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Abstract

Fuzzy qualitative simulation combines the
features of qualitative simulation and
fuzzy reasoning in order to gain advan-
tages from both. However, the output of
a fuzzy qualitative simulation process is
a behaviour tree which for complex sys-
tems will be large. In order to overcome
this and permit focussing on preferred be-
haviours priortisation was developed. In
this paper a new prioritisation scheme is
presented that makes use of both con-
straint and temporal information to per-
form the prioritisation.

Keywords: Fuzzy Qualitative Reasoning, Pri-
oritisation

1 Introduction

One of the original motivations for the devel-
opment of Qualitative Reasoning (QR) systems
was a research programme to enable expert sys-
tems to reason from first principles, in order to
overcome perceived weaknesses inherent in the
first generation, rule-based, expert systems [7].
QR gives a broad picture of the way in which
a system can behave and it was not long be-
fore the engineering community became inter-
ested in, and contributed to the field, because
it was seen as a useful tool for simulating the
behaviour of complex but incompletely specified
plant. These influences have contributed to the
utilisation of semi-quantitative information [1].

On the other hand Fuzzy systems were also
developed to overcome some limitations in rule-
based systems, by extending them to handle ap-
proximate knowledge. However, whereas QR
deals with incomplete structural models, Fuzzy
systems have tended to deal with input/output
type problems. This has not been exclusively the
case though, and fuzzy sets have been combined
with interval simulators to carry out fuzzy in-
terval simulations [2]. However, as with normal

interval simulation the goal has been to generate
narrowly focussed unique behaviours.

This situation led to the development of sys-
tems that combined the features of qualitative
reasoning with those of fuzzy systems [9, 3].
There are at least three advantages which ensue
from the combination of fuzzy and qualitative
approaches [9]:

• the fact that the meaning of a qualitative
value and its support set (the real number
line here) are captured in a single represen-
tation,

• the ability to incorporate empirical knowl-
edge into a model (which is also finer
grained than the M+/− constraint utilised
in QSIM [7]), and

• being able to include more detailed knowl-
edge of the temporal behaviour of the vari-
ables in a model than the total ordering
available within QSIM, which is useful for
use in such applications as model-based di-
agnosis and control.

This was the motivation behind the develop-
ment of FuSim [9], which is the system which
was the major influence on the development of
Morven. However, QR systems, regardless of
complexion, generate behaviours that are not
unique; and in the case of complex systems may
be prohibitively large. In order to ameliorate
this steps have been taken to assign a priority
to the behaviours in a fuzzy behaviour tree [8].
It is the analsysis and development of such pri-
oritisation schemes that is the subject of this
paper.

The structure of this paper is as follows. In
the next section the Morven1 toolset is sum-
marised, in order to put the subject of this paper
in its overall context. In section 2 the details of
the original prioritisation scheme are presented

1. This system was previously known as Mycroft,
but I discovered that this name was far from unique
so I changed it to the name of my elder daughter.



and criticised; and this is followed (in section
4) by the description of an alternative and ex-
tended approach to behaviour prioritisation. In
section 5 an illustrative example is described and
analysed, and from this some relevant conclu-
sions drawn.

2 The Morven Toolset

The Morven toolset is a constraint-based fuzzy
qualitative reasoning system containing a num-
ber of simulation and envisionment algorithms.
The development of this toolset has permitted
the suitability of different techniques to be ex-
amined in a number of contexts; and the com-
parison of different approaches to constraint-
based fuzzy qualitative simulation to be made
[3].

