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Abstract

Compositional Modelling (CM) has been applied to
synthesize automatically plausible scenarios in many
problem domains with promising results. However, due
to the lack of capability to deal with imprecise or ill-
defined information, there is a pressing need to improve
the robustness and accuracy of the existing CM work.
This paper presents a more flexible knowledge repre-
sentation formalism that combines fuzzy set theory and
recently developed CM methods to support automating
the process of generating plausible scenario spaces. The
proposed knowledge representation incorporates both
fuzzy parameters and fuzzy constraints into the repre-
sentation of conventional model fragments. The fuzzy
model composition process is illustrated by means of a
simple worked example for aiding in crime investiga-
tion.

Introduction
One of the hallmark contributions of qualitative reason-
ing is the method for creating models automatically for
a specific task given a problem domain theory. Com-
positional Modelling (CM) (Falkenhainer & Forbus 1991)
(Keppens & Shen 2001) (which has already become stan-
dard in qualitative reasoning) has been employed to syn-
thesize and store plausible scenario spaces effectively and
efficiently in many problem domains (e.g. physical (Ham-
scher, Console, & de Kleer 1992; Nayak & Joskowicz 1996;
Rickel & Porter 1997), ecological (Keppens & Shen 2004;
Salles et al. 2003) and criminological (Shen et al. 2007)).
The use of CM enables the construction of scenario descrip-
tions automatically under widely varying circumstances
without having to rely on an overly large knowledge base.
This is rooted in the observation that in a scenario space
the constituent parts of different scenarios are not normally
unique to any one specific scenario, and that there are po-
tentially many scenarios that possess common or similar
properties locally or globally. The scenario elements and
their relationships can therefore be modelled as generic and
reusable fragments and they only need to be recorded once
in the knowledge base.
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Given a specific task, the plausible models which can
solve or explain this task can be modelled in a variety of
ways. Such model fragments are generally applicable to
various scenario models, hence this results in a significantly
increased efficiency and flexibility. For example, for appli-
cations like serious crime detection and prevention, rather
than describing each scenario individually, a wide range of
composing states and events, say factually and potentially
available evidence, investigating actions and hypotheses can
be captured in abstract form and be organized and stored in
a knowledge base. Given obtained evidence (e.g. crime lo-
cation and involved victims), scenario descriptions that may
explain such evidence can then be synthesized dynamically
by combining those potentially relevant composing states
and events which are instantiated with the evidence and facts
provided.

Having recognized this, CM has been applied to the build-
ing of an intelligent crime investigation decision support
system (Shen et al. 2007) to assist human investigators by
automatically constructing plausible scenarios and analyz-
ing the likely further investigating actions with promising
results. Despite the promising performance and results of
the existing system, it is assumed that the model fragments
and expert knowledge within the knowledge base can all be
expressed by precise and crisp information. However, in re-
ality, the degree of precision of the available evidence and
intelligent data can vary greatly. In many cases, precise in-
formation is relatively more difficult to obtain than low res-
olution information. For instance, in cognitive modelling,
different people may hold different conceptual models of the
world. Indeed, under many circumstances, it is difficult to
express a view with a crisp value. For example, consider the
police discovered the dead body of Smith in his bedroom.
Bob who is the next-door neighbour witnessed somebody
going into Smith’s house; however, it is difficult for Bob to
state an accurate height for that person (e.g. 180 cm). Intu-
itively, he might just describe the height of the person as tall,
short or average.

Furthermore, in the existing work, each scenario frag-
ment employs a set of probability distributions to represent
the likelihood of its associated outcomes, and these are de-
scribed in numerical forms. However, such assessment of
likelihood typically reflects the expertise and knowledge of
experienced investigators and is normally available in lin-



guistic terms instead (Halliwell, Keppens, & Shen 2003).
The use of seemingly accurate numeric probabilities suffers
from an inadequate degree of precision. It would be more
appropriate and desirable to incorporate a measurement of
imprecision in depicting the probability distributions.

Fuzzy set theory offers a useful means of capturing and
reasoning with uncertain information at varying degree of
precision. Although fuzzy set theory has been applied to
addressing various problems, it has not been integrated to
compose a fuzzy model. This paper presents an initial at-
tempt to extend the existing CM work to allow for represent-
ing and use of vague knowledge and linguistic probability
(Cooman 2005; Halliwell & Shen 2007). It follows the ex-
isting literature in applying CM to support crime investiga-
tion by generating automatically plausible crime scenarios.
This problem domain is well suited to illustrating the under-
lying ideas of integrating fuzzy set theory in CM, since the
scenario fragments as well as the causal relations between
them are highly subjective and often related to inexact and
vague information.

