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Abstract

The paper introduces model ensembles as a common frame-
work for understanding qualitative differential equations
(QDEs) and differential inclusions in a precise mathemati-
cal sense. It provides basic insights into the communalities
and differences of both approaches to model under uncer-
tainty. On this basis, a set of established methods for QDEs,
some hybrid methods and standard quantitative methods can
be classified, the notion of a “spurious behaviour” is clarified
more thoroughly, and the importance of generality as a con-
cept complementary to uncertainty is underpinned. Further
paths for extending qualitative reasoning are outlined.

Introduction
Although much progress has been achieved in integrat-
ing qualitative differential equations (QDEs) with quantita-
tive knowledge (Kay & Kuipers 1993; Kuipers 1994; Kay
1998; Berleant & Kuipers 1997), hybrid systems that com-
bine different modelling approaches and types of knowl-
edge from a coherent framework are still urgently needed
(Travé-Massuyès, Ironi, & Dague 2004; Priceet al. 2005).
There is no common mathematical theory to my knowledge
that describes, e.g. qualitative, semi-qualitative, set-valued,
interval-based and order of magnitude reasoning. Relevant
approaches as those of Bradleyet al. (2001) integrate vari-
ous reasoning techniques hierarchically in a more pragmatic
way.

Up to now, it has been an open issue whether QDEs and
differential inclusions (DIs) are essentially the same wayof
representing uncertainty (Kuipers 2000; Saint-Pierre 2004),
although methods as Q3 closely resemble the numerical
analysis of differential inclusions by considering numerical
envelopes on functions and landmarks in an efficient way
(Berleant & Kuipers 1997). DIs represent a similar approach
to account for uncertainty (Aubin & Cellina 1984), since
contingent dynamics can be computed even if no probabilis-
tic knowledge is available. The question is whether QDEs
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can be mathematically described by differential inclusions,
which would provide a valueable bridge between set-valued
analysis and computer sience. The works of Dordan (1992;
1995), Aubin (1996), and Hüllermeyer (1997) make consid-
erable steps in that direction. Based on an ordinary differ-
ential equationẋ = f(x) they introduce the concept of a
monotonic cell, consisting of all statesx such thatf(x) has
a given sign vector. A trajectory can be described qualita-
tively by the sequence of the monotonic cells it visits. By
imposing additional restrictions onf , these authors investi-
gate the issue of the existence of solutions more thoroughly
than in the literature from computer science. They also gen-
eralise the approach to other partitions of the state space than
by signs, called qualitative frames. However, the approach
is more restrictive in that only single ordinary differential
equations (ODEs) are considered. This is interesting in it-
self, but not sufficient for many applications of QDEs where
uncertainties have to be taken into account.

Another issue which seems unrelated at the first glance is
the necessary existence of spurious behaviour (Say & Akin
2002). A spurious behaviour doesn’t match the quantitative
solution of an ODE covered by the simulation input. Such
behaviour is traced back (i) to the impossibility to represent
certain types of irrationals, (ii) to the well-known ambigu-
ities of sign algebra, and (iii) generally to the incomplete-
ness of the information about a system that is modelled as
a QDE. It is yet unclear what kind of application-oriented
models could bring about such paths in a relevant way. An-
swering such questions requires a precise notion of spurious
behaviour that can ideally be linked to established mathe-
matical theory.

This paper formalizes basic ideas about “incomplete
knowledge” in a precise sense to clarify the discussion by in-
troducing the general framework ofmodel ensembleswhich
includes ODEs, QDEs, differential inclusions, causal loop
diagrams and further methods as special cases. Thus the re-
lation between QDEs and differential inclusions can be clar-
ified. Technically, a model ensemble is a (possibly infinite)
setM of functions, where eachf ∈ M constitutes an ordi-
nary differential equatioṅx = f(x, t). By considering not a
single model but a whole ensemble of models, a variety of
possible system configurations which we can think of under
uncertainty is covered. Although not systematized as here,
such a style of reasoning is also common, e.g. for param-



eter variation (e.g. Stainforthet al. 2005), model compar-
ison (e.g. Gregoryet al. 2005), and scenario development
(e.g. Nakićenovićet al. 2000; Millennium Ecosystem As-
sessement 2005; Swart, Raskin, & Robinson 2004). These
basic ingredients are not new, but to my knowledge were
never published. Based on this it is shown for a large set of
qualitative models that no path of length 2 in an envision-
ment graph is spurious. At the same time, the definitions
contribute to specify new hybrid qualitative-quantitative ap-
proaches.

