time with 0.01 second
intervals for a total of 10 seconds. The exogenous inflow
variable was taken to be constant. Unit of inflow was speci-
fied as the derivative of the unit of amounts and unit of levels
was specified as a different unit. Amount, level and inflow
samples were input to LYQUID.

Using eleventh degree polynomials for approximations
and 7× 10−5 as iTolerance, LYQUID discovered a total
of 190 monotonic function constraints involving 20 differ-
ent variables. Five of these 20 variables are the observed
amounts and levels; other 15 variables are the hidden vari-



Using fifth degree polynomials Using eleventh degree polynomials
d/dt(A dA) d/dt(A dA)
d/dt(B dB) d/dt(B dB)
d/dt(I dI) d/dt(I dI)
add(A B auto1) add(A B auto1)
add(I dA auto3) minus(B -B)
minus(dA -dA) add(A -B auto2)
add(I -dA auto4) add(I dA auto3)
minus(dB -dB) minus(dA -dA)
add(I -dA -dB auto16) add(I -dA auto4)
M+(A auto4) (-0.1082 0.0000) (0.0000 1.2634) minus(dB -dB)
M-(B auto3) (1.7135 0.0000) (0.0000 2.1635) add(I -dB auto6)
M+(B auto16) (-0.0625 0.0000) (0.0000 1.2885) add(I -dA -dB auto16)
M-(I dI) (2.7181 0.0000) (0.0000 2.6350) M+(A auto4) (0.0001 0.0000)

M-(dA auto1) (1.0462 0.0000) (0.0000 1.8080) M-(B auto3) (1.7133 0.0000) (0.0000 2.1838)

M-(auto3 auto16) M+(B auto16) (0.0000 0.0000)

M-(I dI) (2.7183 0.0000) (0.0000 2.7183)

M-(dA auto1) (1.0606 0.0000) (0.0000 1.8085)

M-(auto2 auto6) (3.6566 0.0000) (0.0000 3.3998)

M-(auto3 auto16)

Table 2: Discoveries from the clean Cascaded Tanks dataset

ables generated by LYQUID. Those hidden variables include
netflowA, netflowB , flowAB , outflowB and levelDiff. Al-
though the suggested landmark pairs deviate slightly from
the origin, the monotonic function constraints that appear in
the general qualitative model also existed in LYQUID’s out-
put.

126 of the total 190 monotonic function discoveries were
correct for the dataset that was used; other 64 discoveries
were incorrect. The decision about the correctness of each
of the constraints is made by looking at the plots of the orig-
inal numerical samples belonging to the variables involved
in the constraint. The incorrect discoveries were actually
functions that made a sudden jump during the first second
of sampling; if these initial portions were disregarded, all of
the discovered monotonic function relationships would have
been consistent with the observed behavior.

Experiments on Noisy Data
U–Tube A noisy dataset for the U–tube was generated by
adding N(0, 1) Gaussian noise over the clean samples that
were used for the first experiment. Figure 1 is the plot
of the noisy dataset together with the original clean sam-
ples. Table 3 lists the constraints which are discovered by
LYQUID on this noisy U–tube dataset. The only difference
in LYQUID’s settings between the two U–tube experiments
is the value of iTolerance; iTolerance was set to 6× 10−2

for the experiment on the noisy dataset.
Obviously, Tables 1 and 3 differ only in their landmark

value pairs. Many constraints in the second experiment lack
landmark pairs because intercepts of the discovered relation-
ships were not consistent with the M+ or M−. The M+

between dB and auto2, namely riseB and levelDiff, origi-
nally passes through the origin and this landmark is a critical
one for elimination of unrealistic behavior. LYQUID was
able to estimate landmark pairs close to the origin, which is

satisfactory considering the amount of noise. The M− be-
tween riseA and riseB also has a critical landmark pair at
the origin; this pair is implicit, even though not perfectly,
from the monotonic function constraints between dA, dB
and auto1. Shortly, discoveries listed in Table 3 is a strong
evidence of how tolerant LYQUID is against noise.

Cascaded Tanks A noisy cascaded tanks dataset was cre-
ated by adding N(0, 0.5) noise over the clean samples which
were used in the first cascaded tanks experiment. The clean
and noisy datasets are plotted together in Figure 2. Sev-
enth degree polynomials were used in this experiment and
iTolerance was increased to 8× 10−3 to allow more error
in comparisons.

In this experiment, LYQUID discovered 55 monotonic
function constraints which involve 3 observed and 9 hidden
variables. All constraints listed in Table 2 are successfully
discovered, even though the landmark pairs are not so accu-
rate as in the U–tube case. In fact, all of the discovered con-
straints are correct when the observed numerical behavior
is considered; the reason why these constraints were not dis-
covered in the clean dataset experiment is related to the value
of iTolerance. In the clean dataset experiment, iTolerance
was set to a very low value, which in turn resulted in rejec-
tion of actually correct relationships. The constraints in Ta-
ble 2 are the ones which were able to survive under a very
low margin of error. As a result, although it discovered too
many constraints, LYQUID was able to capture the neces-
sary constraints which determine the behavior of the system.

