
A Qualitative Reasoning System for Behaviours in Interactive Systems

Simon Hartley and Marc Cavazza

{S.Hartley, M.O.Cavazza }@tees.ac.uk
School of Computing, University of Teesside
Middlesbrough TS1 3BA, United Kingdom.

Abstract

This paper describes an environment for the development of
qualitative simulation applications in the context of
interactive systems: QPVis. At the heart of QPVis is an
implementation of Qualitative Process Theory (QPT) which
is designed to be extensible and to allow the definition of
new kinds of behaviours / interactions within the world.
Another objective was to retain real-time and interactive
behaviour whilst allowing multiple instances of the same
processes to be active. The QPVis is a new platform for the
extension of qualitative process theory into the area of
interactive systems. We describe the foundations and ideas
for QPVis and show how it extends QPT to the context of
interactive systems, producing a new environment for
qualitative reasoning research.

Introduction
In this paper, we present the QPVis system which has been
developed to use qualitative simulation in interactive
systems. The original motivation behind the development
of QPVis was the modelling of virtual world behaviours. In
particular, we wanted to create a system whose
performance preserved the interactivity of the virtual world
it helped simulating. Another requirement for the system
was to provide tools for the authoring, maintenance and
reuse of the libraries of qualitative processes developed for
different environments. This work is based on Qualitative
Process Theory (QPT [Forbus 1993]) and is similar in
nature to [Erginac, 2000], an interactive semi-qualitative
reasoning system for virtual environments that focuses on
model reformation during runtime. On the other hand, the
focus in our system is on the real-time performance of the
system and its compatibility with interactive architectures
using event-based systems. Other QPT Environments are
VMODEL [Forbus et al, 2001] and Betty’s Brain [Biswas
et al 2001] which focus upon learning and educational
applications. Another QR Environment is HOMER [Bessa
Machado and Bredeweg, 2003], based upon VisiGarp
[Bouwer and Bredeweg, 2001] (which are an authoring
tool and a visualisation tool respectively). These systems
where of particular inspiration during the authoring tools
development, especially their creation of different
diagrams, for state views, transitions, and the different

level of views for the systems to aid the user in the
modelling for the system (see below).

System Overview
QPVis relies on the synergistic combination of qualitative
process theory with discrete systems to express the
interactions of users in terms of the physical behaviours
affected by them. The software structure for QPVis was
inspired by [Collins and Forbus, 1989], a system for the
production of thermodynamic models.
The QPVis system implements a generic framework for an
extension of QPT, which added the constructs necessary to
extend it towards interactivity. We designed a language
specifying the domain theory and scenario in QPT terms
using a syntax which express operations for a virtual
machine. These have three main forms: Numerical (add
divide), Structural (bind, exclude, own), and Qualitative
(Influence Positive, Q-prop). Through this language and
the framework primitives; we specify the relations,
quantities and conditions under which entities exist. The
virtual machine operates in two stages. The first constructs
the entities and equations for the model from the domain
knowledge. The second simulates the model by executing
its equations. The main components of QPVis are the
“QPVis Editor” used for the envisionment and construction
of models and the “QPVis Simulator”, which processes the
qualitative equations and individuals data outputted from
the editor (see Figure 1).
The QPVis Simulator relies on a “virtual machine” which
interprets the qualitative syntax to form a scenario and
perform simulation. The QPVis Simulator also presents in
real-time the changes in variables and states in the system,
through a series of interfaces. These interfaces display the
data in a variety of ways, i.e. in graph form for parameters
in the current scenario; it also allows the simulation to be
paused and the simulation timescale to be modified. The
system can be connected to interactive worlds via UDP
sockets. Messages communicated to and from the system
are also displayed on the interface. Figure 2 depicts the
QPVis simulation interfaces running an example
application.
The primary goal of interactive systems is to maintain a
response rate which is acceptable for user interaction. Such
applications in the field of 3D graphics rely on event
systems that constantly discretise actions as they occur.

These elementary events (such as hit, touch,
untouch, enter and exit) are also potentially
extensible to define events with a higher level semantics,
giving an avenue to incorporate an additional qualitative
reasoning above them. Our QPVis system enhances QPT
through the implementation of two new “interactive”
primitives: the qptevent and qpteffect, which are
qualitative parameters that encapsulate data, the former for
received events, and the latter for generated effects. The
QPVis System provides an API for interactive systems to
use QPT-based simulation to create object behaviours.

