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Introduction
The optimal trajectories are known analytically for only a
few ground vehicles: steered cars (Dubins 1957; Reeds &
Shepp 1990), and wheel-chair-like differential-drive vehi-
cles (Balkcom & Mason 2002). This paper presents the an-
alytical time-optimal trajectories for a kinematic model of a
vehicle of a new class, shown in figure 1(a). The wheels are
omniwheels; unlike regular wheels, omniwheels slip freely
in the direction perpendicular to the controlled direction.
The arrangement of wheels allows this robot to drive in any
direction without the need to turn first, and to spin as it does
so. We model the vehicle as a rigid body in the unobstructed
plane, with configuration(x, y, θ) ∈ SE

2. We assume that
the controls are the angular velocities of the wheels in the
powered directions,(v1, v2, v3), and assume that the con-
trols are independently bounded:v{1,2,3} ∈ [−1, 1].

Although the vehicle can move in arbitrary directions in
the configuration space, some directions are faster than oth-
ers. The optimal trajectories consist of sequences of three
types of constant controls: spins in place (all three wheels
spin at maximum speed in the same direction), arcs of cir-
cles, (all wheels spin at maximum speed, but not all in the
same direction), and straight lines (two wheels spin at max-
imum speed in opposite directions, and the third does not
spin). We assign a symbol to each constant control:P, C ,
S, respectively.

No optimal trajectory contains more than 18 control
switches, and only certain sequences are ever optimal. There
are four classes of optimal trajectory, which we callspin,
roll , shuffe, andtangent; figure 3 shows an example of each
class. This classification iscompletein the sense that every
optimal trajectory must be one of these types, andminimal
in the sense that for each class there exists a pair of configu-
rations for whichonlya trajectory of that class is optimal.

One focus of QR research is reasoning about continuous
systems with some known structure. Optimal trajectories are
a fundamental characteristic of a system. Robots expend re-
sources to achieve goals; the simplest resource is time, and
the simplest goal is for the system to reach a desired config-
uration. The time-optimal trajectories are therefore a basic
property of the mechanism, and are a basis for complex rea-
soning about mechanism design, planning among obstacles,
or vehicle control. The trajectories also provide a natural
metric on the configuration space that is independent of the
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Figure 1: The Palm-Pilot Robot Kit, an example of an omni-
directional vehicle. Photograph used by permission of Acroname,
Inc.,www.acroname.com.

particular planner or controller applied to the robot; thismet-
ric serves as a basis to compare the suitability of planners,
controllers, or mechanisms over a particular distributionof
tasks.

A second focus of QR research is determining geometric
characteristics of complex systems. As will be discussed,
the optimal trajectories for the robot considered can be de-
scribed in an very geometric way. All optimal trajectories
are from one of four basic classes of trajectories; each class
is a family of related curves. Every optimal trajectory can
be described by a simple control law on the wheel veloci-
ties; the wheel velocities are determined by the location of
the vehicle with respect to some a line in the plane.

We do not argue that the ‘optimal’ trajectories we derive
should be used to control a robot. Resources other than time,
such as energy, safety, and precision, are also important in
choosing good trajectories and following them. Tradeoffs
must be made, but understanding the relative payoffs of each
choice requires an understanding of the fundamental quali-
tative behavior of the mechanism. The knowledge that great
circles are geodesics on the sphere does not require that air-
planes must strictly follow great circles, but may nonetheless
influence the choice of flight paths.

Related work
The optimal trajectories, and the mapping between trajec-
tories and pairs of start and goal configurations, have been
found for kinematic models of steered cars that can only
move forwards (Dubins 1957) and cars that can go for-
wards or backwards (Reeds & Shepp 1990; Sussmann &
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Figure 2: Geometric interpretation of the switching functions. For
the case shown,ϕ1 < 0, ϕ2 > 0, andϕ3 > 0, so the controls are
v1 = 1, v2 = −1, andv3 = −1.

Tang 1991; Souères & Boissonnat 1998; Souères & Lau-
mond 1996). Recently, optimal trajectories have been
studied in the presence of obstacles (Desaulniers 1996;
Vendittelli, Laumond, & Nissoux 1999), for vehicles that
are not steered cars, including the differential-drive (Balk-
com & Mason 2002), hovercraft (Coombs 2000), and un-
derwater vehicles (Chyba & Haberkorn 2005), and metrics
other than time (Chitsazet al. 2006). Determining the
optimal controls for dynamic models is difficult, and re-
sults include numerical techniques and geometric charac-
terizations (Reister & Pin 1994; Renaud & Fourquet 1997;
Kalmár-Nagy, D’Andrea, & Ganguly 2004).