Other Experiments
Arbitrarily Sampled Data In this experiment, LYQUID
was tested on numerical U–tube data again. This time, how-
ever, the data samples were taken arbitrarily from the whole
3 second observation interval. 300 samples were taken from
levels of water in the tubes; even though a specific sam-



0.0 0.5 1.0 1.5 2.0 2.5 3.0
−1

0

1

2

3

4

5

0.0 0.5 1.0 1.5 2.0 2.5 3.0
−2

−1

0

1

2

3

4

5

Figure 1: U–tube samples with N(0, 1) Gaussian noise: levelA (left), levelB (right).

d/dt(A dA) M-(dA dB)
d/dt(B dB) M+(dA auto1) (-2.2032 0.0000) (0.0000 3.8270)

add(A B auto1) M-(dA auto2)
minus(B -B) M-(dB auto1) (120.3892 0.0000) (0.0000 3.8643)

add(A -B auto2) M+(dB auto2) (-0.0397 0.0000) (0.0000 0.0122)

M-(A B) M-(auto1 auto2) (3.8735 0.0000) (0.0000 45.6008)

M-(A auto1) M-(A dA) (1.9604 0.0000) (0.0000 49.1951)

M+(A auto2) M+(A dB)
M+(B auto1) (-22.8004 0.0000) (0.0000 4.0153) M+(B dA)
M-(B auto2) (1.9367 0.0000) (0.0000 4.0153) M-(B dB)

Table 3: Discoveries from the noisy U–tube dataset

0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0
-0.2

0.2

0.6

1.0

1.4

1.8

2.2

2.6

3.0

3.4

3.8

0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0
-0.8

-0.4

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

3.2

0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0
0.8

1.2

1.6

2.0

2.4

2.8

3.2

3.6

4.0

Figure 2: Cascaded tanks samples with N(0, 0.5) Gaussian noise: amountA (top left), amountB (top right), inflow (bottom).



pling frequency was not used, the samples were still well
distributed on the observation period. The data samples were
left clean without artificial noise.

Using the same tolerance with the first U–tube experi-
ment, LYQUID discovered the constraints listed in Table 4.
The discovered constraints are identical to the discoveries
on U–tube datasets with equi–distant samples. This is a
clear evidence of how capable LYQUID is when working
with arbitrarily sampled data. It shows that LYQUID nei-
ther requires data samples to be equally spaced in time nor
sampling timepoints of different variables have to coincide.

Missing Data For the final type of experiment, numer-
ical U–tube simulation was done with the usual settings;
however, this time the samples were taken from only the
[0, 0.5s] and [1.5s, 2.5s] time intervals. There were a total
of 150 samples which were equally spaced in the specified
time intervals. Note that the timepoint of reaching the equi-
librium lies inside the [0.5s, 1.5s] time interval, which was
left unobserved. Increasing LYQUID’s tolerance slightly to
8× 10−5, it was possible to end up with the discoveries
which are also listed in Table 4. Note that, this time also,
although some data samples were missing right in between
the observation interval, LYQUID was able to capture all of
the necessary constraints with appropriate landmark value
pairs.

Conclusion
In this paper, LYQUID has been proposed as a new algo-
rithm intended for the automatic extraction of qualitative
models from observed numerical data. The mathematical
background is very simple; samples from observations are
used to make polynomial approximations to the real world
functions hidden behind the observations. Polynomials are
known to be powerful tools of approximation; operating on
polynomials and making decisions based on those opera-
tions are also computationally cheap.

Using approximations is a firm technique against noise
because approximations are generated from a group of sam-
ples, which softens the effect of noise on individual samples.
It also relaxes the conditions on sampling properties; with
LYQUID, unlike similar algorithms, it is possible to sample
every variable with a different sampling frequency but still
use measurements belonging to different timepoints in the
discovery process. The technique could even be extended to
work in the absence of data at certain time intervals; missing
parts of the data could be filled in by extending neighboring
approximations over to the unobserved time interval. All of
these described properties have been demonstrated on real-
istic numerical data. LYQUID was shown to be capable of
discovering constraints from noisy, arbitrarily sampled and
partially observed data.

LYQUID was shown to possess a better complexity when
compared to similar algorithms. Complexity of the model
discovery stage of the algorithm is free from the number
of samples. This is a favorable property because the expo-
nentiality of the problem lies behind the generate–and–test
methodology of the discovery stage. This improvement of
complexity also arises from the computational ease of oper-

ating on polynomials.
As future work, LYQUID’s multi–interval processing of

samples needs to be improved. That is, LYQUID is not so
successful in computing monotonic functions and landmark
value pairs when more than one polynomial is fitted over the
samples. Discovery of constraints on multiple intervals, on
the other hand, still works correctly.