Although a theoretical paper with a broader scope, this
work is motivated by applications from sustainability sci-
ence. The research about sustainable development aims to
meet current human needs while maintaining the environ-
ment and natural resources for future generations (WCED
1987). In this domain uncertainties about dynamic social-
ecological systems pose major challenges, and typologies
of such systems and to understand so-called syndromes
of global environmental change (Schellnhuber, Lüdeke, &
Petschel-Held 2002; Petschel-Held 2005) are an important
research field. In this context QDEs are a very valu-
able tool to analyse causal loop diagrams (Forrester 1968;
Sterman 2000) and to deal with uncertainty, generality and
non-quantitative knowledge (Petschel-Heldet al. 1999;
Stave 2002).

In the next section, the framework of model ensembles
if formally introduced and illustrated with some more con-
ventional examples. Then, basic defintions of QDEs are re-
formulated using graph theoretical concepts and the frame-
work, including a discussion of spurious behaviour. Subse-
quently, differential inclusions are recalled and formulated
as model ensembles, allowing for a thorough comparison
with QDEs. Before concluding, further implications are dis-
cussed.

Model Ensembles
A model ensemble M is defined as a set of functions
f : X × R+ → Rn on a state space X ⊆ Rn. These
functions are calledmodels. In the case of uncertainties,
each describes a possible configuration of a real-world sys-
tem which must be considered. The setE contains functions
x(·) : R+ → X , being the space ofadmissible trajectories
of the systems, e.g.E = C1(R+, X). Each modelf ∈ M
defines a family of initial value problems

ẋ = f(x, t),

x(0) = x0,

with x0 ∈ X . It is also possible to consider model ensem-
bles which only contain autonomous models.

Of course, the systems of the model ensemble have (in
general) different solutions. Thus, asetof trajectories must
be assigned to each initial valuex0. The set-valuedsolution
operator SM(·) : X → P(E) (of a model ensembleM
with respect to a state spaceX and admissible trajectories
E), assigning to an initial state a subset ofE , is defined by

SM(x0) := {x(·) ∈ E |

x(0) = x0,

∃f ∈ M∀t ∈ R+ : ẋ(t) = f(x(t), t)}.

Depending onE it may be sufficient that the ODE only holds
almost everywhere. The solution operator is written with the
initial statex0 as argument to investigate how properties of
the solutions change in different subsets of the state space
(see the section on further applications below and Eisenack
(2006)). If we are interested in all possible initial states, we
take the whole state spaceX as argument and call the ele-
ments ofSM(X) thesolutions of the model ensemble M.
The solution operator and the way we denote it is also re-
sembles the concept of an evolutionary system as defined by
Aubin (2001). The main challenge in reasoning with model
ensembles is to find relevant structure inSM(X). This in-
cludes

1. representing a model ensemble in a way which is adequate
to the modeller and allows for a formal treatment,

2. efficient algorithms to determineSM(X) from a (possi-
bly infinite) model ensembleM,

3. detecting structural features of the solutions of the model
ensemble.

We now provide some examples for model ensembles.

EXAMPLE 1: Let M contain only one functionf : X ×R+ → Rn which is Lipschitz onX , and let the admissible
trajectories beE = C1(R+, X). Then,SM(x0) contains
the usual solutions of the initial value problem withx(0) =
x0 which exist onR+. �

EXAMPLE 2: Given a functionf ′ : X × R+ × Rn →Rn, (x, t; p) 7→ f ′(x, t; p), depending on a parameter vector
p, and a finite setP of possible parameterisations, define the
finite model ensemble

M := {f ∈ C(X×R+,Rn) | f(x, t) = f ′(x, t; p), p ∈ P}.

Then, the solution operator with respect to a set of admissi-
ble trajectories provides all “scenario runs” for the different
parameterisations. �

EXAMPLE 3: A causal loop diagram (in its simplest form)
is a directed graph with marked edges. Each vertex repre-
sents a variable, and each edge an influence of the source
variable on the target variable which can be marked as pos-
itive or as negative. In traditional systems dynamics mod-
elling (Forrester 1968; Sterman 2000), the causal loop dia-
gram is a starting point to develop a quantitative model, usu-
ally in the form of an ordinary differential equation (ODE).
Since the diagram only contains qualitative information,
there is an infinite number of such ODEs for a given dia-
gram. For example (cf. Richardson 1986),M can be defined
as the set of all ODEṡx = f(x) with state vectorx ∈ Rn

for which the signs of the partial derivatives
[

Djfi(x)
]

cor-
respond to the signs of the edges (Djfi denoting the partial
derivative of theith component off with respect toxj). If
there is no edge between two variables, the partial derivative
vanishes. �

In the next sections, QDEs and DIs are introduced as model
ensembles.



