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Abstract 

We are trying to solve the problem of learning to recognize 
objects in an open-domain sketching environment. Our 
system builds generalizations of objects based upon previous 
sketches of those objects and uses those generalizations to 
classify new sketches. We represent sketches qualitatively 
because we believe qualitative information provides a level of 
description that abstracts away details that distract from 
classification, such as exact dimensions. Bayesian reasoning 
is used in the process of building up representations to deal 
with the inherent uncertainty in the perception problem.  
Qualitative representations are compared using SME, a 
computational model of analogy and similarity that is 
supported by psychological evidence from studies of 
perceptual similarity. We produce generalizations based on 
the common structure found by SME in different sketches of 
the same object. We report on the results of testing the system 
on a corpus of sketches of everyday objects, drawn by ten 
different people. 

 

1. Introduction 
The problem of sketch recognition has received a lot of 
attention in recent years because sketching provides a 
convenient, natural interface for transferring information 
from a person to a computer.  However, this problem can be 
extremely difficult because everyone sketches differently 
and a given person will often sketch the same thing in a 
different way each time.  The key is to identify the 
properties that remain constant across each sketch of a given 
object. In order to deal with this quandary, many programs 
use a narrow domain containing a small set of possible 
sketch objects (e.g., circuit diagrams: Liwicki and Knipping 
2005; simple symbols: Anderson, Bailey, and Skubic 2004; 
architectural objects: Park and Kwon 2003).  Thus, the 
programmers can go through ahead of time and either hand-
code the classifiers themselves or train the classifiers on a 
large body of data (700 images for Liwicki and Knipping 
2005).  Even systems designed to work in multiple domains 
require a certain amount of preprogramming for each 
particular domain (Alvarado, Oltmans, and Davis 2002).  
While these types of systems have certainly proven useful, 
they limit the communication between the person and the 
computer. Only information that is expected to be 
encountered in domains that the programmers expect the 
system to work in can be transmitted. 

We believe the key to recognition in the absence of 
domain expectations is efficient, on-line learning.  This 
means that while a user works with the system, it should be 
learning from the sketches the user produces, so that when 
the user sketches an object that has been sketched a few 
times in the past, it will recognize that object. Such a system 
has a couple of key requirements. Firstly, there must be 
some simple way for the user to tell the system what a 
sketched object is supposed to be.  We satisfy this 
requirement by using sKEA, the sketching Knowledge Entry 
Associate, which is described in greater detail in the next 
section. Secondly, an algorithm that can learn a new 
category based on only a few examples is required. It is 
difficult to learn a category representation for a basic object, 
such as a house, with only a few examples in the training 
set.  This problem is particularly difficult if one is relying on 
quantitative information like lengths of edges and angles 
between edges because this information can vary 
significantly from one sketch to another. Therefore, we 
believe qualitative sketch representations are necessary. 

There have been several papers in the past that have 
examined building qualitative representations of images, 
although few of them have dealt with raw, user-drawn 
sketches. Museros and Escrig (2004) worked on the problem 
of comparing closed shapes. Their representations contained 
descriptions of basic features of the curves and angles in the 
shapes.  Using their representations, they were able to 
compare two shapes and determine whether one was a 
rotation of the other.  Because their representations were 
qualitative, they were able to match shapes that differed 
along irrelevant dimensions, such as absolute size. 

Ferguson and Forbus (1999) built a system called 
GeoRep that generated qualitative representations based on 
a line-drawing program that allowed users to make perfect 
lines and perfect curves. GeoRep applied a low-level 
relational describer to each drawing to find domain-
independent qualitative information, such as relative 
orientation of and connections between lines. GeoRep also 
used high-level relational describers to extract domain-
dependent information from the low-level description. It 
could perform tasks such as recognizing objects in particular 
domains and was used as an input for Ferguson’s (1994) 
MAGI, which detects symmetry and regularity, including 
finding axes of symmetry. 

Veselova and Davis (2004) built a system that produced 
a qualitative representation of hand-drawn sketches.  Their 



representational vocabulary overlapped a fair amount with 
Ferguson and Forbus’. Their system used several 
cognitively motivated grouping rules to determine the 
relative weights of different facts in the representation. The 
system was designed to produce a representation that could 
be used to classify other sketches, although the learning and 
classification stages have not, to the best of our knowledge, 
been integrated.  