Another idea, which should also be treated as future work,
is to run LYQUID on several datasets of the same sys-
tem with different settings and then to combine output of
all experiments into a single output model. As an exam-
ple, consider the U–tube: first, several datasets with differ-
ent amounts of water in the tubes will be created. Then,
LYQUID will run on all of the datasets and discover con-
straints. When combining these output models, the algo-
rithm will retain only the constraints which exist in every
output model; it will also require that landmark values or
value pairs be equal with some tolerated margin of differ-
ence. The constraints that remain in the end will be con-
straints which are truly related to the U–tube model and free
from the experimental settings.

References
Berleant, D., and Kuipers, B. J. 1997. Qualitative and
quantitative simulation: bridging the gap. Artificial Intelli-
gence 95(2):215–255.

Bratko, I., and Šuc, D. 2004. Learning qualitative models.
AI Magazine 24(4):107–119.
Coghill, G. M.; Garrett, S. M.; and King, R. D. 2002.
Learning qualitative models in the presence of noise. In
Proceedings of the 16th International Workshop on Quali-
tative Reasoning: QR’02, 27–35.
Džeroski, S., and Todorovski, L. 1993. Discovering dy-
namics. In International Conference on Machine Learning,
97–103.
Džeroski, S., and Todorovski, L. 1995. Discovering dy-
namics: From inductive logic programming to machine
discovery. Journal of Intelligent Information Systems
4(1):89–108.
Hau, D. T., and Coiera, E. W. 1993. Learning qualitative
models of dynamic systems. Machine Learning 26:177–
211.
Kay, H.; Rinner, B.; and Kuipers, B. 2000. Semi-
quantitative system identification. Artificial Intelligence
119(1-2):103–140.
Kuipers, B. 1994. Qualitative reasoning: modeling and
simulation with incomplete knowledge. Cambridge, MA,
USA: MIT Press.
Ralston, A., and Rabinowitz, P. 2001. A First Course in
Numerical Analysis. Mineola, New York: Dover Publica-
tions, 2nd edition.
Richards, B. L.; Kraan, I.; and Kuipers, B. 1992. Auto-
matic abduction of qualitative models. In National Confer-
ence on Artificial Intelligence, 723–728.
Say, A. C. C., and Kuru, S. 1996. Qualitative system iden-



Arbitrarily Sampled Data Missing Data
d/dt(A dA) d/dt(A dA)
d/dt(B dB) d/dt(B dB)
add(A B auto1) add(A B auto1)
minus(B -B) minus(B -B)
add(A -B auto2) add(A -B auto2)
M-(A B) (2.6920 0.0000) (0.0000 6.4480) M-(A B) (2.7047 0.0000) (0.0000 6.5978)

M-(A dA) (1.9173 0.0000) (0.0000 18.0090) M-(A dA) (1.9136 0.0000) (0.0000 20.3705)

M-(A auto1) (4.3603 0.0000) (0.0000 6.4480) M-(A auto1) (4.5771 0.0000) (0.0000 6.5978)

M+(A auto2) (1.9192 0.0000) (0.0000 -6.4480) M+(A auto2) (1.9188 0.0000) (0.0000 -6.5978)

M+(B dA) (1.9239 0.0000) (0.0000 -1.5053) M+(B dA) (1.9314 0.0000) (0.0000 -1.1418)

M+(B auto1) (-4.3603 0.0000) (0.0000 2.6920) M+(B auto1) (-4.5771 0.0000) (0.0000 2.7047)

M-(B auto2) (1.9192 0.0000) (0.0000 2.6920) M-(B auto2) (1.9188 0.0000) (0.0000 2.7047)

M-(dA dB) (-0.0004 0.0000) (0.0000 -0.0009) M-(dA dB) (0.0000 0.0000)

M+(dA auto1) M+(dA auto1)
M-(dA auto2) (-0.0162 0.0000) (0.0000 -0.0067) M-(dA auto2) (-0.0355 0.0000) (0.0000 -0.0178)

M-(dB auto1) M-(dB auto1)
M+(dB auto2) (0.0386 0.0000) (0.0000 -0.0066) M+(dB auto2) (0.0865 0.0000) (0.0000 -0.0178)

M-(auto1 auto2) (3.8384 0.0000) (0.0000 8.7207) M-(auto1 auto2) (3.8376 0.0000) (0.0000 9.1542)

M+(A dB) (1.9173 0.0000) (0.0000 -33.6867) M+(A dB) (1.9136 0.0000) (0.0000 -49.7620)

M-(B dB) (1.9238 0.0000) (0.0000 3.7529) M-(B dB) (1.9314 0.0000) (0.0000 2.7876)

Table 4: Discoveries in the last two type of experiments

tification: deriving structure from behavior. Artificial Intel-
ligence 83(1):75–141.
Todorovski, L.; Džeroski, S.; Srinivasan, A.; Whiteley, J.;
and Gavaghan, D. 2000. Discovering the structure of
partial differential equations from example behavior. In
Proceedings of the 17th International Conf. on Machine
Learning, 991–998. Morgan Kaufmann, San Francisco,
CA.
Travé-Massuyès, L.; Ironi, L.; and Dague, P. 2004. Mathe-
matical foundations of qualitative reasoning. AI Magazine
24(4):91–106.