Main results
In this section, we highlight a few of the primary theorems
that describe the optimal trajectories. Our primary tool is
Pontryagin’s Maximum Principle (Pontryaginet al. 1962).
The Maximum Principle states that there exists an adjoint
vector, defined in terms of differential equations in the state
and controls, such that the optimal controls must be chosen
to minimize the HamiltonianH , which is the dot product
of the adjoint vector anḋq, the time derivative of the state.
Our model is simple enough that the differential equations
describing the adjoint vector may be integrated analytically.
Choosing the controls to minimize the Hamiltonian gives the
following result:

Theorem 1 For any time-optimal trajectory of the omni-
directional vehicle, there exist constantsk1, k2, andk3, with
k2

1
+k2

2
+k2

3
6= 0, such that at almost every timet, the value

of the controlvi is determined by the sign of the switching
functionϕi:

vi =

{

1 if ϕi < 0
−1 if ϕi > 0.

The switching functionsϕ1, ϕ2, andϕ3 are given by

ϕi = 2(−k1 sin θi + k2 cos θi) + (k1y − k2x + k3),

whereθi is the angle the line from the center to wheeli
makes with thex-axis. Furthermore, the quantityλ0 defined

by

λ0 = −H(ϕ1, ϕ2, ϕ3) = |ϕ1| + |ϕ2| + |ϕ3|
is constant along the trajectory.

The functionsϕi are known asswitching functionsbe-
cause the corresponding control switches whenϕi changes
sign. In the generic case, none of the switching functions
are zero, so all of the controls are either1 or −1: the robot
spins in place or follows a circular arc. If a switching func-
tion is zero, the optimal control must be determined by other
means. Although we omit the details, it turns out that in
this singular case, the only control which may be optimal
is translation along a line connecting the center of the robot
and a wheel.

Satisfaction of the Maximum Principle is a necessary, but
not sufficient, condition for trajectories to be optimal. We
will say that any trajectory that satisfies the Maximum Prin-
ciple isextremal. The results presented in the following sec-
tions depend on a detailed local analysis of the switching
functions, use of the local properties given in theorem 1 to
determine the global structure of the extremal trajectories,
and analysis of the geometry of extremal trajectories to de-
rive further necessary conditions on optimal trajectories.

The Maximum Principle does not give direct information
about the number of control switches in an optimal trajec-
tory. We have shown that extremal trajectories are well-
behaved: there are only a finite number of switches in an
extremal trajectory; the number is upper-bounded by a con-
stant that depends only onλ0.

The Maximum Principle also gives no direct information
about the constants of integrationk1, k2, andk3, as these
depend on the initial and final configurations of the robot. In
this paper, we give the structure of trajectories as a function
of these constants, but do not describe how to determine the
constants.

Geometric interpretation of the switching functions
Theorem 1 may be stated in a more geometric form.

Theorem 2 Define the pointsS1, S2, and S3 rigidly at-
tached to the vehicle, with distance 2 from the center of the
vehicle, and making angles of180◦, 300◦, and60◦ with the
ray from the center of the vehicle to wheel 1, respectively
(refer to figure 2). For any time-optimal trajectory, there
exist constantsk1, k2, andk3, and a line (the switching line)

L = {(a, b) ∈ R
2 : k1b − k2a + k3 = 0},

such that the controls of the vehiclev1, v2, andv3 depend
on the location of the pointsS1, S2, andS3 relative to the
line. Specifically, fori ∈ {1, 2, 3},

vi =

{

1 if Si is to the right of the switching line,
−1 if Si is to the left of the switching line.

The switching functions are invariant to translation of theve-
hicle parallel to the switching line (see figure 2), and scaling
the switching functions by a positive constant does not affect
the controls. Therefore, for any optimal trajectory, we may
without loss of generality choose a coordinate frame withx-
axis on the switching line, and an appropriate scaling, such
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Figure 3: The four classes of optimal trajectories for an omni-directional robot.

thaty gives the distance from the switching line, andθ gives
the angle of the vehicle relative to the switching line. With
this choice of coordinates, the switching functions become

ϕi = y − 2 sin θi. (1)

Classification of extremal trajectories
Theorem 1 can be used to completely enumerate the opti-
mal controls, and the possible transitions between optimal
controls. In this paper, we present only the geometric inter-
pretation of the optimal trajectories given by theorem 2. If
we consider all possible initial configurations of the vehicle
relative to the switching line, we can see geometrically that
there are five cases:

• SpinCW and SpinCCW. If the vehicle is far from the
switching line, then the switching points are on the same
side of the switching line and never cross it; the vehicle
spins in place indefinitely. An example is shown in fig-
ure 3(a). We expect some trajectory of this class to be
optimal when the start and goal configurations are at the
same(x, y) location.

• RollCW and RollCCW . If the switching points either
straddle the switching line, or the vehicle is close enough
to the switching line that spinning in place will eventually
cause the switching points to straddle the line, the tra-
jectory is a sequence of circular arcs and spins in place.
If the vehicle is far enough from the switching line that
every switching point crosses the switching line and re-
turns to the same side before the next switching point
crosses the line, the structure of the trajectory is as shown
in figure 3(b). We expect some trajectory of this class

to be optimal when two configurations are nearby in the
workspace, but separated by a significant angular dis-
tance.

