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Abstract 
One of the least studied problems in qualitative reasoning is 
computing structural descriptions, i.e., how to move from 
the unruly, broad set of concepts used in everyday life to a 
concise, formal vocabulary of abstractions that can be used 
effectively for problem solving.  This paper describes how 
learning by analogy can be used to solve this problem in the 
domain of AP physics problems.  The system starts with 
some basic mathematical skills, a broad ontology covering 
many aspects of everyday life, and some basic qualitative 
mechanics.  By studying worked solutions, it learns 
equations and modeling strategies that can be used to solve 
AP Physics problems.  By examining systematic variations 
of problems, we show that analogical model formulation 
can be used to solve three kinds of transfer problems: 
parameterization, restructuring, and restyling. 

Introduction  
One of the important contributions of qualitative reasoning 
has been formalizing the process of model formulation (cf. 
Falkenhainer & Forbus, 1991; Nayak 1994, Rickel & 
Porter, 1994). Most model formulation work has focused 
on ascertaining what levels of detail and which 
perspectives should be used in a model, given a particular 
task. These algorithms take as input a structural description 
of the system to be modeled, a kind of high-level 
schematic. On the whole, they do very little reasoning 
about the structural descriptions. An exception is analog 
electronics, where (Flores & Cerda, 2000) shows how to 
formalize a number of equivalent circuit configurations as 
rewrite rules, to simplify circuit schematics in a human-
like way to make analyses more tractable. But otherwise, 
the problem of constructing such structural descriptions 
from everyday inputs has received little attention. 
 
One class of problems where this issue arises is solving 
textbook physics problems. A major challenge for students 
is learning how to reframe familiar everyday situations into 
models that can be solved using the formal techniques of 
physics. This is challenging for a variety of reasons. The 
conditions under which particular equations are applicable 
must be learned. How particular conditions translate into 
parameter values must be learned, e.g., an object at rest has 

zero velocity, and objects on Earth are affected by gravity.  
A coin being dropped from a building might be 
approximated as a point mass, but the same coin being 
spun on a table (in a problem about angular momentum) 
cannot be viewed so. Learning to construct formal models 
that can be analyzed mathematically from everyday 
situations is one of the essential skills of a good scientist, 
so the importance of these skills goes well beyond  physics 
itself. 
 
Our hypothesis is that people learn how to formulate 
models via analogy. That is, they use their experience 
(both everyday and with solving textbook problems) to 
enable them to solve new problems, and over time, extract 
generalizations and heuristics. These enable them to 
perform well under a broad variety of circumstances. This 
is consistent with Falkenhainer’s (1992) observation that 
engineers often use analogies with their experience to 
formulate new models, but goes beyond it, in focusing on 
constructing structural descriptions as well as learning 
aspects of the domain itself. In (Klenk et al 2005) we 
showed that modeling assumptions could be learned by 
analogy to solve everyday reasoning problems, of the kind 
found on the Bennett Mechanical Comprehension test.  In 
this paper we go beyond that result, by looking at whether 
or not such techniques can be used to learn to solve 
Advanced Placement (AP) physics problems. The AP tests 
are tests taken by high school graduates to pass out of 
college level courses. 
 
With many AI ideas and systems focused on broad the 
concept of learning, it is important to explicitly 
differentiate between different types of learning to guide 
further research in the field. One important distinction to 
consider is the amount of transfer from problems in a 
training set to problems in a test set. This characterizes 
how general what is learned is, i.e., how broadly can it be 
reused? In this paper we explore three distinct near-transfer 
problems1: 

                                                 
1  These levels are from a 10-level catalog of transfer tasks used 
in DARPA’s Transfer Learning Program 
(http://fs1.fbo.gov/EPSData/ODA/Synopses/4965/BAA05-



• Parameterization: Can problems that vary in 
terms of the specific numerical parameters be 
solved? 

• Restructuring: Can problems with the same 
qualitative structure, but involving a different 
solution variable, be solved? 

• Restyling: Can problems with the same qualitative 
structure, but different types of everyday objects, 
be solved? 

All three types of transfer are important. It is hard to say 
that a system learned anything if it cannot solve the kind of 
trivial variation involved in parameterization. The ability to 
solve problems involving restructuring provides evidence 
that the system is learning in a way that goes beyond 
slavishly following the same procedure each time.  
Restyling addresses the need to go beyond the specific 
circumstances in which a principle was learned, to a broad 
set of situations in which it is applicable. 
 