QDEs as Model Ensembles
For the sake of simplicity I introduce a simplified version
of QDEs that only considers monotonic influences on the
change of variables. For this model class only the velocity,
but not the state space needs to be investigated. The exten-
sion to complete QDEs with landmarks is straightforward
but very technical insight (see Eisenack 2006 for a treat-
ment). There is one other difference to the original work
of Kuipers (1994): the focus is on time-interval states, while
time-point states are not represented explicitly. This hasthe
advantage that solutions of QDEs can be displayed in a much
more accessible form (Eisenack & Petschel-Held 2002).

At first we specify the kind of model ensemble which con-
stitutes a QDE. ByA := {[+], 0, [−]}we denote the domain
of signs, and byA∗ := {[+], 0, [−], [?]} the domain of ex-
tended signs. Qualitative equality is denoted by≈. We will
aditionally use tuples and matrices of (extended) signs, and
extend the sign operator[·] and qualitative equivalence com-
ponent wise. Now a model ensemble can be defined:

DEFINITION 1: For a givenn × n matrix of signsΣ =
(σi,j)i,j=1,...,n, σi,j ∈ A∗, and a state spaceX ⊆ Rn we
define themonotonic ensemble

M(Σ) := {f ∈ C1(X,Rn) | ∀x ∈ X :
[

J (f)(x)
]

≈ Σ},

whereJ (f) denotes the Jacobian off . We call a function
x(·) ∈ C1([0, T ],Rn), possiblyT = ∞, reasonable under
the usual conditions, and define the space of admissible tra-
jectoriesE by all reasonable functions with values inX . We
call the systems of the model ensembleM(Σ) a QDE.

A monotonic ensembleM(Σ) is a model ensemble which
only contains autonomous models. Although a set of ODE
systems is not an equation we use this designation in analogy
to Kuipers (1994). One reason of the original terminology
might be that a QDE can be “solved” by considering a con-
straint satisfaction problem, i.e. a relational equation over a
finite set.

Based on DEF. 1, a set-valued solution operatorSM(Σ)(·)
is defined. The set of solutions of the monotonic ensem-
bleSM(Σ)(X) contains all reasonable solutions of all ODE
systems contained in the QDE. It should be noted that the
properties of the monotonic ensemble are not sufficient to
guarantee a global solution for everyf ∈ M(Σ).

Admissible trajectories are discretized as usual by track-
ing the sign vectors[ẋ(t)] for each solution:

DEFINITION 2: For a given reasonable functionx(·) on
[0, T ] we have an ordered sequence of sign jump points
(tj) with t0 = 0 which subsequently contains all bound-
ary points of the closures of all sets{t ∈ [0, T ]|[ẋ(t)] = v}
with v ∈ {[−], [+]}n. We construct a sequence of sign vec-
tors x̃ = (x̃j) :=

([

ẋ(τj)
])

, where we arbitrarily choose
τj ∈ (tj , tj+1). If the sequence(tj) is finite withm ele-
ments, we chooseτm ∈ (tm, T ). The sequencẽx is called
abstraction of x(·).

The slight difference compared to the standard definitons is
that, e.g. times were trajectories go through a saddle point
are ignored. Note that the abstractionx̃ does not depend
the concrete valuesτj ∈ (tj , tj+1), j ∈ N, since the sign

vector
[

ẋ(t)
]

is constant on any interval(tj , tj+1). The set
of the abstractions of all solutions of a monotonic ensemble
are entailed by a finite graph in the following way:
DEFINITION 3: LetM(Σ) be a monotonic ensemble,E the
set of reasonable trajectories andSM(Σ)(·) the correspond-
ing solution operator. We denote the set of the abstractions
of the solutions by

S̃M(Σ)(v0) := {x̃ |∃x0 ∈ X with [x0] ≈ v0,

∃x(·) ∈ SM(Σ)(x0) :

x̃ is the abstraction ofx(·)}.

Then, the directedstate-transition graph G of the monotonic
ensemble is defined by the vertices