Implementation of QP
The implementation of the system uses a generic
framework for QPT. This framework is based upon a series
of QPT-derived representations which have been expanded
to include an event system. We begin by detailing the basic
primitives, the lowest level building blocks used in the
framework. We detail the representations which compose a
primitive, the functions it has (both from QPT and our
expansion), and the methods it uses to maintain its state.
After the basic primitives, we describe the structural
primitives which represent QPT, such as process and
object.
Primitives. In QPT, numbers are traditionally
represented through the use of numerical envelopes. These
numerical envelopes have functions which are
implemented in QPVis by three representations: historical,
relational, and numerical that encapsulates the different
behaviours for the qualitative parameter.
The first of these representations is used to encapsulate the
histories for the parameter. In QPT, a history is composed
of episodes, which occur over an interval of time, and

events, which are instantaneous. An episode has a start and
an end. In our implementation we have tried to preserve
some of original intent for histories [Hayes, 1985] as an
ontological primitive used for qualitative reasoning. This is
due to the nature of our intended applications, interactive
systems, where event systems play an important role and
an ontological primitive which is inherently based upon
events (and that can be used to form interactions [Bennett,
B. and Galton, A 2001]) was naturally advantageous to
our implementation. A history representation primitive can
be used by the structural primitives to form a superposition
of histories [Coiera, 1992(a) and Coiera, 1992 (b)]. The
history primitive is intimately related to its associated
parameter and landmarks through QPT. This primitive in
our implementation is used to compose the structural
primitive qptscenario, which is formed from the
superposition of histories.
The history storage in the implementation represented an
extensional challenge for the QPVis System. QPVis is
intended for interactive systems with a high population of
objects which can each have a number of processes active
over an indefinite period. If the engine is to maintain a full
history i.e. a parameters state at the beginning of every
iteration cycle the system resources would rapidly be
consumed (even for a simple real-time rate of 30 iterations
per second). To avoid overflowing the system capacity, the
history storage has different modes of operation depending
upon the level of detail required.
Relations and Functions. Joined with the histories
representation, we have qualitative relations between the
parameter history, its quantity, and other parameters. These
relations form conditions and mathematical equations. The
qualitative relations are expressed by the user as domain
knowledge, using our specific framework, and interpreted
by a virtual machine. These equations depend on the state

Figure 1: QPVis System

of the parameters parent object, as in the system there are
no independent parameters and all parameters must belong
to a structural primitive. This structure allows us to identify
and solve the problems which are associated with object
inheritance creating behaviour exceptions.

Figure 2: QPVis Software Interfaces
A parameter may have equations to represent the following
functions: relations, events and effects. Relations are
equations in QPT which relate this parameter to another
within the parent object. The qp_events and qp_effects
are the qualitative relations which are used to reason with a
qptevent/qpteffect by the parameter. This allows the
parameter to respond to different qptevents or to generate a
different qpteffect dependent upon its internal state. For
instance, a representation of substance in the system would
need to change the relations between its parameters when
changing its physical state.
This implementation allows the user to define variations
upon the quantity which is used. These derived variations
being: the quantity, the set, the vector and the matrix.
These quantities are used as a state vector for the system to
allow the system to define a series of behaviours for the
parameters object. For instance, the matrix quantity which
represents a moment of inertia for a ridged body is given
by a diagonal matrix. For the “moment of inertia” matrix,
each element of the diagonals represents the ease of
rotation about that principle axis. If the object was then to
undergo a change in mass distribution by a process, filling
for example, we could easily change the element for the
moment of inertia and make the object “top heavy” or
“bottom heavy”. This concept was developed from the
Qualitative State Vector ideas, used in [Forbus, 1987] for
the motion of a ball (i.e. Region S3 velocity - left down).
Where here we map the qualitative states to a matrix
representations. The representation for a matrix quantity