We believe the three systems described above provide 
evidence for the effectiveness of using qualitative 
information to represent and compare sketches.  However, 
these systems lack the ability to learn robust categories of 
sketches based on more than one example.  In the following 
sections, we will describe our system, which we believe 
takes a step towards accomplishing this goal. 

2. The Sketching Environment 
sKEA is an open-domain sketch understanding system 
(Forbus et al. 2004).  It is able to reason about user-drawn 
sketches without any domain expectations of what a user is 
likely to sketch because it is not dependent on sketch 
recognition.  Rather, it is based on the idea that when people 
communicate through sketching, their communication is a 
multi-modal process. People verbally describe what they are 
sketching as they create it.  Similarly, sKEA allows users to 
label each glyph, or object in a sketch, with categories from 
its knowledge base. sKEA computes a number of spatial 
relations between glyphs in a sketch, and it uses this 
information along with its knowledge about the categories 
of the glyphs to reason about a sketch, or to compare two 
sketches. sKEA has been used in a number of experiments 
that involve spatial reasoning in different domains (Tomai et 
al. 2005; Lockwood, Forbus, and Usher 2005; Klenk et al. 
2005). 

Of course, sKEA’s performance does not match human 
reasoning about sketches.  While humans do often describe 
what they are sketching, they also expect others to recognize 
some objects without having to be told what they are, 
particularly if those objects have already been discussed, or 
sketched, in the past.  Thus, it is not surprising that sKEA’s 
requirement that every glyph be labeled can become 
onerous at times, especially if the user is performing a task 
that requires the same object to be sketched and labeled 
many times. This concern leads to the question of whether 
some type of sketch recognition can be added to sKEA 
without sacrificing its domain independence. 

The key to domain-independent recognition is learning.  
When a user begins using sKEA to perform some task, 
sKEA should have no expectations about what the user will 
sketch. However, over time, if the user sketches the same 
object more than once, sKEA ought to learn to recognize 
that object. Thus, the fourth time the user draws, say, a 
building, sKEA could generate a guess as to what that object 
is most likely to be. If that guess is wrong, the user can 
always perform the usual glyph labeling task to correct it, 

just as a person would correct another person who 
misunderstood part of a sketch. We see any sketching 
session as an opportunity for sKEA to learn to recognize 
objects in parallel with the user’s sketching of those objects. 

In order for sKEA to learn to recognize objects, three 
other components are required: a system for building 
representations of sketched shapes, a system for learning 
representations of categories of shapes, and a system for 
comparing a new shape’s  representation to the category 
representations in order to classify it.  We will describe the 
comparison and learning components in the next section. 

3. Comparison and Generalization 
We compare representations using the Structure-Mapping 
Engine (SME) (Falkenhainer, Forbus, and Gentner 1989).  
SME is a computational model of similarity and analogy 
based on Gentner’s (1983) structure-mapping theory.  
According to structure-mapping, we draw analogies 
between two cases by aligning their common structure.  
Each case’s representation contains entities, attributes of 
entities, and relations.  Structure is based on the connections 
between elements in the representation.  A simple relation 
between two entities has a small amount of structure, 
whereas a more complex relation between other relations in 
the representation has a deeper structure.   

SME takes as input two cases: a base case and a target 
case. It finds possible correspondences between entities, 
attributes, and relations in the two cases. It combines 
consistent correspondences to produce mappings between 
the cases. SME attempts to find mappings which maximize 
systematicity, the amount of structural depth in the 
correspondences. SME also produces candidate inferences 
about the target by identifying attributes and relations in the 
base that lack corresponding elements in the target.   

Our system learns categories of objects using SEQL 
(Kuehne, Forbus, and Gentner 2000), a model of 
generalization built on SME.  The idea behind SEQL is that 
people form a representation of a category by abstracting 
out the common structure in all the exemplars of that 
category.  In its default mode, SEQL works in the following 
way: when it encounters a new case, it uses SME to 
compare that case to the known generalizations. If the new 
case aligns with a sufficient amount of the structure in one 
of the generalizations, the case is added to that 
generalization. Any part of the generalization’s structure 
that does not align with the new case is removed, so that the 
generalization continues to represent only the structure 
found in all of its exemplars. 

A recent update to SEQL associates a probability with 
each fact in the generalization, allowing for greater 
flexibility (Halstead and Forbus 2005).  When a new case is 
added to a generalization, those parts of the generalization 
that do not align with the case are not automatically 
removed, but instead have their probability reduced.  When 



a fact’s probability falls below a threshold, it is removed 
from the generalization. 