V (G) := {v ∈ An | ∃ x̃ ∈ S̃M(Σ)(A
n), j ∈ N : x̃j = v},

calledqualitative states, and the edges

E(G) := {(v, w) | ∃ x̃ ∈ S̃M(Σ)(A
n), j ∈ N :

x̃j = v and x̃j+1 = w},

calledqualitative transitions.
For convenience, the state-transition graph of a monotonic
ensemble is also called the state-transition graph of a QDE.
Thus, we have defined a directed graphG such that all se-
quences ofS̃M(Σ)(A

n) describe a path inG, i.e. the graph
completely covers all reasonable solutions of initial value
problemsẋ = f(x), x(0) = x0 with f ∈ M(Σ). Note that
G is loop free since subsequent coefficients of the abstrac-
tion of a reasonable function are different. Note further that
formalizing the state-transition graph in that way does not
require a completeness proof, since it is complete by defi-
nition. Completeness can only be shown for an algorithm
that computes the graph (e.g. the QSIM algorithm). In our
framework this requires to prove that at least a supergraph,
but definitively not a subgraph is determined. Within this
framework spuriousity is defined as follows:
DEFINITION 4: Let G be the state-transition graph of
the monotonic ensembleM(Σ). In G a pathv1, . . . , vn of
lenghtn is calledspurious if there is no modelf ∈ M(Σ)
and no initial velocityẋ0 with [ẋ0] = v1 such that the solu-
tion x(·) to the initial value probleṁx = f(x), ẋ(0) = ẋ0

hasv1, . . . , vn as the firstn coefficients of its abstractioñx.

We discuss the occurence of spurious behaviour in the exact
state-transition graph below.

Even without running the QSIM algorithm, some features
can be shown directly. Which vertices occur in a state-
transition graph? Most basically,{[−], [+]}n ⊆ V (G) due
to the following reasons: by chain rulëx = J (f)(x) · ẋ,
such that for assumptions about the sign matrix

[

J (f)(x)
]

not all sign vectors[ẋ] are consistent with all sign vec-
tors [ẍ]. However, since no claims about[ẍ] are made, no
[ẋ] ∈ {[−], [+]}n can be excluded from being a vertex. The
situation is more complicated if someẋi ≡ 0 on (tj , tj+1),
which implies that alsöxi ≡ 0 on the same interval.

I now present a necessary criterion for such a vertex to
exist (see Eisenack 2006 for a proof). For this, we need the
setZ0(v) := {i = 1, . . . , n|vi = 0}, which assigns to a sign
vectorv ∈ An the indices of vanishing components.



PROPOSITION1: If v ∈ V (G), then for alli ∈ Z0(v)

∃j, k /∈ Z0(v), j 6= k : 0 6= σi,jvj ≈ −σi,kvk 6= 0

or ∀j /∈ Z0(v) : σi,j = 0.

Additionally, every state-transition graph contains the vertex
0, representing the equilibria of systems of the monotonic
ensemble.

Now I will show a characterisation for the existence of
edges in the state-transition graphG. It is simplified by
considering only vertices with non-vanishing components.
When two qualitative statesv, w differ only in one compo-
nenti, there must be a solution of the monotonic ensemble
x(·), defined by a modelf , which transgresses the main iso-
cline fi(x) = 0 at some time, because this isocline sepa-
rates the regions of the phase space where[f(x)] = v and
[f(x)] = w, respectively. A necessary condition for such a
transgression is an appropriate sign ofẍi on the main iso-
cline, e.g. if vi = [−] and wi = [+], then [ẍi] ≈ [+]
is needed. We define theintermediate state v ∧ w for
v, w ∈ An by

(v ∧ w)i :=

{

vi if vi = wi,

0 if vi 6= wi.

Thus,Z0(v ∧ w) are the indices of the components which
change fromv to w (or which are constant in one or both
states).

PROPOSITION2: Let v, w ∈ V (G), v 6= w, andZ0(v) =
Z0(w) = ∅. Then,(v, w) ∈ E(G) iff

∀i ∈ Z0(v ∧ w)∃j /∈ Z0(v ∧ w) : wi · (v ∧ w)j ≈ σi,j .

For a detailed proof see Eisenack (2006). Here it is impor-
tant to notice that the proposition is a full characterisation. It
is not only a criterion for determining the edges of the state-
transition graph, but also shows that every edge(v, w) in the
graph actually corrresponds to at least one model inM(Σ)
which visits the qualitative statesv and w in that tempo-
ral order. The main part of the proof is thus to construct
an appropriate model and to show that it is an element of
the monotonic ensemble. The consequence is that (at least
for QDEs described by a monotonic ensemble) subsequent
time-interval states computed by the QSIM algorithm are
never spurious.

Problems arise, of course, for paths of length 3 or more.
However, if we extend the definition of monotonic ensemble
towards

M(Σ) := {f ∈ C1(X,R+,Rn) |∀x ∈ X, t ∈ R+ :
[

J (f)(x, t)
]

≈ Σ},

it is expected that the situation changes dramatically. Since
the non-autonomous system can, in principle, switch be-
tween the models constructed in the above proof at every
qualitative state,every pathof arbitrary lengthcorresponds
to at least one model. In that sense, there are no spurious
behaviours.