allows the user to specify viscous drag coefficients, electric
charge and dipole moments. Thus, instead of creating a
series of parameters for the system, we have encapsulated
them in the single quantity making for an easier
representation of objects behaviours. However, this extra
expressive ability suffers from the same lack of
compositionality which is common in state vector
ontologies.
The vector parameter follows two different implementation
paths: the first is based on qualitative vector analysis
(QVA) [Weinberg, 1990]. However, event systems provide
accurate vector position and velocity data for the 3D world
from the event data. In order to avoid loss of data, we have
another type which stores vector data, called vector
quantity. This second implementation receives events and
translates them into our vector quantity representation.
This allows us to reason with magnitudes, create a QVA (if
necessary) and still keep the vectors information.
Limit Points and Landmarks. The functions for the
relations, events and effects for all the parameters are
dependent upon the parent’s state. However, a parameter
maintains an internal state within these parent states which
are governed by Limit Points. Passing a Limit Point
changes a parameters internal state and generates a “state
change” qptevent for that parameter. The Limit Points
change in state for a parameter allows the parameter to
define a new series of relations for the quantity. For
instance, a parameter may change relations from
monotonically increasing to monotonically decreasing
when it passes a Limit Point. We have specified that Limit
Points are a strictly ordered named set of values, which are
static upon the domain of the quantity and cannot be added
or removed. This is due to the dependence of the
parameters internal state and hence qualitative equations
on the Limit Point.
The other entity upon the numerical domain for the system
is a landmark, which is not used in the control of the
parameters internal state, but generates a “passed
landmark” event for the system. Within the system, we
treat a landmark as a quantity sui generis, although it is a
temporary one (as a landmark is not a static value like
Limit Points are). A landmark may have relations applied
to it and may be dynamically added or removed from the
parameters domain. This treatment allows a specific
landmark to respond to qptevents in the system. We have
two representations for landmarks in the implementation
both the landmark representations can form relations
between history and qptevents within the parameter. The
first representation is the expected landmark which is
affected by external parameters. For instance, in the
implementation of a melting phase change under varying
pressure conditions, one would need to calculate any
changes in the melting point landmark as the pressure
parameter varied. The second landmark has a more
temporal relation in our representation. A relation we
formed for this landmark type is the ability to form its own
time representation dependent upon system elapsed time.
This landmark is typically used for the representations in

encapsulated histories, where it is useful for the
encapsulated history to maintain its own timescale. This
method is used primarily to avoid the creation of
“temporary objects”. For instance, a landmark used in an
explosion to control the debris of the explosion may wish
to control the original object (destroyed by the explosion)
for a time sample after the actual event. Since the object
itself may no longer generate events, as it is no longer a
valid object, we add the landmark as a new quantity, and
its decay controls the decay of the debris.

Objects and Processes
In QPT the most significant representations are the object
(defined as a collection of relations and parameters) and
the process (the primary agent for parameter evolution).
We have described a number of basic primitives and their
relations. Within the system, these basic primitives are
combined together by a series of “structural primitives”
which are representations of the individuals within QPT.
The base structural representations we have formed are
qptobject, qptprocess, qptEncapsulatedHistory, and
qptscenario. The qptobject and qptprocess are the base
representations for object and process within the
framework. A qptEncapsulatedHistory represents a
standard QPT encapsulated history or a collection of
qptevents and qpteffects. A qptscenario is the
representation of a collection of histories within the
system. Structural primitives, unlike basic primitives, can
exist independently within a scene.
In QPT, the Individual is the most significant structural
reasoning object in terms of forming object
representations. This Individual is represented by the
qptobject within the implementation. The qptobject is
given by a hierarchy of structural objects which are
representations for the object within the different parts of
the system. The qualitative equations we implement for a
qptobject are:

• Individual View (IV) qualitative equations which
facilitate the changes in the objects internal state.

• qp_event and qp_effects, which perform the
event reception/generation respectively. These
are actually handling interactions for the object.

In addition, within the object representation we described
an additional series of object logic conditions, which are
expressed during authoring in order for the user to assess
the current state of the object. These conditions we labelled
Activity, which are statements about the state of an object.
During runtime these can be created dynamically, where
they are called qptInferences.
The Activity functions are a set of purely conditional
operations forming qualitative conditions that we say the
object possesses. These are used to enrich the state
description. For Instance, a container may have the
Individual views of “Empty”, “Part-Full” and “Full”
representing the discrete values of the Amount of

substance contained in it. It may be required to further

describe the “Part-Full” representation by adding the
Activity Filling/ Empting for the Individual’s Description.
An Activity within the system is then not a complete state
for the object but an additional statement which adds to the
Individual View. An Activity can generate a qpteffect for
the system allowing the additional information to be
conveyed to the user.