This paper describes an analogical learning system which 
exhibits the ability to perform these three kinds of transfer 
on a set of AP physics problems. We start by reviewing the 
analogical processing techniques used, then describe how 
the solver works, illustrating its operation with a particular 
problem. Then we discuss the results of an experiment 
showing that it is capable of performing these three types 
of transfer. We close with related work not mentioned 
elsewhere in the paper, and plans for future work. 

Background 
We use Gentner's structure-mapping theory of analogy and 
similarity (Gentner, 1983). In structure-mapping, analogy 
and similarity are defined in terms of structural alignment 
processes operating over structured representations.  The 
output of this comparison process is one or more 
mappings, constituting a construal of how the two entities, 
situations, or concepts (called base and target) can be 
aligned. A mapping consists of a set of correspondences, a 
set of candidate inferences, and a structural evaluation 
score. A correspondence maps an item (entity or 
expression) from the base to an item in the target. A 
candidate inference is the surmise that a statement in the 
base might hold in the target, based on the 
correspondences. The structural evaluation score indicates 
overall match quality.   
 
We use two cognitive simulations based on structure-
mapping theory here. The Structure-Mapping Engine 
(SME) does analogical mapping (Falkenhainer et al, 1986). 
SME uses a greedy algorithm to compute approximately 
optimal mappings in polynomial time. The base and target 
descriptions can be pre-stored cases, or dynamically 
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computed based on queries to a large knowledge base 
(Mostek et. al, 2000). MAC/FAC (Forbus et al, 1994) 
models similarity-based retrieval.  The first stage uses a 
special kind of feature vector, automatically computed 
from structural descriptions, to rapidly select a few 
(typically three) candidates from a large case library.  The 
second stage uses SME to compare these candidates to the 
probe description, returning one candidate (or more, if they 
are very close) as what the probe reminded it of.  As 
performance systems, both SME and MAC/FAC have been 
used successfully in a variety of different domains, and as 
cognitive models, both have been used to account for a 
variety of psychological results (Forbus, 2001). Now we 
show how these domain-independent simulations can be 
used to solve physics problems from worked solutions. 

Solving physics problems by worked solutions 
When students study for the AP Physics exam, one 
important way in which they learn is by doing problem 
sets. The feedback students often get is in the form of 
worked solutions in the back of the book. We believe that 
this is a promising type of learning to explore. Through 
collaboration with the Educational Testing Service (ETS), 
the organization that administers the AP Physics exam, we 
obtained a number of example problems, illustrating a 
variety of types of problems found on the exam and 
worked solutions for each problem. We initially are 
focusing on Newtonian dynamics. We translated the 
problems and the worked solutions into predicate calculus, 
using the contents drawn from the ResearchCyc knowledge 
base plus our own extensions. ResearchCyc is useful for 
this purpose because it includes over 30,000 distinct types 
of entities, over 8,000 relationships and functions, and 1.2 
million facts constraining them. Thus everyday concepts 
like “astronaut” and “ball” are already defined for us, 
rather than us generating them specifically for the purpose 
of this project. 

Example Worked Solution 
Consider the following physics problem: 
An astronaut on a planet with no atmosphere throws a ball 
upward from near ground level with an initial speed of 4.0 
m/s. If the ball rises to a maximum height of 5.0 m, what is 
the acceleration due to gravity on this planet? 
Our formal version of the ETS-supplied worked solution 
for this problem has the following steps: 

1. Recognize and instantiate the distance-velocity 
under constant acceleration equation for the ball’s 
motion (Vi^2 = Vf^2 – 2ad) 

2. Given the projectile motion event infer that the 
velocity of the ball at the maximum height is 0 (Vf 
= 0 m/s) 



3. Given the projectile motion and the lack of 
atmosphere, infer that the value of the acceleration 
on the ball is the gravitational force of the planet (a 
= g) 

4. Given that the ball is thrown from near the ground, 
assume the height of the ball is equal to the 
distance the ball travels during the upward motion 
(d = h, given as 5.0 meters) 

5. Apply the previous steps to solve the distance-
velocity equation for acceleration (g = 1.6 m/s/s) 

Figure 1 shows the formal description of Step 4, for 
concreteness. Notice that the description of the worked 
solution is in terms of high-level operations, not the 
internal reasoning vocabulary of our problem solver. This 
is important, since this provides more opportunities for the 
system to learn (and to make mistakes). We store the 
worked solution along with the problem description as a 
case in our case library, which will be used to solve new 
problems. This is a very simple form of learning, learning 
by accumulating examples.  We discuss our plans to move 
beyond this below. 