It may be questioned whether these results still hold when
full QDEs and not only monotonic ensembles are consid-
ered. There are no proofs yet, but the extension seems

straightforward – although a lot of cases need to be distin-
guished. For illustration, an example for a model ensemble
containing a landmark (λ) and an algebraic constraint (+) is
(see Eisenacket al. 2007 for further examples)

M(Σ1, Σ2) := {f ∈C1(R2 ×R+,R2 ) |

∃λ ∈ R∀x ∈ R2 , t ∈ R+

with x1 ≤ λ :
[

J (f)(x, t)
]

≈ Σ1

and withx1 > λ :
[

J (f)(x, t)
]

≈ Σ2

andf1(x, t) = x1 + x2.}

This example also illustrates the need for precise definitions
to be clear about what is meant by a spurious behaviour.
Here, addition of real numbers is used in the definition of
M(Σ1, Σ2) for the algebraic constraint. The model ensem-
ble would be much larger if in the last line of the definition,
addition is used in the qualitative sense, i.e.

∀x ∈ R2 , t ∈ R+ : [Df1(x, t)] ≈ [+ +], (1)

which would, depending onΣ1 andΣ2, be either contradic-
tory or redundant.

The Relation between QDEs and Differential
Inclusions

Differential inclusions (DIs) are a generalisation of ordi-
nary differential equations. While an ODE assigns a sin-
gle velocity to points in the state space, for differential in-
clusionsmultiple velocities can be assigned. We map a
statex to a set of possible velocitiesF (x), and admit a tra-
jectory x(·) as a solution, ifẋ(t) is always an element of
F (x(t)). As in the case of QDEs we cannot generally ex-
pect to obtain unique solutions in such a setting, yielding
a set-valued solution operator. The first ideas to this ap-
proach arose in the 30s of the last century (Zaremba 1936;
Marchaud 1934). A broad overview to the fundamentals and
subsequent development of the theory is provided by Aubin
(1984). Differential inclusions are applied to problems from,
e.g. population dynamics (Křivan & Colombo 1998; Guo,
Xue, & Li 2003), physics (Maisse & Pousin 1997), climate
change (Chahma 2003), differential games (Chodun 1989;
Ivanov & Polovinkin 1995) and natural resource manage-
ment (Bene, Doyen, & Gabay 2001; Curyet al. 2005;
Eisenack, Scheffran, & Kropp 2006).

One basic motivation – similar to QDEs – is to consider
uncertainties which cannot be expressed in a probabilistic
way. We may have an ODĖx = f(x, t; u), depending on a
parameter or a controlu. If we do not knowu exactly but can
restrict the value, say, to an intervalJ such thatu ∈ J , we
obtain a set of possible valuesF (x, t) := {f(x, t; u) | u ∈
J}. We can formulate this as an infinite monotonic ensemble
in the following way. For a given autonomous measurable
function f ′ : X × U → Rn, (x, u) 7→ f ′(x, u), where
U ⊆ R is a given interval of control values, set

M := {f : X ×R+ → Rn measurable|

f(x, t) = f ′(x, u(t)), u(t) ∈ U}.



Taking absolutely continuous functions as admissible tra-
jectories, the solution operatorSM(x0) describes all trajec-
tories starting fromx0 which result from any measurable
open-loop controlu(·) : R+ → U .

In the set-valued standard definition, for a given set-
valued mapF : X → P(Y ) (whereY is the velocity space
andP() denotes the power set), an “equation” of the form

ẋ ∈ F (x),

x(0) = x0,

is called a differential inclusion. In most cases an absolutely
continuous functionx(·) : I → X on an intervalI = [0, T ],
possiblyT = ∞ is called asolution if x(0) = x0 and
ẋ(t) ∈ F (x(t)) almost everywhere onI. There are vari-
ous theorems on the existence of solutions to a differential
inclusion (see e.g. Aubin 1991).

From this general perspective, a set-valued mapF : X →
P(Rn) defines a model ensemble by

M := {f : X ×R+ → Rn |

f(x, t) measurable with respect tot

and∀t ∈ R+ : f(x, t) ∈ F (x)}.

Taking the set of absolutely continuous functions on inter-
vals I = [0, T ] as space of admissible trajectoriesE , we
obtain a set-valued solution operator

SF (x0) := {x(·) ∈ E |x(0) = x0, ∃f ∈ M :

ẋ(t) = f(x(t), t) almost everywhere}.