SEQL is capable of quickly learning new 
generalizations. Even a generalization based on a pair of 
exemplars may be sufficient for classifying new cases.  
Each additional exemplar further refines the generalization 
by allowing SEQL to remove facts that are not important for 
membership in the category. 

 

4. Perceptual Elements 
We now come to the problem of building representations 
from sketches.  Our system works by decomposing a sketch 
into a set of primitive perceptual elements.  There are two 
types of primitive elements: segments and terminations.  
These elements align with elements of the raw primal sketch 
in Marr’s (1982) theory of vision. Segments may be straight 
or curved. Terminations, which exist at the endpoints of 
segments, may be classified as corners, meaning there is a 
corner between two segments; connections, meaning they 
connect two collinear segments; or neither. Once the 
primitive elements are found, they can be grouped to form 
more complex elements. Thus, there is an element 
hierarchy. This strategy of segmenting an image into 
primitive elements and then grouping them has been used 
successfully in the sketching domain by Saund et al. (2002).  
Thus far, there is only one level to the hierarchy.  Segments 
and their terminations can be grouped to form edges.  While 
there are rules for grouping edges, there are no explicit 
structures for more complex perceptual elements at this 
time. 

Our system begins with the raw output from sKEA, 
consisting of a list of polylines.  Each polyline is a list of 
points corresponding to a line drawn by the user.  The 
system does not assume that the endpoints of polylines 
match endpoints of edges in the shape sketched by the user.  
Rather, it begins by joining together polylines with adjacent 
endpoints, provided there is no third adjacent polyline to 
create ambiguity. 

The system then searches for discontinuities in the 
slope of each polyline, representing potential corners.  
Discontinuities are a key concept at every level in Marr’s 
(1982) model, and they provide vital information about the 
location of terminations. In our system, evidence for a 
discontinuity includes both changes in the overall 
orientation and high values for the derivative of the slope of 
the curve, as calculated by Lowe (1989). Polylines are 
divided into segments which are linked by termination 
points anywhere there is a sufficiently salient discontinuity. 

The system also finds potential corners and connections 
between segments from separate polylines whose endpoints 
are not adjacent.  Two segments may have a corner between 
them if extending the lines beyond their endpoints would 
result in an intersection at some point in space.  They may 
have a connection between them if they are collinear. 

Once the system has located termination points and 
gathered evidence, the termination points must be classified.  
Previous systems have used Bayesian Networks (BNets) to 
deal with uncertainty in perception (Bokor and Ferguson 
2004; Alvarado and Davis 2005).  Following this precedent, 
we use BNets to determine whether termination points are 
corners, connections, or neither.  Our system uses Recursive 
Conditioning (RC) (Darwiche 2001) to perform exact 
inference on the network and to calculate the probabilities. 
RC is an any-space algorithm which works by recursively 
partitioning the network into smaller networks using 
conditioning and solving each subnetwork as an 
independent problem. 

Once termination points have been classified, segments 
can be grouped together to form edges.  Edges consist of 
maximal lists of unambiguously connected segments.  
Segments are unambiguously connected if there is a 
termination between them that has been classified as a 
connection and if the connected endpoints of the two 
segments are not linked by connections or corners to any 
other segments.  The threshold for connection detection is 
lowered if the segments to be grouped form a compatible 
curve.   

Edges inherit connection information from the 
segments upon which they are built.  Thus, edges whose 
segments were connected will themselves be connected.  
This connection information is used by the system to group 
edges into cyclic edge groups.  A cyclic edge group is a list 
of sequentially connected edges in which the first and the 
last edge are connected.  These edge groups represent closed 
shapes in the sketch.  For example, a square would be a 
cyclic edge group containing four edges.  Once the edges 
and edge groups have been computed, the system is ready to 
build a qualitative representation of the sketch. 

  

5. Qualitative Vocabulary 
An appropriate qualitative vocabulary is vitally important 
for any kind of comparison between sketches. If the 
vocabulary fails to capture the key properties of each sketch, 
there will be no way to determine whether two sketches are 
similar. In building our qualitative vocabulary, we began by 
examining the vocabularies used by Ferguson and Forbus 
(1999), Museros and Escrig (2004), and Veselova and Davis 
(2004), who shall henceforth be referred to as FF, ME, and 
VD.  We then sought out additional features that would be 
useful for representing the full range of objects that people 
might choose to sketch. 