2.1 Representation and Inference

Fuzzy sets extend the ideas of traditional set the-
ory to include the concept of partial (or graded)
membership. It is assumed here that the ideas
underlying fuzzy sets are known to the reader;
however, a description of the domain and ex-
planation of the concepts may be found in [6].
In FuSim, for reasons of computational effi-
ciency, trapezoidal fuzzy numbers and intervals
are used. An example of such a fuzzy number, a
parameterised four tuple, is shown in Figure 1.
This fuzzy number meets the criteria for being
a fuzzy set in that it has a graded membership.
The set is described by its membership function,
µa(x), which is described by the four tuple [a, b,
α, β] and is defined as:

µa(x) =


0 x < a − α
α−1(x − a + α) x ∈ [a − α a]
1 x ∈ [a b]
β−1(b + β − x) x ∈ [b b + β]
0 x > b + β

Figure 1: A Trapezoidal Fuzzy Number

The quantity space which is built from fuzzy
numbers must be closed, continuous, finite and

cover all values which a variable can take. An
example of such a quantity space is shown in Fig-
ure 2. It is also possible to turn a trapeziodal
fuzzy interval into a crisp interval by means of
α-cuts [9]. Here a particular membership value
(α) is chosen as representing “typicality” with
respect to the fuzzy quantity, or quantity space,
of interest; and then these ‘typical’ values can
be used in the reasoning process as was done in
FuSim, and carried over into Morven. Of course,
what constitutes ‘typical’ can be altered by se-
lecting different values for α. In fuzzy qualitative
simulation, unlike QSIM, the quantity space for
the derivatives of a variable may also be dense
(that is, can have any number of divisions con-
sistent with the definition of a quantity space).

Figure 2: A Fuzzy Quantity Space

The Morven toolset is a qualitative reason-
ing system within the so called constraint based
ontology. The models used in the toolset con-
sist of sets of variables and the constraints that
relate them. In fuzzy qualitative reasoning the
operators utilised are the same as for its sym-
bolic counterpart, though by the nature of the
case there is a difference in the way they are
implemented. All the variables of the system
take their values from a predefined fuzzy quan-
tity space.

In Morven the model constraints are causally
ordered [5] and distributed over a number of dif-
ferential planes [10]. That is, the qualitative dif-
ferential equation (qde) model is developed on
plane-0 (the zeroth differential plane), and the
relationships between the higher derivatives of
the system are obtained by differentiating the
qde and representing the results as a qde on the
so called higher differential planes.

Finally, as with QSIM and FuSim, Morven
represents variables as a vector consisting of the
fuzzy qualitative value for the magnitude and
derivatives of the variable as a function of time.
However, whereas QSIM and FuSim only make
use of vectors of length 2 (representing the mag-
nitude and direction of change of the variable),
Morven can use vectors of any required length.
For practical purposes three is the most that is
generally required for exogenous variables, per-



mitting a description of the curvature of the
function. For any model of a state system there
is a relationship between the number of differ-
ential planes in the model and the length of
the vectors describing the state variables: for a
model containing n differential planes, the state
variable vector will contain n + 1 elements. For
example, in the single tank case above, the state
variable, h, will require a vector of length 3:

h = [d0d1d2]
where d0, d1 and d2 are the zeroth, first and

second derivatives of the variable respectively
(or, if preferred: the magnitude, direction and
curvature). When applied to an actual sys-
tem variable, these elements are referred to as
variable-vector elements

As stated previously, the Morven toolset con-
sists of a number of simulation and envision-
ment algorithms [3, 4]. However, all these al-
gorithms, in common with qualitative reasoning
approaches in general, divide the inference pro-
cess into two phases: Qualitative Analysis (QA)
and Transition Analysis (TA).

In the QA phase the equations of the system
model are solved and qualitative states gener-
ated. In the TA phase the values of the magni-
tudes and derivatives of, at least, the state vari-
ables of the system are known, and this infor-
mation is used (along with transition rules) to
decide which values these variables may take in
the succeeding time interval (or time point).

2.2 Temporal Calculations

One of the motivations for combining qualitative
reasoning with fuzzy reasoning was the provision
of fuller temporal information to be included
in the qualitative reasoning process. There are
four temporal calculations that are important
in Morven: the persistence time, the relative ar-
rival time, the absolute arrival time, and the ab-
solute departure time.