Can a QDE be “simulated” by a DI? To find all possible tra-
jectories which can be brought about by a simple QDE (we
stick to the case without landmarks again), we change the
perspective from the state space to the velocity space. We
could define a set-valued map byF (x) := {f(x) | f ∈ M}
such that the solutions of the differential inclusion describe
all trajectories. However, if the QDE is specified by a sign
matrix Σ = (σi,j) ∈ An×n

∗ , we run into trouble, as the fol-
lowing shows:

Suppose thatf ∈ M(Σ). Since it follows fromẋ = f(x)
that ẍ = J (f)(x) · ẋ, we obtain a second order differential
inclusion in the joint state and velocity space:

ẍ ∈ F (ẋ, x),

F : (ẋ, x) 7→ {J (f)(x) · ẋ | f ∈ M(Σ)}.

This can be simplified to

ẍ ∈ F̂ (ẋ) := {Mẋ |
[

M
]

≈ Σ},

whereM denotesn×n matrices over the real numbers. We
observe that the componentsi = 1, . . . , n of F̂ (ẋ) evaluate
to

F̂i(ẋ) =











































0 if ∀j = 1, . . . , n :

ẋj · σi,j = 0,R+ \ {0} else if∀j = 1, . . . , n :

[ẋj ] = σi,j 6= 0 or ẋj · σi,j = 0,R− \ {0} else if∀j = 1, . . . , n :

−[ẋj ] = σi,j 6= 0 or ẋj · σi,j = 0,R otherwise.

Except the trivial case, this unbounded set-valued map is
very irregular and allows for a very broad solution set. This
simple approach doesn’t provide valuable results.

One way to overcome this are linear-interval differential
inclusions, which restrict a monotonic ensembleM(Σ) to
models for which prescribed interval constraints, given by
set-valued maps, hold for the components of the Jacobian.

DEFINITION 5: Let U be a matrix of compact intervals
(ui,j)i,j=1,...,n, where each interval either vanishes or does
not contain 0. A set-valued mapF : X → P(Rn), F (x) :=
Ux, where the latter denotes interval-valued multiplication,
is called alinear-interval map.

Interval-valued multiplication is defined in the usual way
by Ux := {Mx | M ∈ U}, where a matrixM =
(mi,j)i,j=1,...,n ∈ U if and only if ∀i, j = 1, . . . , n : mi,j ∈
ui,j. We regard singletons as intervals. DEF. 5 guarantees
that every coefficient ofU has a unique sign (which can be
related to the coefficients ofΣ). Note that a linear-interval
mapF defines a model ensemble which includes nonlinear
modelsf such that∀x ∈ X : f(x) ∈ F (x).

We saw above that it is not possible to investigate a QDE
by considering a differential inclusion̈x ∈ F̂ (ẋ). However,
if intervalsui,j are known such that∀x ∈ X : Djfi(x) ∈
ui,j, the linear-interval differential inclusion

ẍ ∈ F (ẋ) = Uẋ,

can be set-up. It is very regular and simulates the mono-
tonic ensembleM(Σ) in the following sense. Define the
restricted model ensemble

M′(Σ, U) :={f ∈ M(Σ) | ∀x ∈ X : J (f)(x) ∈ U}

⊆ M(Σ).

with the solution operatorSM′(Σ,U)(·). Then ∀x0 ∈
X, x(·) ∈ SM′(Σ,U)(x0) : ẋ(·) ∈ SF (ẋ(0)). On the other
hand, the differential inclusion also covers solutions of non-
autonomous ODEṡx = f(x, t) with J (f)(x, t) ∈ U for
all t ∈ R+. Linear-interval differential inclusions are more
general than QDEs in the sense that they also include non-
autonomous models, and are more specific in the sense that
they only include bounded models. In contrast, qualitative
differential equations are deterministic but subsume a broad
set of possible configurations.

Discussion and Further Applications
In many applications of qualitative reasoning the discus-
sion of spurious behaviour is mixed with the existence of
qualitative trajectories of a QDE which contradict knowl-
edge about the system available to the modeller that is not
expressed by qualitative constraints. If this impression is
true, one explanation are the roots of the method in quali-
tative physics, where we construct problem-driven models
of physical systems. They are perceived as being onto-
logically unambigous, completely numerically specified and
time-invariant. From this viewpoint, the main reason for
qualitative modelling are epistimic limitations, i.e. missing
knowledge about the “objective” pysical system (“uncertain-
ties”), or efficiency considerations when it is not needed to



have access to the complete “objective” system for solving
a particular task. By interpreting a model ensemble as un-
cerainty, it covers all cases that could be potentially consid-
ered as being valid due to pragmatic or epistemic limitations.