Most predicates (attributes and relations) convey 
information about only one or two objects and contain 
relatively little structural depth. Because SME uses structure 
to match two representations, it is difficult to find 
corresponding entities using only these predicates, 
particularly when there is a large number of them in each 
representation. Thus, it is helpful to have anchoring 



relations. These relations, which convey information that we 
believe is particularly salient in the match, contain greater 
structural complexity. Because of SME’s systematicity bias, 
they are generally the first relations SME matches up. Thus, 
they anchor the rest of the mapping. 

Basic Elements 
Before relations between elements in a sketch can be 
encoded, it is necessary to encode the basic elements 
themselves.  In our case, we begin by creating entities for 
the edges found in the sketch. These entities must be 
classified according to the type of edge. FF, ME, and VD all 
draw a distinction between straight and curved edges, with 
FF allowing for three types of entities: lines (straight 
edges), arcs (curved edges), and ellipses (closed shapes 
consisting of a single curved edge). We follow FF in 
classifying our edges as one of these three types. In 
addition, we follow VD in asserting vertical or horizontal 
attributes for straight lines that align with the y or x axes, as 
axis-aligned edges appear to be particularly salient.  

Pairwise Relations 
There are a number of pairwise relations between edges that 
can provide useful information about a shape. FF and VD in 
particular use a large number of these. We have 
implemented relations for the relative position (left-of or 
above), relative length (same-length or longer-than), and 
relative orientation (parallel or perpendicular) of pairs of 
edges.  Like FF, we distinguish between parallel edges with 
and without common extent (i.e., parallel edges that do or 
do not overlap along the axis traveling parallel to them). 

One major concern with pairwise relations is 
determining the pairs of edges for which relations will be 
asserted. Asserting relations between every pair of edges in 
a shape results in an overly complex representation with a 
large number of redundant or irrelevant facts. There are 
several heuristics for determining appropriate pairs of edges.  
FF use simple proximity between the edges. VD use a few 
more complicated grouping strategies. We follow VD in 
grouping edges together by adjacency. That is, pairwise 
relations are asserted between two edges if there are no 
other edges blocking the path between those two edges. We 
use a Voronoi diagram (Edwards and Moulin 1998) to find 
all the adjacent edges in the glyph.  We further limit the 
relative length relations by only asserting relative length for 
pairs of edges that are parallel or perpendicular, as these 
orientations make the relative length more salient.  

Connections & Closure 
FF, ME, and VD all make use of connections between edges 
in their representations. Connections between edges, and 
particularly corners between edges (connections that occur 
at the edges’ endpoints), are key to recovering the spatial 
structure of most shapes. We use a general connected 

relation any time two edges are connected to allow 
connections of different types to potentially align.  
However, we also classify the connections into three types: 
corner, connects-to (where one edge’s endpoint touches the 
middle of another edge), and intersection (when two edges 
meet between both their endpoints).  Thus, due to the 
structural mapping process, matches between connections of 
the same type are much stronger than matches between 
connections of different types. 

The concept of closure, wherein a group of connected 
edges together make a full cycle, thus creating a closed 
shape, plays an important role in FF’s representation.  As FF 
point out, there is evidence that humans compute closure 
early on in perceptual processing (Treisman and Paterson 
1984).  FF make assertions about polygons and about the 
convexity of the corners in a polygon. ME, whose 
representations always describe closed shapes, also make 
assertions about the convexity of corners. Our system uses 
cyclic edge groups to compute the convexity of any corners 
that make up part of a cycle.  We also assert special 
relations for any three-sided or four-sided closed shapes in 
a sketch.  Because these relations include information about 
corners between several different edges, they contain much 
more structure than any of the relations discussed above.  
Thus, they become anchoring relations in SME’s matching 
process. 

Junctions 
All of the predicates described thus far are useful for 
processing two-dimensional shapes. However, our system 
also needs to be able to process three-dimensional shapes, 
should a user choose to sketch such shapes. One feature that 
has proven useful for comprehending three-dimensional 
shapes is junctions. Junctions are points where the endpoints 
of two or more edges meet. The layout of the junction can 
provide important cues to the relative orientations of 
surfaces on a three-dimensional object. Clowes (1971) 
classified junctions into four types, three of which were 
junctions between three edges, and showed how the 
relations between junctions could be used to recover shape 
information in simple line drawings. 
 