Figure 3: Individual View for Part Full Geometric

Containers and in Editor.
 The Activity function is our method for avoiding multiple
inheritance hierarchies for objects. In the previous example
we could choose to model the filling/emptying as states in
an associated object derived from the base container. This
adds more levels of indirection to the model. The Activity
approach we have used does not directly affect the objects
state. Since, the Objects states control the Individual Views
the Activities impact is limited to statements and to affects
on parameters.
In order to support interactivity, an object’s preconditions
are now given by two qualitative equations instead of the
single QPT precondition. The system forms a new
predicate for objects and parameters, the qp_event
qualitative equation. This predicate is designed to perform
qualitative operations on a received interaction event
which has been transformed into a qptevent. The
qualitative equation performs qptevent translation for an
object by interpreting the qptevent parameters (Figure 4,
(1)). Then the object broadcasts the modified qptevent to
its individuals (Figure 4, (2)) and then to its parameters
(Figure 4, (3)). Either of these stages may add new events
or remove the original event. This allows any object to
intercept any event before its parameters qp_event
functions can respond to it. This system allows a chain of
events to occur for an object as each of its parameters
receives its broadcast (as shown in figure 4).
The second qualitative equation for a qptobject is its
preconditions, (Figure 4, (4)), which tests whether the
parameter within the event or a parameter flagged as
external has satisfied the requirements. For instance, an
aligned event is used to generate a “fluid path connection”
between two containers, allowing a flow process to be
triggered. A “Flow Path Object” would translate the

qptevent, setting the bidirectional nature of the connection,
in the case of a tube, but only unidirectional for a valve.

Figure 4: Event Control- Flow.

After simulation, qp_effect is used for event generation.
The creation of the qpteffect takes place through the
objects qualitative equation for qp_effect, which translate
the qpteffect for a specific type of effect. As qptobjects are
related to their parameters, the broadcasting of effects for
an object begins with its parameters, (Figure 4, (6)). The
parameters’ effects are generated by a landmark, limit-
point or by the qp_effect equation, and are then broadcast
to any individuals in the parent object (Figure 4, (7)). The
object calls its qp_effect to perform any modification to
the qpteffect (Figure 4, (8)). For example, in visualisation
of systems, it is often important to show the parameters
values relative to one another. If the system ranks the
object by a qualitative value, the effect generated would
then be made relative by the object applying that value to
the parameters generated effect.
An qptobject structural primitive may be given specific
properties relating to the spatial nature of the object. An
object can be said to be a “region” type which is a
representation of the object for the spatial system. A region
can have two types either distributed parameters System
[Lundell, 1994] or Region Connections [Bitner and Stell,
2000]. The first system relies on QSet primitive that
represents an aggregation of neighbouring points sharing
the same parameter value. The sub-regions are represented
by the QSet state which is formed from the aggregation of
the closest points. In the second system, the primary logic
is that the Regional Calculus controls the states and
variable of the object, thus limiting which processes may
affect the object. The Regions internal states in this system
are given by one of the following states: Disconnected,
External-Connected, Partial Overlap, Tangential

Proper Part, Non-Tangential Proper Part and
Equal. These are related to spatial reasoning between two
connected objects.
The qptprocess primitive is the primary agent for change
within QPT. The difference between our implementation
and standard QPT implementations is the inclusion of the

qualitative equation qp_events and qp_effects.
Qualitative process relations may be represented in our
system by either a purely qualitative set of equations
describing the relations, or by a series of mathematical
functions which describe the relations. The qualitative
relations are expressed by the operators given in [Collins
and Forbus, 1989], using constructs such as ordered-
correspondence O*, whereas the mathematical expressions
are inspired from the formalisms used in CML
[Falkenhainer et al, 1994] developed from the KIF
[Genersereth and Frikes, 1992] numerical descriptions. In
our mathematical functions, we ignored the differential
equations from CML/KIF which we assign to
representation by processes, represented the complex space
as a new quantity and implemented the other functions as
instructions such as sine, cos in the virtual machine. We
also expanded the mathematics to include common
statistical operations such as standard deviation, harmonic
mean. The reasoning behind inclusion of statistical
operations is it enhances our distributed parameter spatial
reasoning system. In the system, we assumed a semantic
representation for the regions parameters. For example,
high pressure concentration, low pressure concentration
used to form regions. Using statistical analysis we form a
qualitative state analysis of the data within in a region.