However, the formalization of QDEs as model ensemble
illustrates a further interpretation which is highly relevant in
the domain of sustainablity science that motivated this work:
it may be that there are multiple non-indentical systems,
e.g. social-ecological systems like fisheries, agricultural sys-
tems or bioreserves which re-appear in many instances on
the world. Although every such case may be different, it of-
ten appears that some of them share crucial properties and
exhibit certain patterns (e.g. qualitative behaviour withtyp-
ical temporal logic properties). Then, a model ensemble is
the collection of all cases which have to be analysed. In that
sense, QDEs do not only represent uncertainty, but alsogen-
erality. Such models are not only meant to provide insights
for single applications, but should also apply to a broader set
of cases with general features in common. In other words,
while resolving uncertainty would in principle lead to nar-
rowing down a QDE until it would be refined to an ODE,
for representing generality we do not aim at refining to that
point, so that the model ensemble still subsumes a broad
range of systems. Such generalised ensembles can be so-
called “archetypes” of global environmental change (Eise-
nack, Lüdeke, & Kropp 2006).

Within the domain of sustainability science it is also un-
appropriate only to consider autonomous ODEs as con-
stituents of the model ensembles, since social-ecological
systems are usually influenced by exogeneous environmen-
tal and cultural factors which are not constant in time.
Therefore, the extended definition of QDEs above may be
more appropriate for these kind of applications, at the same
time resolving the problem of spurious behaviour. I ex-
pect that this interpretation can also be valuable for other
domains where the analysis or design of whole classes of
systems is needed.

Once we adopt this viewpoint, further questions can be
posed within the framework of model ensembles and some
established tractability methods can be described. If it is
not possible to find relevant features common to all solu-
tions of a model ensembleM we can try to identify sub-
setsM′ ⊆ M for which such robust properties exist. The
characterisation ofM′ is associated with the discovery of
structural features which e.g. bring about problematic or de-
sirable system behaviour. In other terms, conditions under
which certain (sub)pattern evolve are found. IfM is par-
tially determined by certain control measures imposed on
the system, andM′ by alternative control measures, the dif-
ferences between the solution operatorsSM(·) andSM′(·)
are of interest.

There are cases where solutions of a model ensemble are
artifacts from the assumptions the modeller made. Then it
is important to restrict the analysis so that the artifacts are
eliminated. Generally, arestriction means a restriction of
the model ensemble to someM′ ⊆ M, of the admissible
trajectories to someE ′ ⊆ E , or of the state space to some
X ′ ⊆ X . Very “unlikely” or “irrelevant” cases which cannot
be refuted on base of the original model ensemble are further

reasons to restrictM or evenE . The analytical function
constraint and phase plane constraints are examples for the
latter, while filtering marginal cases (Eisenack & Petschel-
Held 2002; Bouwer & Bredeweg 2002) for the former.

The concept of restricting a model ensemble can also be
seen as a formalization of finding the best level of abstrac-
tion for practical engineering problems. Qualitative mod-
elling can start with a very general model ensemble which
is then successively restricted only up to the level where it
becomes concrete enough to achieve its intended task.

Finally, the perspective of model ensembles opens the
view for established as well as potential future hybrid or
semi-qualitative modelling techniques. One basic motiva-
tion for such hybrid methods is to include more than just
monotonicity assumptions about a system, if they are avail-
able. For example, NSIM restrictsE by introducing en-
velopes on the solutions (Kay & Kuipers 1993), while Q2
restrictsM to those models where landmarks are (con-
stant) within prescribed quantitative intervals and mono-
tonic functions within monotonic envelopes (Kuipers 1994).
Q3 basically remains within this specification but developes
more powerful reasoning techniques to determine solutions
(Berleant & Kuipers 1997). All these methods, although de-
terministic in their core, are close to the ideas of differential
inclusions. They may be improved by using more results
from the respective numerical analysis.

As a new semi-qualitative example I outline a technique
which is based on the considerations of the last section (see
Eisenack 2006 for details). After solving a QDE with sign
matrixΣ, quantitative bounds are considered by setting up a
linear-interval differential inclusion̈x ∈ F (ẋ) = Uẋ where
the signs of the intervals coefficients ofU correspond to the
signs ofΣ. If we want to identify conditions for a given
successor statew to be reached from a statev, we define – in
the velocity space – the conesK(v) := {ẋ ∈ Rn | [ẋ] = v}
for v ∈ An. For the linear-interval differential inclusion,
the so-called absorption basinAbsF (K̄(v), K̄(v) ∩ K̄(w))
of the closure of such cones contains all initial velocitiesẋ0

such that for all solutionṡx(·) ∈ SF (ẋ0) with [ẋ0] = v there
exists aT > 0 with [ẋ(T )] = w. Such absorption basins
can be computed using the viability algorithm (Saint-Pierre
1994; Cardaliaguet, Quincampoix, & Saint-Pierre 1994).