Persistence time, ∆Tp: This is a time inter-
val representing the endpoint of the interval
during which an element of a variable vector
remains in the same state, assuming that
the calculation is made from the time the
variable entered that state, and the deriva-
tive used in its calculation does not change
during the time interval. The persistence
time for an element of a variable vector, dn,
is defined as:

If 0 6∈ dn+1
α , then ∆Tp ∈ W (dn)

|dn+1|α

where dn and dn+1 are the nth and (n+1)th

derivatives of the variable (for the purposes
of these calculations the magnitude of the
variable is considered as the 0th derivative).
W (dn) is the α-width of the fuzzy interval
of the nth derivative. This formula is the
same as that used in FuSim.

Relative Arrival time, ∆Ta: This is the time
interval representing the length of time it
takes for a variable-vector element to tran-
sit from one state to another. Consider the
case where dn

j and dn
j+1 are jth and (j+1)th

quantities from the quantity spaces of the
nth derivative of the variable under consid-
eration (likewise, dn

j and dn+1
j+1 are jth and

(j+1)th quantities from the quantity spaces
of the (n+1)th derivative of that variable.).
Then the relative arrival time for an element
of a variable vector, dn, used in a Morven
simulation is given as:

If 0 6∈ dn+1
α , then ∆Ta ∈ L[dn

j+1]α−U [dn
j ]α

|dn+1|α

where, the L[·]α and U [·]α are the lower and
upper bounds of the respective α-intervals.
If the nth element does not transit then the
relative arrival time is zero. However, de-
pending on whether the (n + 1)th element
transits, the value of |dn+1|α will be differ-
ent. On the assumption that the present
value of the (n + 1)th element is dn+1

j , if
this element does not transit then |dn+1|α =
|dn+1

j |α. However, if there is a transition
then:

|dn+1|α = |dn+1
j+1 |α − |dn+1

j |α

Absolute Arrival time, TA: This is the time
interval representing the length of time it
takes a variable vector element, dn, to arrive
at a particular state from the initial time of
the simulation (t = 0). The formula for this
is:

TAn
=

i−1∑
i=0

∆Tpi
(dn) +

n∑
j=1

∆Taj
(dn)

where n is the nth absolute time index.

Absolute Departure time, TD: This is the time
interval representing the length of time it
takes a variable vector element to depart
from a particular state, with the initial time
of the simulation as the datum. The for-
mula for the absolute departure time is:

TDn
= TAn

+ ∆Tpn



There is an exception to this formula if the
absolute time contains a transition of the
(n+1)th element of the variable-vector. The
expression utilised in such cases is:

TDn+1 = TDnΞ∆Tpn + ∆Tpn,n+1

where, Ξ is a retraction operator, and
∆Tpn,n+1 is a pseudo-persistence time in
which the (n+1)th element used in the cal-
culation is the difference between the two
quantities appearing in the transition of the
(n + 1)th element.

3 Prioritisation

Qualitative simulation does not result in a
unique behaviour; rather it generates a tree of
behaviours. In symbollic qualitative simulation
the maximum branching factor is 4, whereas in
fuzzy qualitative simulation it is 6. This means
that for a complex system, even ignoring the
problem of spurious behaviour generation, the
behaviour tree may be large.

In response to these results Leitch and Shen
[8] developed a scheme for prioritising the states
and behaviours generated in a simulation, on the
basis of a distance metric, in order to find the
best plausible approximate behaviour. In this
section the details of the particular distance met-
ric utilised by FuSim is given. This is followed
by a description of the method used to prioritise
the states generated by FuSim. Finally the tech-
nique for prioritising the behaviours in a FuSim
behaviour tree is assessed.

3.1 A Distance Metric

To understand the distance metric introduced by
Leitch & Shen (which is also utilised by Morven)
and how it is used, it is necessary to give a more
detailed example of two kinds of value which are
used in a simulation: the predicted value and
the propagated value. The former is the value
(or set of values) which a variable is assigned on
the basis of the transition rules; that is they are
the values predicted by the integration phase of
the simulation. Each system constraint consists
of a constrained variable, which is the variable
appearing on the left hand side of a constraint,
and one or more constraining variables which
appear on the right hand side of a constraint
and may be used to calculate a value for the
constrained variable. The propagated value of a
variable is the value thus calculated.