 
Figure 1. From left to right: an arrow junction, a fork junction, and 

a tee junction 
 

We assert junction relations for points in a sketch 
where exactly three edges met.  We classify junctions into 
three types which align with the types described by Clowes 
(see Figure 1): arrow junctions, fork junctions, and other 
junctions, which could include tee junctions or other 
similar junctions. Because groups of related junctions, 
rather than individual junctions, are necessary for recovery 



the shape of an object, we also assert positional relations 
between junctions (above and left-of). These relations are 
structurally deep, and so they also act as anchoring relations. 

Organization of Facts 
Unfortunately, we found that when complex shapes were 
analyzed, the representations based on the vocabulary 
described above became far too large for SME and SEQL to 
handle (600+ facts).  We concluded that it was necessary to 
limit the number of facts that would actually be encoded.  
Therefore, we order the facts in our representation according 
to priority. We give the highest priority to facts about 
external edges, i.e., edges that touch the outer bounds of the 
glyph itself. These edges seem to be the most important for 
encoding and recognizing an object because of the role they 
play in determining the overall shape of the object.  We give 
the second-highest priority to edges connected to external 
edges by corners and the third-highest priority to other 
edges that are part of external edge groups, sequences of 
connected edges in which at least one edge is external.  We 
do not assert relations for edges that are not part of external 
edge groups. These internal edges were deemed unimportant 
for recovering the overall shape of the sketch. Once facts 
have been appropriately ordered, we can cut off the list of 
facts in a representation at different points depending on 
how large we want to allow the representations to grow. 
 

 
 
Figure 2. Sample objects.  The top row are the illustrations of the 
object.  The second row are sketches produced by subjects.  The 
third row are the edges found by the system. 
 

6. Experiment 
We evaluated our system by testing its ability to build 
generalizations of sketches of 8 everyday objects: a house, a 
fireplace, a brick, a cup, an oven, a cylinder, a refrigerator, 
and a bucket..  The objects were selected from Sun Up to 
Sun Down (Buckley 1979), a book that uses simple 
drawings to illustrate physical processes such as heat 
transfer. 10 subjects were instructed to sketch each object 
using the drawings from the book as guides (see Figure 2).  
The drawings were provided so that the general features and 
orientations of the sketches would be similar. However, 
subjects were told that they needed only sketch those parts 
of the object that they believed were necessary for a person 
to recognize it. See Figure 3 for four sketches of the 
fireplace.   

 Subjects sketched the objects in sKEA using a Wacom 
tablet, a pen-based device that takes the place of a mouse.  
Of the 10 subjects, 5 had previous experience working with 
sKEA, and 6 had previous experience with a pen-based 
device. After subjects sketched the objects, each object was 
labeled by the experimenter using sKEA’s interface. 
 

 
 

Figure 3. Four fireplace sketches drawn by subjects 
 

We chose to throw out one subject’s set of sketches 
because the subject failed to follow the instructions. The 
remaining 72 sketches were used to test the system. In each 
test run, generalizations for the 8 objects were built based on 
sketches by 5 of the subjects (the training set). Although 
SEQL can determine generalizations automatically, our 
system forced SEQL to build exactly one generalization for 
the 5 training sketches of each object. 

After the generalizations were built, they were used to 
classify the objects in the other 4 sketches (the test set). A 
given object was classified by comparing its representation 
to each of the 8 generalizations and returning the 
generalization with the closest match. We determined 



empirically that classification results were the most accurate 
when the number of candidate inferences was used to 
evaluate the strength of a match.  We used SME to match a 
generalization to the new case and compute candidate 
inferences about the new case based on the generalization.  
These candidate inferences represented identifiable 
differences between the generalization and the new case, in 
particular facts found in the generalization but not in the 
new case. Matches with fewer candidate inferences were 
considered better. Thus, the strength of a match was based 
on how well the new case covered everything that was 
expected to be found in instances of the generalization.  
Because some generalizations were larger than others and 
thus likely to produce more candidate inferences, we 
divided the number of candidate inferences by the total 
number of expressions in the generalization. This heuristic 
had an effect of approximately normalizing the match 
scores. 

We validated our results by averaging the scores over 
20 test runs. In each run, the sketches were randomly 
divided into training and test sets. Our training algorithm 
rebuilt the generalizations from scratch using each run’s 
training set. Because we were unsure how limiting the 
number of facts in a representation would affect the results, 
we ran the test four times with four different limits on the 
number of facts. 