Simulation Cycle
Qualitative Physics Instantiation. The QPVis
instantiation for the structural primitives begins with object
instances, and their associated individual views, it then
instances any encapsulated histories or predefined
processes. The second stage is for the dynamic elements,
for which instantiation is performed by analysis of the
individuals and comparison to individuals in the scenario.
These elements are usually processes which have not been
marked as requiring specific instantiation.
The dynamic element initialisation stage begins with
TestIndividuals, where names are taken as denoting
individuals which satisfy a set of predicates, either within a
processes individuals list, or within a semantic structures
individual list. The next stage in the instantiation of a
process is a test upon the characteristic parameters for the
object. This excludes individuals with certain combinations
of parameters Limit Points or landmarks. The next stage
for the semantic system is to alter the characteristic
parameters to match its conditions. The difference in the
expressions here being the nature of the envisionment
performed for the object. A process by our definition
cannot alter an object to match its predicates, whereas a
semantic representation would add/remove the necessary
parameters for a representation. This stage for the semantic
representation would allow the object to participate in new
processes which it previously would have been excluded
from. However, a process may instantiate new individuals
if their prototype was a dynamic type. This stage forms
processes which previously could not occur. These two

systems can be combined to produce new envisionment.
For example, the semantic system can be used to describe a
kitchen oven as an “immovable infinite heat source” and a
baking tray as a “movable heat sink”. In the semantic
description, we follow the logic for creation of heat paths
to be immovable-movable, movable-movable but not
immovable-immovable. This description for the heat flow
paths allows the process to be generated for all categories
of “heat object” and exclude the relations between
immovable “heat objects”, unless a specific connection is
made between them. This logic is a useful construction
tool; the drawback is the need to keep the synchronisation
between objects in the qualitative simulation and the
world. After this stage is completed, we have instantiated
all of the process which may become active due to user
interaction, and all processes which are initially active.
Simulation Phase. During the simulation phase, the
constructed scenario is used to reason about the evolution
of properties and spatial properties of the system.
In implementing QPT, the simulation phase will follow the
same basic stages for any QPT system these are given by
[Forbus, 1988] as:
 1. Load Domain Model
 2. Load Scenario
 3. Find View Structures which are active
 4. Find Processes which are active
 5. Resolve Influences
 6. Perform Limit Analysis
Our implementation expands upon the basic stages by
adding the new stages for the qualitative equations for
qp_events, qp_effect and Activities. In addition to
these new qualitative equations, the implementation has
modified the stage (3) for the region type qptobject
structural primitives. For instance, spatial regions are
handled differently as their states depend on the form of
calculus we are now using. In the spatially distributed
parameter, the region is a dynamic cluster of parameters
which have similar values. Since we perform this stage
after the calculation for individual views, we may either
use the qptobject individual view or we may use the region
and its calculus to alter the objects and recalculate an
individual view before the processes qualitative reasoning.
The activation of a qualitative process stage (4) is achieved
in two steps. The preconditions and quantity conditions are
first tested, and then the system determines if any conflict
has arisen upon the parameters. If no conflict has arisen by
either direct or indirect means the process becomes active.
Otherwise we form a conflict for stage (5).
Variable Updating. The first update occurs at the
beginning of the simulation cycle when the qptevents are
received. These events are propagated through the Object
hierarchies event system(Figure 4) and affects/updates
those parameters which are tagged as being external to the
QPT System or creates new events for the system. The
update stage is to determining the IV’s for the objects. To
determine any state changes within the system. The final
update occurs after the resolution of influences stage, and

is used by the system to generate the qpteffects within the
system for parameters.
Termination Conditions. The termination conditions for a
process are when it fails either preconditions or quantity
conditions. In addition, the process will be made inactive if
any of its individuals become invalid. An object may
become invalid in a number of ways, the methods of
invalidation for an object are:

1. Having Individual Views and failing them all,
including its default individual view.

2. Its parameter reaching an invalid state i.e. INF or
NAN, with no event to handle it.

3. Its parameter moving beyond a strict Limit Point
i.e. ZERO for Non Positive or Max Value for
Other parameters.

4. User Interaction “destroying” the object.
The conditions for an encapsulated history follow the same
rules, with the encapsulated history being dependant upon
the Iterations which it has been through (instead of the
individual views).