Consider a system consisting of the following
three place constraint:

a = b + c
If the constraining variables b and c have the

α-cut interval values [1 4] and [5 8] respectively,
then the propagated value for a will be [6 12], as
shown in Figure 3.

Figure 3: Propagated and predicted values

It is possible that the predicted and propa-
gated values are identical; however, it is usually
the case that a propagated value will intersect
with several predicted values, as shown in Fig-
ure 3. One can treat each predicted value that
intersects with the propagated value as equally
possible. However, since not all the members
of a variables quantity space will intersect the
propagated value to the same degree the method
of prioritisation was developed to reflect this fact
and give those quantities which are a closer ap-
proximation to the propagated value a higher
priority. The measure of which quantity is the
best approximation is gained by means of the
distance metric.

This distance metric (given the symbol d) is
really a measure of similarity between two fuzzy
numbers. Let the propagated value be depicted
by a normal capital letter and the predicted
value by a capital letter with a circumflex above
it; then the formula for the distance between the
two values given in [8] is:

d(A, Â) = [(power(A) − power(Â))2

+(centre(A) − centre(Â))2]
1
2

where, for 4-tuple parametric fuzzy numbers:
power([a, b, α, β]) = 1

2 [2(b − a) + α + β]
centre([a, b, α, β]) = 1

2 [b + a]
These formulae represent the area of the

fuzzy interval and the centre of the nucleus of the
fuzzy interval respectively. If two fuzzy intervals
are identical, then according to the above ex-
pressions they will have a distance of zero. Thus,
the smaller the distance between a propagated
and predicted value, the better the approxima-
tion.

As an example, consider again the situation



depicted in Figure 3. Call the propagated value
â, and the predicted values a1, a2 and a3 with
values [4 7], [8 10] and [11 15] respectively. Then
d(a1, â) = [(3 − 6)2 + (5.5 − 9)2]0.5 = 4.6
d(a2, â) = [(2 − 6)2 + (9 − 9)2]0.5 = 2
d(a3, â) = [(4 − 6)2 + (13 − 9)2]0.5 = 5.7
from which it can be seen that the value which
must be assigned the top priority is a2, (followed
by a1 and finally a3).

3.2 State Prioritisation

A system would not normally consist of only one
constraint; therefore the states which are to be
prioritised for any step ahead in the simulation
will be made up of values for a number of dif-
ferent variables which are consistent with sev-
eral different constraints in the system. Thus a
method of prioritisation is required which will
order complete system states. The approach
suggested by Shen and Leitch deals with this
task in two stages. The first stage provides
the distance for a complete predicted variable
value consisting of a magnitude and derivative
< A,B > from the equivalent propagated state
< Â, B̂ >. Each element of the variable will have
an associated distance d(.); the distance for the
complete variables, D(.), is:

D(< A,B >< Â, B̂ >) = max{d(A, Â), d(B, B̂)}

The second stage is to find a distance for
each complete system state from the distances
for each complete variable. In their paper, Shen
and Leitch suggest the following formula:

Prioritise the states such that ρ((Ai, Bi)) =
j, i = 1, 2, . . . ,M, if

Di = min{{Dk|k = 1, 2, . . . ,M} − {Dk|k < j}}

That is: for each constrained variable in the
constraints, the constraint is applied to both the
magnitude and derivative of the variable, and
hence a distance between propagated and pre-
dicted values can be found for both the magni-
tude and derivative of the variable. The overall
distance for the variable is then taken to be the
maximum of these distances. Having obtained
distances for each variable value in the state,
the distance for the particular state is taken to
be the minimum of these distances. Then the
states are prioritised in accordance with these
distances, from minimum to maximum.

The above approach provides an ordering of
the states at each step in the simulation. How-
ever, this method effectively makes a single con-
straint responsible for the priority assigned to

the state. This is because the magnitude and
derivative distances calculated for a single pair
are assigned from the application of a single
constraint, and the maximum chosen. Then
the ordering is performed by selecting the min-
imum distance for these maxima, which is the
same as selecting the constraint that produced
this maxmin value. This approach then, while
providing an excellent start in the application
of prioritisation to fuzzy qualitative simulation,
does not utilise most of the information avail-
able about the model structure. Therefore an
alternative approach to the prioritisation of the
system behaviours is discussed in Section 4.