The development of fuzzy CM mechanisms involves two
conceptually distinct aspects: 1)fuzzification of parameters
in the model fragments, including the identification and def-
inition of fuzzy variables in a generic sense; and 2)fuzzy
probabilistic assessment of the constraints between the states
and events of the world in question.

After presenting a brief overview of the basic concepts
of CM, the knowledge presentation of both fuzzy parame-
ters and fuzzy constraints in defining fuzzfied scenario frag-
ments is given. This is followed by an illustration of ap-
plying fuzzy model fragments to a small crime investiga-
tion problem, showing the composition process of a plausi-
ble scenario space from given evidence and facts. The final
section concludes this paper and points out future work.

Basic Concepts of Compositional Modelling
In CM, the knowledge base of the model-building system
consists of a number of generic scenario fragments, inter-
changeably termed model fragments as above, which repre-
sent generic relationships between domain objects and their
states for certain types of partial scenario. In particular, a
scenario fragment has two parts that encode domain knowl-
edge: 1) the relations between domain elements which are
often represented in a form that is similar to conventional
production rules but in a much more general format where
predicates are used to describe the properties of these do-
main elements; and 2) a set of probability distributions that
represent how likely it is that the corresponding relationships
are related.

More formally, a scenario fragment µ is a tuple
〈υs, υt, φs, φt, A〉 and is represented in the following form:

If {φs}
Assuming {A}
Then {φt}
Distribution φt

{υs
1 . . . υs

n → υt
1 : q1 · · · υt

m : qm}

where

• υs is a set of variables named source-participants, refer-
ring to already identified objects of interest in the partial
scenario, which can be real, artificial or conceptual ob-
jects.

• υt is a set of variables named target-participants, repre-
senting new objects that will be added to the partial sce-
nario description if the model fragment is instantiated (i.e.
when both the conditions and assumptions are presumed
to be true).

• φs is a set of relations called structural conditions, whose
free variables are elements of υs. Normally, the structural
conditions appear in the antecedent part and describe how
the source-participants are related to one another, often
encoded in the form of predicates.

• φt is a set of relations called post-conditions, whose
free variables are elements of υs

⋃
υt. Normally, the

post-conditions appear in the consequent part and define
new relations between source-participants and/or target-
participants, also often encoded in the form of predicates.

• A is a set of assumptions, referring to those pieces of in-
formation which are unknown or cannot be inferred from
other scenario fragments, but they may be presumed to be
true for the sake of performing hypothetical reasoning.

The If statement describes the required conditions for a
partial scenario to become applicable. These conditions
must be factually true or logical consequences of other in-
stantiated fragments.

The Assuming statement indicates the reasoning environ-
ment. With the purpose of performing hypothetical rea-
soning, this environment specifies the uncertain events and
states which are presumed in a partial scenario description.

The Then statement describes the consequent when the
conditions and presumed assumptions hold. They may rep-
resent a piece of new knowledge or relations which are de-
rived from the hypothetical reasoning.

The Distribution statement indicates the probability dis-
tributions of the consequent variables or those of their rela-
tions. The left hand side of the “implication” sign in each
instance of such a statement is a combination of variable-
value pairs, involving antecedent and assumption variables,
and the right hand side indicates the likelihood of each alter-
native outcome if the fragment is instantiated.

For example, the following scenario fragment shows a
piece of generic forensic knowledge that, assuming that sus-
pect S overpowers victim V , there is a 75% chance that fi-
bres will be transferred from S to V :

If {suspect(S), victim(V)}
Assuming {overpowers(S,V )}
Then {transfer(fibers,S,V )}
Distribution transfer(fibers,S,V ){

true, true, true →
true: 75%, false: 25% }

Given a collection of such local model fragments and
some observations (evidence), CM applies an inference pro-
cedure to create a space of scenario descriptions at a global
level. As the details of this procedure are very similar to



what is to be employed in fuzzy CM to be reported later,
they are omitted here. Interested readers can refer to (Shen
et al. 2007) for further details.

Foundations of Fuzzy CM
This section focuses on the creation of a structured knowl-
edge representation scheme which is capable of storing and
managing vague or ill-defined data including facts, evidence
and assumed information. Effort has been made to encode
fuzzy scenario fragments in a pre-specified format. The re-
search developed here is loosely based on knowledge repre-
sentation given in (Shen et al. 2007) and its related work;
however, it is adapted to represent imprecise and uncertain
information, including both parameters and constraints.