Solving a Problem  
Problem instances are presented as cases containing a 
statement indicating the goal parameter. The first phase of 
problem solving is to generate a mapping with a relevant 
example. This is done in three steps. First, the problem 
solver retrieves an example from the case library using the 
problem case as the probe in MAC/FAC. Second, it creates 
an orienting mapping between the relevant example and 
the probe in which only statements concerning the 
qualitative event structure are considered. Figure 2 shows 
the representation of event structure for our running 
example. It includes the events that occur in the description 
of the problem, the statements about the entities that 
participate in those events and relationships between the 
events. Since dynamics is about the properties of objects 

undergoing particular kinds of events, ensuring that the 
qualitative event structure is accurately aligned provides a 
solid basis for importing knowledge from a worked 
example into a new problem.  
  
Next, the retrieved example and the problem are compared, 
but using the correspondences found in the orienting 
mapping as constraints on this new mapping. The 
candidate inferences of this new mapping will include the 
solution steps for the worked problem. These solution steps 
are used as necessary in the general problem-solving 
process. But before any step can be used, it is inspected to 
ensure that it is applicable in the current problem. 

 
The general problem-solving process concerns finding the 
value for a quantity. The system can find the value of a 
quantity in three different ways.  First, it may already be 
known as part of the problem. Second, it may be able to 
find an applicable solution step from the candidate 
inferences in the mapping in which the goal parameter is 
assumed. Third, an applicable solution step indicating a 
relevant equation containing the sought after quantity. 
With this equation, the system can recursively search for 
values of the other quantities in the equation until the 
equation is solvable for the sought after quantity. It is 
important to note that the current version of the system 
does not start with any of the equations of physics in a 
general form – it only has access to them through examples 
of how they have been used, in the worked examples. Thus 
analogical reasoning is essential to the system being able to 
solve any physics problems. 
 
To determine whether or not a solution step suggested by 
candidate inferences is valid for a given problem, the 
system checks the context surrounding the previous use of 
the solution step. Suppose for example the step assumes 
that the only force on a dropped ball is the force of gravity, 
because there is no atmosphere on the planet in the worked 
solution.  There has to be a corresponding fact saying there 

Figure 2: Qualitative event structure for Problem 2 

(isa Astronaut-2 Astronaut) 
(isa Ball-2 Ball) 
(isa HYP-Planet-2 Planet) 
(isa ProjectileMotion-2 ProjectileMotion) 
(eventOccursAt ProjectileMotion-2  
               HYP-Planet-2) 
 (primaryObjectMoving ProjectileMotion-2 
                      Ball-2) 
(eventOccursNear ThrowingEvent-2 Ground-2) 
(isa ThrowingEvent-2 ThrowingEvent) 
(causes-EventEvent ThrowingEvent-2 
                   ProjectileMotion-2) 
(contiguousAfter ProjectileMotion-2 
                 ThrowingEvent-2) 
(performedBy ThrowingEvent-2 Astronaut-2) 

Figure 1: Step 4 of Problem 2 worked solution 

(solutionStepUses Step4-P2-WS  
(isa Ground-2 SurfaceRegion-Tangible)) 

(solutionStepUses Step4-ETS-P2-WS 
(groundOf HYP-Planet-2 Ground-2)) 

(solutionStepUses Step4-ETS-P2-WS 
(eventOccursNear ThrowingEvent-2 Ground-2)) 

(solutionStepResult Step4-ETS-P2-WS  
(math=  
   (DistanceTraveled Ball-2 

  (TimeFn (StartFn ProjectileMotion-2) 
          TimePoint-2)) 

     (Height Ball-2 HYP-Planet-2 
             TimePoint-2))) 
(solutionStepOperation Step4-ETS-P2-WS 
                       AssumedEquation) 



is no atmosphere on the planet in the problem, or the 
ability to infer that there is no atmosphere, if this step is to 
be applied. These context facts act as preconditions that 
must be verified for the inferred step to be usable. 
 
The algebra routines are simple, currently based on the 
system in (Forbus & de Kleer 1993). We currently treat the 
mathematical operations involved in solving a problem as a 
black box, not subject to learning. 