3.3 Behaviour Prioritisation

The prioritisation dealt with in the preceding
section is associated with the QA phase of the
simulation. This is the analysis which deals with
the values of states at instants in time. How-
ever, what is important about simulations are
the behaviours; therefore it is essential that the
behaviours generated by the qualitative simula-
tor be prioritised, rather than the states. Leitch
and Shen also address this problem. However,
their solution is to examine the distances and
priorities of the states at each step of the simu-
lation and base the estimate of which behaviour
should be top priority on the combination of the
distances calculated at each step. This amounts
to being a depth first search through the tree,
seeking to find a path that minimises some cost.
Again, this solution can be criticised method-
ologically. It implicitly assumes that the QA
phase is the only important part of the simula-
tion and that there is no cost (or at least equal
cost) in transiting from one state to another. In
contrast to this it can be argued that since sim-
ulation comprises a TA phase as well as a QA
phase, behaviour prioritisation should be based
on a combination of the constraint prioritisation
and a temporal prioritiser which can estimate
the most likely transition.

4 An Alternative Approach

On the basis of the distances calculated between
the predicted and propagated values, the pre-
dicted values can each be assigned a priority. For
every arithmetic constraint there will therefore
be (at least) one predicted value which has the
top priority. Since the model consists of a con-
junction of constraints the top priority state will
be the one consisting of the conjunction of the
top priority predicted value for each constraint.



4.1 Constraint Prioritisation

In Morven variables and models have comple-
mentary representations: variables are repre-
sented as vectors that are qualitative represen-
tations of Taylor series and the models exist in
differential planes. In a Taylor series the higher
derivatives have less weight in the calculation
of the variables value at a future time; like-
wise in the present situation the higher deriva-
tives carry less weight in the calculation of the
priority of a state. Also, since Morven mod-
els tend to be causally ordered for a simulation
the values predicted from constraints later in
the list are dependant on the predicted values
of variable-vector elements calculated earlier in
the constraints list. Thus, the state priority de-
creases as the priorities of the predicted values of
the variable-vector elements decrease, from the
lowest derivative upward to the magnitude and
from variable-vector elements calculated later to
those calculated earlier in the constraints. For
example, the second priority state will be the
one with every predicted value having top prior-
ity, except the constrained variable of the final
constraint of the system which will have second
top priority. Obviously then, the lowest priority
state is the one in which all the predicted values
are of the lowest priority. To clarify this, con-
sider the following pseudo example. A causally
ordered model consists of three constraints:

a = f(x), b = f(a), c = f(b)
x is given and a, b and c are the variables which
need to be calculated. After application of the
constraints the variables have the following val-
ues:

a = {qa1:1, qa2:2}
b = {qb1:2, qb2:1}
c = {qc1:2, qc2:1}

where the qs are quantities from the ap-
propriate quantity space and the numerals
after the colons are the priorities assigned
to the quantities by the constraint. Thus
the eight states created with these values
will be prioritised as in the order of the fol-
lowing list (from highest priority to lowest):
{(qa1, qb2, qc2), (qa1, qb2, qc1), (qa1, qb1, qc2),
(qa1, qb1, qc1), (qa2, qb2, qc2), (qa2, qb2, qc1),
(qa2, qb1, qc2), (qa2, qb1, qc1)}
which if looked at as a sets of conjunctions
of priorities would have the following form:
{(1 ∧ 1 ∧ 1), (1 ∧ 1 ∧ 2), (1 ∧ 2 ∧ 1), (1 ∧ 2 ∧ 2),
(2 ∧ 1 ∧ 1), (2 ∧ 1 ∧ 2), (2 ∧ 2 ∧ 1), (2 ∧ 2 ∧ 2)}
which gives a total ordering of the priorities for
a given model.