All these methods share the idea to complement quali-
tative knowledge in the sense of monotonicities and land-
marks with quantitative knowledge in the sense of ODEs or
set-valued maps. However, we may think of further pos-
sibilities. Often more knowledge than about trends and
thresholds seems to be available, while it is very difficult
to come up with quantitative estimates. This may be due
to very poor data conditions (e.g. agricultural yield in de-
veloping countries, fish catches in international waters) or
due to difficulties in operationalizing variables (e.g. politi-
cal power or poverty).It would therefore be of high value
to refine model ensembles without resorting to quantities,
raising the question whether there is some relevant type of
non-quantitative knowledge that cannot be represented as a
QDE. Ordner of magnitudes may be a candidate, but estab-
lished formalizations still refer to magnitudes on the realline
(Travé-Massuyès, Ironi, & Dague 2004).



A further candidate are ordinal assumptions. These relate
to the strength of influences in causal loop diagrams. If the
influence of one variable on another is stronger than the in-
fluence of a third, this can be interpreted as partial order on
the partial derivatives of modelsf of a monotonic ensemble
M(Σ) of the form

∀x ∈ X : Dkfi(x) > Dlfj(x),

for a set of tuples(i, j, k, l). The restricted model ensem-
bleM′ ⊆ M(Σ) contains only those models that respect a
prescribed partial order of this kind. Eisenack et al. (2006;
2007) present some methods to exploit such kind of knowl-
edge. However, it appears that not all implications that can
be made from ordinal assumptions are exploited yet. Al-
though some theoretical results exists, well working algo-
rithms are not established yet. Finally, ordinal assumptions
obviously boil down to statements about the sign

[

di,j
k,l

]

,

wheredi,j
k,l := Dlfj · Dkfi − Dkfj · Dlfi. We can thus

re-state the question of whether there is some kind of infor-
mation “between signs and numbers”.

Conclusion
In this paper I presented a formalisation of QDEs within the
new framework of model ensembles which appears to em-
bed also differential inclusions and further established quan-
tiative and semi-qualitative methods.

Their particular similarities and differences become vis-
ible. While QDEs are deterministic and autonomous, dif-
ferential inclusions also include non-autonomous dynamics.
On the other hand, QDEs are less restrictive in the sense that
they do not need to be explicitly quantitatively constrained
by set-valued maps. Therefore, neither of these approaches
can be reduced to the other.

As a by-product the notion of spurious behaviour can be
further clarified. It is shown that a qualitative behaviour con-
sisting of two subsequent time-interval states is never spuri-
ous. Furthermore, there are indications that an extension of
standard QDEs to non-autonomous models of a certain kind
may completely resolve this problem.

The framework of model ensembles can be used to spec-
ify the notion of uncertainty typically used in qualitativerea-
soning and extends it to the notion of generality in a certain
sense that is highly relevant for the design of whole classes
of systems which only share some common features.

Finally, the framework of model ensembles allows for
defining various extensions of QDEs in a consistent way,
opening the field for further qualitative and semi-qualitative
methods.

References
Aubin, J.-P., and Cellina, A. 1984.Differential Inclusions.
Set-Valued Maps and Viability Theory.Berlin: Springer
Verlag.

Aubin, J.-P. 1991.Viability Theory. Basel: Birkhäuser.
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Schellnhuber, H.-J.; Lüdeke, M. K. B.; and Petschel-Held,
G. 2002. The syndromes approach to scaling: Describing
global change on an intermediate functional scale.Inte-
grated Assessment3(2-3):201–219.
Stainforth, D. A.; Aina, T.; Christensen, C.; Collins, M.;
Faull, N.; Frame, D. J.; Kettleborough, J. A.; Knight, S.;
Martin, A.; Murphy, J. M.; Piani, C.; Sexton, D.; Smith,
L. A.; Spicer, R. A.; Thorpe, A. J.; and Allen, M. R. 2005.
Uncertainty in predicitons of the climate response to rising
levels of greenhouse gases.Nature433:403–406.
Stave, K. A. 2002. Using system dynamics to improve pub-
lic participation in environmental decisions.System Dy-
namics Review18(2):139–167.
Sterman, J. D. 2000.Business Dynamics, Systems Think-
ing and Modeling for a Complex World. New York: Ir-
win/McGraw Hill.
Swart, R. J.; Raskin, P.; and Robinson, J. 2004. The prob-
lem of the future: sustainability science and scenario anal-
ysis. Global Environmental Change14:137–146.
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