Envisionment and History
The most common problem during the envisionment using
QPT is the change in representations that can occur when
different model fragments are combined. The QPVis aids
the modeller in avoiding this in three different ways, the
first being the object hierarchy (a standard method for
solving such problems). The second method uses the
classification of objects to advance the object hierarchy
system with a model construction algorithm which uses a
system of predicates similar to [Faulkenhainer and Forbus,
1990]. For example, with classification and
TestIndividuals in the model construction, we form our
version of the consider predicate. This combination
allows a modeller to create a new level of granularity for
the model. To achieve this, the modeller would introduce a
new Individual that is the parent of the considered
Individual. Since any Individual’s state is dependent upon
it parents state and qualitative equations are selected are
dependent upon that state.
A modeller can then choose a simple method for the
inclusion of both models within the system by simply
selecting suitable criteria for the switching between the
parents individual views. For instance, in combining
systems which model phase changes by:

a) Unchanging Limit Points for the “Critical Point”,
Predicated upon the simple-substance object.
 b) Modelling Gibbs phase rule in it simplest form;
increase pressure always favours the formation of denser
phase.
To combine these fragments, we define a parent object to
simple-substance used in fragment a) which would include
the quantity condition logic to model the changes, only in
the varying pressure conditions. The operating assumptions
for the system would then be expressed though operations
upon the new object. This object would include a new
quantity CriticalPoint used by the process “Gibbs Phase

Rule”. In doing this, the new parent would need to
intercept the now superseded event pass Limit Point for the
simple-substance generating the effect upon passing
CriticalPoint.

Figure 5: Visualisation of QP Envisionment within Editor
The final way QPVis aids in the prevention of
envisionment problems is to aid the modeller by providing
methods for the automatic depiction of models within the
authoring tool. The depictions of states and transitions
within the editor, which are generated as a fragment, is
constructed to allow the modeller to quickly assess the gain
size of the methods used. This is achieved by multiple
levels of view in the editor, allowing the view of the scene
(Figure 5:A) which allows the user to zoom to the area of
interest (Figure 5:B) and to select Individuals to give a
detailed view of the individuals relations (Figure 5:C).
Form here, logic diagrams of Equations can be shown
(Figure 5:D).

Authoring
The creation of authoring tools for the system requires
methods for visualising the entities, as well as editors for
the creation of qualitative equations in ways which are
quick to understand and easy to use. These authoring and
creative stages are preformed in a separate entity, the
QPVis Editor System, which uses an interface written in
ActionScript and MFC to create diagrams and give
interactive methods for the creation of the qualitative
structures. These qualitative structures can be written to an
XML file for use in the simulation system or imported as
fragments.

The system produces four XML Files; each one
encapsulates a particular knowledge or behaviour. The first
file is a Domain knowledge file which contains the
qualitative equations and definitions for the processes,
objects and encapsulated histories including the qualitative
structural equations for their instantiation. The next is a
scenario file, which contains all the information for the
instances within the environment, such as default values,
overridden parent behaviour, and any semantic properties
added to the object. The third file defines the semantic
properties and relations for an object. The final file
produced is for formatting messages and contains specific
messages for creation as qptevents/ qpteffects.
The creation of entities within the system is approached by
first defining an Individual, usually a qptobject. The QPVis
Editor allows the generation of the qualitative equations
and IV’s for the qptobject via a series of visual
representations. The interface draws a logical
representation for the qualitative equations which are
purely conditional. For instance, within the individual view
for a container, we construct a qualitative equation for the
“Part-Full” condition as shown in Figure 6.

Figure 6: Logic Construction for “Part-Full”
After the construction of the individual view equations, the
system draws a state representation designed to be similar
to the state diagrams in UML for the qualitative equation.
For instance, geometric containers preconditions are
represented in qualitative process theory and
diagrammatically in figure 3: IV for “Part-Full”.
The system provides similar interfaces for all qualitative
equations in the system. The construction of qualitative
processes within the system uses similar interfaces. The
interface shows the completed process as an individual and
allows the user to browse a process and the Individuals it
has relation with, as shown in Figure 7.
To create a model, the user can specify a Semantic Object
or an Instance Object. For an Instance Object, the user
selects a prototype from the list of QP prototypes objects
which have been previously defined. Then, the user can
either assign the default values to the object or select a
series of semantic characteristics for the system from a tree
of semantic properties. To visualise the entire scenario the
system automatically draws a diagram representation of the

individuals in the system. The system draws a
representation of all the individuals and shows the first
level of their associations using a different depiction for
each individual type. The user can interact with these
depictions creating new associations or showing more
detailed views. The diagrams are drawn for the instances as
well as the knowledge base which allows the user to
browse the entire scene.