4.2 Temporal Prioritisation

In Section 2.2 the different time calculations per-
formed by Morven were described, and two of
them - the absolute departure time and the ab-
solute arrival time are relevant here since it is
the ongoing simulation that is being dealt with.
These times give a measure of the time elapsed
since the beginning of the simulation till the
variable-vector element either departs from its
present state, or arrives in its next state. These
times are both intervals representing the earli-
est and latest times a departure or arrival could
take place. The possible transitions that take
place may be ordered, and thus prioritised, on
the basis of these absolute times, from fastest to
slowest.

By combining constraint and temporal pri-
oritisation one obtains an ordering of the be-
haviours in the behaviour tree: the behavioural
prioritisation

5 An Illustrative Example

In this section an example is presented to illus-
trate the concepts discussed in the previous sec-
tions. The coupled tanks system is chosen be-
cause it is complex enough to explicate the con-
cepts and simple enough to be understood and
analysed. A schematic diagram of the coupled
tanks system is shown in Figure 4.

qi

qo

h 1h2

h 12

q x

Figure 4: A Coupled Tanks System

Fuzzy qualitative reasoning permits the in-
corporation of empirical knowledge in a model
in the form of fuzzy rules. The exact form in
this example was chosen to emphasise the ad-
vantages of fuzzy qualitative reasoning in this
respect, whilst keeping the problem tractable for
ease of analsysis and explanation. The constitu-
tive relationships of the coupled tanks system
are fuzzy rule-bases of the following form:




qx = F (∆h) nt nl nm ns z ps pm pl pt

nt 1 0 0 0 0 0 0 0 0
nl 0 1 0 0 0 0 0 0 0

nm 0 0 1 0 0 0 0 0 0
ns 0 0 0 1 0 0 0 0 0
z 0 0 0 0 1 0 0 0 0
ps 0 0 0 0 0 1 0 0 0
pm 0 0 0 0 0 0 1 0 0
pl 0 0 0 0 0 0 0 1 0
pt 0 0 0 0 0 0 0 0 1




qo = F (h2) nt nl nm ns z ps pm pl pt
nt 1 0 0 0 0 0 0 0 0
nl 0 1 0 0 0 0 0 0 0

nm 0 0 1 0 0 0 0 0 0
ns 0 0 0 1 0 0 0 0 0
z 0 0 0 0 1 0 0 0 0
ps 0 0 0 0 0 1 0 0 0
pm 0 0 0 0 0 0 1 0 0
pl 0 0 0 0 0 0 0 1 0
pt 0 0 0 0 0 0 0 0 1


and the structural relations are:

∆h = h1 − h2 h′
1 = qi − qx h′

2 = qx − qo

where h1 and h2 are the head of fluid in the
tanks, ∆h is the head difference, qi is the rate
fluid flow into the system, qo is the flow of fluid
from the system and qx is the crossflow of fluid
between the tanks.

These constraints are causally ordered for use
with Morven. They also constitute the con-
straints of the zeroth differential plane; the con-
straints for the higher differential planes are ob-
tained by differentiating these constraints. Of
course, empirically derived rule bases cannot be
differentiated and so this will only be achievable
if empirical information has been obtained for
the first differential plane as well. For the pur-
pose of this example it is assumed that this has
been done.2

5.1 Results and Discussion

In order to run a simulation, two pieces of in-
formation are required: the initial values of the
states variables (h1 and h2), and a complete
specification of the input (or exogenous) vari-
able, qi in this case. Consider the situation
where there is a continuous steady flow into
the tanks (which are initially empty) with value
p − medium; this gives the following input de-
scription and initial values.
Input: qi =< p − medium zero >

Initial Values:
{

h1 = zero
h2 = zero

The result of this experiment is a behaviour tree
containing 550 states. From this, one can select
a number of paths to steady state that serve
to illustrate the features of behaviour prioriti-
sation. Three paths will be examined. A be-
haviour tree is also known as a partial envi-
sionemnt because it constitutes that part of a

complete envisionment graph reachable from a
given initial starting state. In a behaviour tree
the same state can appear in a number of differ-
ent branches with a different state number and
this can make it harder to discern what is going
on when analysing the effects of prioritisation.
In order to make things clearer, the same states
for the three paths have been given the same la-
bel and the part envisionment graph is shown in
Figure 5.