Preliminary tests indicated that many of the 
classification mistakes made by the system involved a 
failure to distinguish between the three cylindrical objects: 
cups, cylinders, and buckets.  This is hardly surprising, as 
these three objects have similar shapes with few 
distinguishing characteristics. Therefore, we used two 
criteria in reporting our results. According to the strict 
criterion, only an exact match between an object’s actual 
type and its classified type was considered a correct 
classification. According to the weak criterion, a 
classification in which the two types did not match was still 
considered correct when both were cylindrical types.  
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Figure 4. Classification results 
 

The results can be found in Figure 4.  The best 
performance was achieved when representations were 
limited to 175 facts. With this limit, the strong criterion was 
met 74.5% of the time and the weak criterion was met 
91.1% of the time.  Note that chance performance with the 
strong and weak criteria would be 12.5% and 21.9% 
respectively. Performance dropped when either more facts 
or fewer facts were used. 
 

7. Discussion 
We believe we have demonstrated the effectiveness of our 
system in learning to classify sketches of simple, everyday 
objects. While the number of types of objects for 
classification was not large, the objects varied significantly 
in terms of shape and complexity. Most importantly, the 
system worked with no prior knowledge of the object 
classes for which it learned generalizations. Based only on 
the 5 sample objects for each type, it was able to build 
generalizations that were sufficiently robust to classify new 
objects about 75% of the time. Furthermore, when 
confusion between the different types of cylindrical objects 
was discounted, the system was able to classify objects 
more than 90% of the time. 

We were somewhat concerned that limiting the number 
of facts that could be included in a representation would 
hamper performance. Based on the results achieved, this 
does not appear to be the case.  Performance with 175 facts 
was actually better than performance with a larger number 
of facts. This is an interesting result that deserves further 
exploration. Given the ordering of facts in the 
representations, those facts beyond the first 175 were 
probably less relevant for recovering the shape of the 
sketch. As such, these facts may have varied more between 
different subjects’ renditions of the same object. Thus, they 
may have added noise to the representations, resulting in a 
more difficult matching process. 

Of course, one would expect the optimal number of 
facts to vary depending on the complexity of the shape 
being represented.  However, given the range of the shapes 
used for this experiment, with the number of facts for a 
shape ranging from 60 to 600, we believe the results support 
175 being a good general cutoff for the qualitative 
representation scheme used in this experiment. 

 

8. Future Work 
Our system, as used in this experiment, assumes that each 
new sketch must match one of the previously learned 
generalizations.  Obviously, this will not always be the case.  
The ability to recognize that a new object is novel instead of 
forcing it into a category would be useful. This recognition 
could be based on a threshold for structural evaluation 
scores in the SME matches between new cases and previous 



generalizations. If the score between the new case and a 
generalization fell below that threshold, the system would 
not accept the match even if it scored better than the 
matches to all the other generalizations. 

There is evidence that basic closed shapes, such as 
triangles, are detected early in the human perceptual process 
and that these shapes are themselves treated as properties of 
an image (Treisman and Paterson 1984). In the present 
study, we represented triangles and quadrilaterals only at the 
qualitative stage. However, we are currently in the process 
of developing more complex perceptual elements, so that we 
can represent closed shapes earlier in the perceptual 
pipeline.  This will allow us to utilize BNets for recognizing 
basic shapes. The BNets will be used in a hierarchical 
architecture, where the probabilities for basic elements such 
as corners and connections are calculated, and then these 
values along with other evidence are fed to the nets used for 
recognizing shapes. 

Another expansion we are considering is the ability to 
classify multiple objects in a single sketch. The present 
system assumes that the entire sketch represents only a 
single object, but obviously this is not always the case.  
sKEA allows users to manually distinguish between objects 
in a sketch by drawing them as separate glyphs, but like 
manual glyph labeling, this adds to the user workload. 

Automatic object segmentation in a sketch depends on 
intelligent rules for grouping edges together. Obviously, one 
rule for grouping edges could be based on grouping 
connected edges together, as our system already does. This 
rule would be sufficient provided all the edges of each 
object in a sketch were connected, and none of the edges of 
different objects were connected. A further refinement 
might be to include edges located inside the bounds of 
connected edge groups.   

Finally, we plan to incorporate our system with sKEA 
so that it will be running in the background while users are 
sketching. Thus far, we have only shown that the system 
works in an experimental setting. We hope to demonstrate 
that it is actually useful to sKEA users while running in real 
time. The interaction between the user, the system, and 
sKEA will create an environment in which we believe open-
domain sketch recognition can become a reality. 
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