Modeling knowledge in worked solutions 
As evident from the worked solution steps, problem 
solvers are required to make a variety of modeling 
assumptions to successfully find the solution. First, the 
problem solver must determine which equations are 
applicable for a given situation. This is required because, 
even in a relatively constrained domain such as physics, 
the number of equations mentioning common variables 
such as acceleration is quite large. Efficient problem 
solvers should not exhaustively search this space. Second, 
a problem solver has to make assumptions to infer 
parameter values. In the example above, the problem is not 
solvable if the problem solver fails to recognize that the 
ball has zero velocity at its highest point. Third, there is the 
notion of default circumstances. The most common of 
these in AP physics is to assume that events happen on 
Earth and are subject to Earth’s gravity unless otherwise 
mentioned. Finally, simplifying assumptions, such as 
viewing an object as a point mass or assuming a collision 
is elastic, are often required to make complex situations 
tractable. 
 
Three of the four types of modeling assumptions are 
handled by our system directly through analogical 
reasoning. That is, determining parameter values, default 
circumstances, and relevant equations are handled directly 
by the analogy with the worked solution. Only the last 
type, categorizing an everyday object in terms of an 
abstraction, is not currently handled by our system.  
Instead, we take the categorization as acceptable if it is 
compatible with the rest of the mapping.  This works well 
when the analogous problems are close, but could run into 
trouble when the analogs are more distant. 
 
Learning conditions for such categorizations is one of our 
goals, but it turns out to be complex.  Worked solutions for 
people provide at best partial information about why a 
modeling assumption they used is reasonable. For 
example, modeling the ball as a point mass in the example 
problem is never justified on other grounds. Students are 
expected to generalize from a body of examples they have 
seen about when to apply such ideas, probably in part 
because the ontology of everyday things is so broad, and 
the subset of object types that are appropriate for a 
particular idealization are not tightly localized to one part 

of the ontology. For example, rocks, coins, soda cans, and 
ferrets can all be considered as point masses for some 
kinds of problems, but most ontologies would not consider 
these categories as being particularly close otherwise. 

An Experiment 
We conducted an experiment to investigate this model. We 
chose three types of problems, of the kind found on AP 
physics tests, provided to us by the Educational Testing 
Service. Examples of these problem types are: 
 

1. A ball is released from rest from the top of a 200 m 
tall building on Earth and falls to the ground. If air 
resistance is negligible, which of the following is 
most nearly equal to the distance the ball falls 
during the first 4 s after it is released? 

2. An astronaut on a planet with no atmosphere 
throws a ball upward from near ground level with 
an initial speed of 4.0 m/s. If the ball rises to a 
maximum height of 5.0 m, what is the acceleration 
due to gravity on this planet? 

3. A 5.0 kg object is moving with speed v when it 
makes a head-on collision with a 2.0 kg object, 
initially at rest. If friction is negligible, what must 
be the speed v, if after the collision the 5.0 kg 
object has speed 1.0 m/s, the 2 kg object has speed 
2.5 m/s, and both objects are moving in the same 
direction? 

 
To test the verification of modeling assumptions, a copy of 
each problem case was made in which the cases were 
missing a precondition for a necessary modeling 
assumption. We call these bogus problems, since they look 
like they should be analogous but are not. An example 
would be that problem type 3 states that you can ignore 
friction on both blocks. Without this given information, the 
problem becomes unsolvable because one cannot 
instantiate the conservation of momentum equation. 
 
Each original problem was represented as a case stored 
with its worked solution in the case library. Then copies of 
each problem, but not the worked solution, were created 
for each of the transfer conditions – parameterization, 
restructuring, and restyling, as per above – along with a 
bogus problem. For parameterization problems, the values 
for all the parameters mentioned in the problem statement 
were changed, but the objects included all remained of the 
same types as before. For example, the parameterization of 
problem 2 involved a ball thrown upwards at 1 m/s and it 
reached a height of 10 meters. For restructuring problems, 
the system was asked to solve for a different quantity. For 
example, the restructuring of problem 3 provided the value 
of the initial velocity of the initially moving object as 2.5 
m/s and asked for the velocity of that object post collision. 



For restyling, the entity types were all changed but the 
event types remained the same. For example, the restyling 
of problem 1 included dropping a block off of a ledge. 
 