1(1) 3(2)

5(1)

4(4)

6(2) 9(1) 10(4) 11(1) 12(4)

7(2)

8(2)

2(1)

Figure 5: Partial behaviour graph with con-
straint prioritisation applied

This part envisionment starts with both
tanks empty (state 1) and ends at an equilib-
rium state (state 12). Three states are common
to all three paths (states 1, 11 and 12). The
numbers in parentheses on the graph refer to
the constraint priority of the states.

In order to demonstrate the effectiveness of
the prioritisation scheme, the three paths chosen
are: the fastest path (containing states: 1, 2, 5,
8, 11 and 12) taking a maximum time of 12.17
time units (tu); the shortest path (containing
states: 1, 4, 7, 11, 12) taking a maximum time
of 12.83tu; and a long path (containing states:
1, 2 3, 4, 6, 9, 10, 11 and 12) with a maximum
time of 13.83tu.

Several things emerge perusal of Figure 5:

• The fastest path is also the one with the
highest overall constraint priority. The ex-
ception to this is priority of state 8. How-
ever the top priority states at that level did
not form any path to equilibrium and may
therefore part of a spurious behaviour.

• The shortest path in terms of the number
of qualitative states traversed is not nec-
essarilly the fastest. This can occur be-
cause some states persist longer than oth-
ers; therefore, paths including them will be
temporally longer than the other paths.

• Temporal prioritisation must be done glob-
ally rather than locally. This arises from

2. Morven can operate using only the zeroth dif-
ferential plane, but for purposes of comparison two
planes are used for this example.



the fact that the transition from state 2 to
state 3 is faster than the transition state
2 to state 5; yet the former is part of the
longest path and the latter is part of the
fastest path overall. This is related to the
problem of spurious behaviour generation,
where it is well recognised that one of the
sources of this problem is the local nature
of the TA phase.

• The existence of different rational paths to
equilibrium indicate that prioritisation is a
means of behaviour selection. The consti-
tutive relations in a fuzzy system contain
vagueness and depending on the degree may
allow the incorporation of a wide range of
underlying parameter values. Here prioriti-
sation acts as an analogue to sampling, en-
abling one to select either faster or slower
changing behaviours as required.

Finally, on the assumption that an appro-
priate prioritisation scheme can be developed,
the question arises as to how it should be in-
tegrated with existing filters. The process of
prioritisation orders a set according to a met-
ric. It does not actually allow one to state that
any of the states should be eliminated. Implicit
in this is the assumption that all the members
of the set being prioritised are real. This leads
to the conclusion that the existing methods for
eliminating spurious behaviours [7] should still
be used to eliminate as many behaviours as pos-
sible, and then (on the assumption that the re-
maining states are valid) prioritisation should be
applied to select the most likely.

6 Conclusions

The theme of this paper has been the explo-
ration of issues relating to prioritisation of the
behaviours generated by fuzzy qualitative simu-
lation. The possibility of selecting behaviours in
this way was first suggested by Leitch and Shen
[8], and they provided a useful initial method.
However, their approach was based on max and
min operators and did not utilize all the informa-
tion available in making the decisions regarding
which behaviour should be considered to have
top priority. Therefore a new approach to pri-
oritisation is suggested based on the recognition
that constraint based models are conjunctions of
constraints and the vectors representing the val-
ues of variables and qualitative versions of Tay-
lor series. The resulting behavioiur prioritisa-
tion utilises both constraint and temporal pri-
oritisation and is therefore a more versatile and

informative version of prioritisation.
The conclusions from the experimental anal-

ysis of using this new prioritisation scheme are:

• The fastest path is also the one with the
highest overall constraint priority.

• The shortest path may not be the fastest.
• Temporal prioritisation must be done glob-

ally rather than locally.
• The existence of different rational paths to

equilibrium indicate that prioritisation is a
qualitative analogue to sampling.
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