Figure 7: Browsing a Process in Editor.

Debugging
In the current implementation of the QPVis system, there
are a number of ways to debug and trace a scenario as it is
simulated. The interface provides a number of methods to
alter the structure of a scenario as it runs. The first being an
input window tool to alter the value of or derivatives of a
parameter(the changes are applied before the limit analysis
but after simulation). This allows the user to change the
values for any parameter in the system and see the
qualitative results as they propagate into the system. For
instance, the user can change pressure variables and assign
paths which would allow fluid flow process activation. The
user can also form a limited Activity equation (via
qptinference) which behaves like a watch statement within
the system.
To aid in debugging the system, we have provided a timer
tool. The system has a mode of operation which allows the
iterations per second to be altered up to a maximum value
or for the user to define a time step these methods allow
the user to speed through the simulation to find the
outcomes of changes in the system.
The interface assists the debugging process by displaying a
graph which shows the evolution of the amount, or
derivative for the selected parameter. The graphs can plot
two values so a comparison can be made between their
changes. This provides a useful series of visual tools for
the user to be able to quickly visualise the evolution of the
parameter (Figure 8).
To aid the user to find errors in the envisionment, the
system implements a message window which shows any

system events such as invalid object, individual view
states, or parameter overflow.

Figure 8: Parameter Graphs in QPVis Simulator.

Results
The QPVis System has been used in a number of
implemented scenarios, for instance in artificial life
applications [Hartley et al, 2005]. The different
implemented briefs are using some of the typical QPT
Simulation fragments(such as thermodynamic properties,
fluid flow properties and concentration/ mixing properties
and combustion) and the envisionment. These typical
simulations where expanded for the use in the QPVis
Simulator via the effects and events in order to display
simulation results [Hartley et al, 2004]. The fragments
used include: Container Objects (as shown in Figure 3),
Heat Objects and Fluid-flows. In these systems, the QP
Landmarks and Limit points are used to visualise the
effects of the simulation through [Cavazza et al, 2003].
Our artificial life simulation involves 53 objects which are
both standard objects and spatial objects including
Individual Views and parameter relations. This scenario
has 22 processes defined which give over 150 envisioned
potential processes for the single artificial creature. In this
environment, the simulation time for one iteration is about
5.68 ms averaged over 10000 Iterations.
An example of the QPVis simulation system showing a
typical simulation using QP features appears on Figure 9.
In this example, the environment modelled is a creature
ecosystem based on a liquid environment with convection
current processes and mixing processes which alter the
concentration of nutrients within the environment. The
QPVis system also simulates a chemotactic response for
the creature giving it sensors for the concentration of
nutrients. The simulation then starts the Locomotion
processes within the creature add selects the target region
which has the highest concentration of nutrients.

Figure 9: QPVis Scenario Simulation Effects Example

Conclusions
The QPVis platform combines qualitative process theory
and real-time event systems. Thus it proposes a novel type
of tool to experiment with qualitative systems in
applications such as virtual environments or robotics. The
system has successfully been used to implement a library
of processes and behaviours used in different virtual
environments and supports multiple model fragments,
however the main limitations concern its lack of flexibility
when mixing primitive representation. Currently, we are
investigating algorithms to automate the integration of
different grain model fragments, using different types of
primitive representation.

Acknowledgements
This work has been funded in part by the European
Commission through the ALTERNE project (IST-38575).

References
Bessa Machado, V. and Bredeweg, B. 2003. Building Qualitative

Models with HOMER: A Study in Usability and Support. In
Proceedings of the 17th International Workshop on Qualiative
Reasoning, QR’03. P.Salles and B. Bredeweg (eds), pp. 39-46, Brasilia,
Brazil, August 20-22 May 17-19, 2003.

Biswas, G., Schwartz, D., Bransford, J., and The Teachable
Agents Group at Vanderbilt. 2001. Technology Support for
Complex Problem Solving: From SAD Environments to AI. In
Smart Machines in Education. Forbus, K. and Feltovitch P. (Eds.)
Pp72-97. AAAI Press MIT Press, Menlo Park California, USA.