The four versions of each problem were given to the 
system. Its results are summarized in Table 1. We scored a 
problem as being correct for the parameterization, 
restructuring, and restyling conditions if the system 
produced the correct answer. Because bogus problems do 
not provide enough information to be solved correctly, 
they were scored as correct when the system could not 
produce an answer because it could not prove a 
precondition for an assumption it attempted to make while 
solving the problem. 
 
 Problem 1 Problem 2 Problem 3 

Parameterization Correct Correct Correct 

Restructuring Correct Correct Correct 

Restyling Correct Correct Failed 

Bogus Problem Correct Correct Correct 

Table 1: Experimental Results 

The system’s only failure was Problem 3’s restyling 
problem. Examination of the system’s explanations for its 
results revealed that the error was due to a mismatch in the 
orienting mapping. The motion events of each object after 
collision are extremely symmetric, making it equally likely 
that SME would choose to match the motion of object-1 
after the collision in the new problem with the motion of 
object-2 as with the motion of object-1 in the worked 
solution. We discuss remedies for this problem below. 

Related Work 
Physics problem solving is a classic domain for qualitative 
reasoning, starting with de Kleer’s (1977) pioneering work 
in reasoning about sliding motion problems. Subsequent 
work mostly focused on equation-solving, and we used the 
results from Bundy (1983) in designing our equation-
solver. Pisan (1996) exploited qualitative representations to 
reason about modeling assumptions in engineering 
thermodynamics, but did not explore learning issues.   
AI research on analogy in problem solving has a similarly 
long history, including  (Carbonell, 1986; Melis & Whittle, 
1999; Veloso and Carbonell 1993). The closest systems to 
ours are Cascade (VanLehn & Jones, 1993; VanLehn 
1998) and APSS (Ouyang and Forbus, 2006).  Cascade 
starts with equations and other domain knowledge, and 
only attempts to learn search control heuristics. By 
contrast, our search control mechanism is currently fixed. 
APSS is built on Pissan’s TPS system, and uses analogy to 
solve textbook engineering thermodynamics problems. 
Like TPS, it starts with a full suite of domain knowledge 

and can solve problems without prior examples purely 
from first principles, with analogy serving only to improve 
performance. We differ from both Cascade and APSS in 
that we focus on learning domain knowledge. 

Discussion 
This paper has examined how a learner can go from the 
unruly, broad common sense world to the refined world of 
parameters, equations, and modeling assumptions. While 
the overall performance of the system is already quite 
good, so far, we are have only tested it on three types of 
problems out of more than 20 which are relevant to the 
domain. Our future work is motivated by the goal of 
expanding the system to the point where it can learn all of 
the material on an AP physics exam about Newtonian 
dynamics.  
 
In addition to testing the system on more problems and 
problem types, there are certain additions that we believe 
to be essential to handle a larger exam involving more 
complex transfer. First, we need to incorporate 
rerepresentation (Yan et al 2003) to overcome errors in 
analogical matching.  The one failure we had can, as 
described above, be traced back to a mapping error, and 
this particular error is already handled by the existing 
theory, although the implementation did not use it. Second, 
AP physics problems often include diagrams, as do worked 
solutions. We plan to incorporate sKEA (Forbus & Usher, 
2002) to enable ETS to create sketches for problems and 
worked solutions, and extend our system to be able to 
exploit sketches in its reasoning.  For example, knowing 
that the direction of motion is downward when something 
falls is an example of a piece of common sense that we 
should be able to automatically extract from sketches in 
worked solutions. Third, we plan to move beyond learning 
by accumulating examples, in several ways. We plan to 
construct generalizations based on SEQL (Kuehne et al 
2000) to facilitate the system’s ability to transfer what it 
learns more broadly. For example, equations might be 
learned as encapsulated histories (Forbus, 1984), which, 
being parameterized, could extend the system’s reach still 
further. Fourth, we plan to use analogical generalization 
over a corpus of physics problems to learn category 
assignments of everyday categories to structural 
abstractions. As Chi et al. (1981) note, one difference 
between novices and experts appears to be in their 
encoding strategies: Novices sort problems according to 
the kinds of objects that appear in them, while experts sort 
them according to the principles they would use to solve 
them. Consequently, we plan to explore methods for 
learning new encoding strategies, to capture this ability to 
move more directly from the everyday world to models 
that can be used to solve problems. 
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