• Shuffle. If the vehicle is close enough to the switching
line that two switching points cross the switching line be-
fore the first returns to its initial side, the sign ofθ̇ changes
during the trajectory. An example is shown in figure 3(c).
We expect some trajectory of this class to be optimal when
the vehicle must move a small distance ‘sideways’.

• Tangent. As the vehicle spins in place or follows a cir-
cular arc, the switching points follow circular arcs. If one
of these arcs is tangent to the switching line, a singular
control becomes possible at the point of tangency, and the
vehicle may translate along the switching line for an ar-
bitrary duration before returning to following a circular
arc. We expect some trajectory of this type to be opti-
mal when two configurations are far apart: the robot lines
up its fastest translation direction, translates, and corrects
orientation with the final circular arcs and spin.

• Slide. If two switching points fall on the switching line,
the trajectory is doubly singular. The vehicle slides along
the switching line in a pure translation. It turns out that
althoughslidetrajectories are extremal, they are never op-
timal.

Configuration-space trajectories
The geometric enumeration above is complete. In order to
show this, it is useful to consider the structure of trajecto-
ries in configuration space. The configuration of the robot
relative to the switching line may be represented by(θ, y).
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Figure 4: The configuration space of the robot relative to the switching line.

Each point on figure 4(a) corresponds to a configuration
of the robot relative to the switching line. The sinusoidal
curves defined byϕ1 = 0, ϕ2 = 0, andϕ3 = 0 mark
boundaries in configuration space; we call these curves the
switching curves. The switching curves and their intersec-
tions divide the configuration space into cells, within each
of which the controls are constant.

The trajectory curves in configuration space can be drawn
by considering each possible initial configuration, determin-
ing the constant control, and integrating to find the trajec-
tory. When the trajectory crosses a switching curve, the con-
trol switches.

The condition that the Hamiltonian remain constant over
a trajectory provides an even simpler way to enumerate all
trajectories in the configuration space. Each extremal tra-
jectory falls on a level set of the Hamiltonian, and extremal
trajectories may be classified by the valueλ0. Figure 4(b)
shows the level sets of the Hamiltonian, or equivalently, the
image of several extremal trajectories in configuration space.

• If λ0 > 6, the level set is a pair of horizontal lines, one
with y = λ0/3, corresponding to aSpinCW trajectory,
and one withy = −λ0/3, corresponding to aSpinCCW
trajectory.

• If 2
√

3 ≤ λ0 ≤ 6, the level set is composed of two dis-
joint curves, one corresponding toRollCW trajectory and
one corresponding to aRollCCW trajectory.

• If λ0 = 2
√

3, the level set is the union of the bold curves
shown in figure 4(b).Tangent trajectories follow these
curves.

• If 3 < λ0 < 2
√

3, the level set is composed of six disjoint
curves, one corresponding to each of the six symmetric
Shuffle trajectories.

• If λ0 = 3, the level set is six isolated points, each corre-
sponding to one of the sixSlide trajectories.

Optimal trajectories
We have presented the five classes of extremal trajectories;
every optimal trajectory must be extremal. However, not
all extremal trajectories are optimal. In fact,slide trajecto-
ries, although extremal, are never optimal, since everyslide
may be replaced by a fastershuffle. Furthermore, finite-time
extremal trajectories have a maximum number of switches
that is upper-bounded byλ0; a much stronger result can be
proven for optimal trajectories, which are subsections of ex-
tremal trajectories:

Theorem 3 Optimal trajectories contain no more than 18
control switches. Specifically,

(i) optimal spin trajectories contain zero control switches,
and the maximum duration of an optimal spin trajec-
tory isπ;

(ii) optimal roll trajectories contain at most 8 control
switches;

(iii) optimal shuffle trajectories contain at most 7 control
switches;

(iv) optimal tangent trajectories contain at most 12 control
switches if the trajectory is non-monotonic inθ, and at
most 18 control switches if the trajectory is monotonic
in θ;

Forroll , shuffle, andtangenttrajectories, the approach of the
proof is to consider a trajectory with more segments than
the corresponding bound, and show that by slicing and re-
arranging the segments, a non-extremal trajectory of equal
time can be constructed. Since the constructed trajectory is
not extremal, neither it nor the original can be optimal.

Finally, the derived classification of trajectory byλ0 is
minimal:

Theorem 4 Spin, Roll, Shuffle, and Tangent trajectories are
each optimal for at least one pair of start and goal configu-
rations of the omni-directional vehicle.



Open problems
Although the results described apply only to a particular
type of robot, we hope that expanding the number of ex-
amples of systems for which the exact time-optimal trajec-
tories are known from three to four is a step towards a better
qualitative and quantitative understanding of the relationship
between mechanism design and the use of resources. The
primary focus of future work is on generalizations; in fact,
we have recently shown (in unpublished work) that the op-
timal trajectories for a large class of wheeled vehicles can
be described by constant controls that switch as the vehicle
crosses a switching line.
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