Bittner, T. and Stell, J. G. 2000. Approximate Qualitative Spatial
Reasoning, Spatial Cognition and Computation, vol(2),pp 435-466

Bouwer, A. and Bredeweg, B. 2001. VisiGarp: Graphical
Representation of Qualitative Simulation Models, In G.
Biswas(Ed.), Proceedings of the 15th International Workshop on
Qualiative Reasoning, pp. 142-149 , San Antonio, Texas, USA , May
17-19.

Bennett, B and Galton, A. 2001. A Versatile Representation of
Time and Events, Fifth Symposium on Logical Formalizations of
Commonsense Reasoning (Common Sense 2001), New York, May.

Cavazza, M., Hartley, S., Lugrin, J.-L. and Le Bras, M. 2002.
Alternative Reality: Qualitative Physics for Digital Arts,
Proceedings of the 17th International Workshop on Qualitative
Reasoning 2003, Brasilia, Brasil.

Coiera, E.W., 1992. Qualitative superposition. Artificial
Intelligence,56: 171-196.

Coiera, E.W., 1992. The qualitative representation of physical
systems, The Knowledge Engineering Review 17(1) 55-77. 28

Collins, J. and Forbus, K. 1989. Building qualitative models of
thermodynamic processes. In Proc. 3rd Int. Workshop on
Qualitative Physics, Stanford, CA, May.

Erignac, C. 2000. Interactive Semi-Qualitative simulation,
proceedings of 14th international workshop on qualitative
reasoning, Morelia, Mexico. June.

Falkenhainer, B.; Farquhar, A.; Bobrow, D.; Fikes, R.; Forbus,
K.; Gruber, T.; Iwasaki, Y.; & Kuipers, B. 1994 CML: A
Compositional Modeling Language. Knowledge Systems
Laboratory, September.

Falkenhainer, B and Forbus, K.D. 1990 Setting Up Large-Scale
Qualitative Models. Qualitative Reasoning About Physical Systems,
553-558, Morgan Kaufman.

Forbus, K.D., Carney, K. , Harris, R., and Sherin, B.L. 2001 A
qualitative modelling environment for middle-school students:
A progress report. In G. Biswas(Ed.), The 15th International
Workshop on Qualiative Reasoning, pp. 142-149 , San Antonio, Texas,
USA , May 17-19.

Forbus, K.D. 1993. Qualitative process theory: Twelve years
after. Artificial Intelligence, 59, pp. 115-123.

Forbus, K. D. 1988. QPE: Using Assumption-based Truth
Maintenance for Qualitative Simulation Int. journal AI in Eng,
pp. 200-215.

Forbus, K.D. 1987. The qualitative process engine: A study in
assumption-based truth maintenance. In Qualitative Reasoning
Workshop Abstracts. Qualitative Reasoning Group, University of
Illinois at Urbana-Champaign.

Genersereth, M.R and Fikes, R.E. 1992 Knowledge Interchange
format, V3 Reference Manual. Logic Group Report logic -92-1,
Computer Science Department, Stanford University, June.

Hartley, S. Cavazza, M. Lugrin, JL. Le Bras, M. 2004.
Visualisation of Qualitative Processes. Proceedings of the 18th
international workshop on Qualitative Reasoning 2004, Chicago
(Evanston), USA. August 1-4.

Hartley, S. Cavazza, M. Bec, L. Lugrin, Simon Hartley, Marc
Cavazza, Louis Jean-Luc Lugrin, and Sean Crooks. 2005
Qualitative Simulation of an Artificial Life Ecosystem. 19th
Workshop on Qualitative Reasoning, Graz, Austria. May 18-20.

Hayes, P. J. 1985. The second naive physics manifesto. In Formal
Theories of the Commonsense World, J. R. Hobbs and B. Moore, Eds.
Ablex, pp.1-36

Lundell, M. 1994. Qualitative Reasoning with Spatially
Distributed Parameters. International Workshop on Qualitative
Reasoning about Physical Systems. Nara, Japan.

Weinberg, J.B., S. Uckun, and G. Biswas. 1990. Qualitative
Vector Algebra Fourth International Workshop on Qualitative
Physics. Lugano, Switzerland: p. 82-96.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [3600 3600]
 /PageSize [612.000 792.000]
>> setpagedevice