Fuzzy parameters
For many problems, there may be many variables that share
similar properties while most of these properties only in-
volve minor variations from one another if encoded compu-
tationally, in terms of knowledge representation. This is in-
dependent of whether the variables are fuzzy or not. For ex-
ample, variables such as quantity, volume and proportion all
reflect the concept of capacity. This group of variables may
all be expressed by linguistic terms such as large, average or
small (which can be conveniently represented by fuzzy sets).
Therefore, when defining a fuzzy variable, rather than re-
defining a new quantity space for it completely from scratch
each time, it has a natural appeal to group fuzzy variables
which share something in common into the same class. In
each class, the common features shared by the variables are
extracted and represented by an abstract variable with its
quantity space specified over a normalized universe of dis-
course. The quantity space of a variable belonging to a given
class is created by inheriting the common features from the
abstract variable and by embellishing it with new or modi-
fied properties.

To enable this development, fuzzy taxonomies that de-
scribe vague states and events for use in the scenario frag-
ments are introduced here. A taxonomy is considered to be
a hierarchy, where those variables at a lower level are more
specific than their ancestors and represent a more specialized
group of fuzzy variables. In so doing, fuzzy variables in a
CM knowledge base are organized in a structured manner.
This does not only improve the efficiency of storing knowl-
edge via reusing abstract fuzzy variables, but also helps re-
veal both the commonality and speciality of different vari-
ables. More importantly, the use of fuzzy taxonomies sup-
ports the construction of scenario spaces in a systematic and
concise manner due to the inheritance property of the hier-
archies.

Consider, for instance, the taxonomies shown in Fig. 1.
The first organises a set of fuzzy variables relating to an
abstract fuzzy variable named Measurement. Hence, fuzzy
variables height, distance, width, depth and length share cer-
tain properties in defining their quantity spaces as they in-
herit such common features from the abstract Measurement
variable; all of them can be measured with respect to a cer-
tain measurable unit and can be described as long, average

or short. Similarly, the variables in the second taxonomy are
all used to describe levels of different concepts. Although
they may denote rather distinct or even seemingly irrelevant
properties (e.g. temperature and difficulty), they all take on
values from the same underlying abstract quantity space in
terms of various levels such as high, average or low.

Note that, in these taxonomies, even the fuzzy variables
which are classified into different classes may still have
some more generic and deep underlying commonalities. For
instance, temperature in the second taxonomy is also a mea-
surable variable. Hence, from a more generic aspect, they
may still be allocated to a superclass which is more ab-
stract. However, in order to maintain the clarity of represen-
tation and the comprehensibility of inference drawn from
such representations, fuzzy taxonomies are not built in the
most generic way possible, but are classified with easy in-
terpretability in mind.

Measurement

Height Distance Length Depth Width

Level

Temperature Ability Efficiency Quality Difficulty

Figure 1: Example taxonomies of fuzzy variables

From above, it is clear that in defining scenario fragments
fuzzy variables can be divided into two types: abstract or
non-abstract. Abstract fuzzy variables are actually variable
classes that cannot be instantiated themselves in an effort
to describe any actual scenario and non-abstract fuzzy vari-
ables are those that can be instantiated. Clearly, in Fig. 1
Measurement and Level are abstract fuzzy variables, and
depth, distance, height, efficiency, etc. are non-abstract vari-
ables.

In implementation, abstract fuzzy variables are indicated
by means of the keyword abstract. Defining such a variable
involves specifying the following fields:
• Name: A constant that uniquely identifies the abstract

fuzzy variable.
• Universe of discourse: The domain of the abstract vari-

able. The default definition is [0, 1]. Any descendant of
an abstract fuzzy variable can modify the universe of dis-
course according to their physical dimension.

• Cardinality of partition: The number of fuzzy sets
which jointly partition the universe of discourse. This is
represented by a symbol n which will be substituted by a
positive integer in a lower level non-abstract variable.

• Quantity Space: A set of ordinal relationships that de-
scribe the value of a continuous parameter. Here, these re-
lationships are represented by the membership functions
of each fuzzy set that jointly cover the partitioned domain.
For example, the aforementioned abstract fuzzy variable

Level can be defined as follows (adhering to the conventional
representation style of model fragments):



Define abstract fuzzyvariable {
Name: Level
Universe of discourse: [0, 1]
Cardinality of partition: n
Quantity space:

fs1 =
[
0, 0, 1

n−1

]

· · ·
fsi =

[
i−2
n−1 , i−1

n−1 , i
n−1

]

· · ·
fsn =

[
n−2
n−1 , 1, 1

]

}
It would be inefficient and practically unnecessary to store

and manipulate fuzzy sets with arbitrarily complex member-
ship functions. Only the triangular membership functions
are considered in this initial work. Thus, a quantity space
specification consists of an ordered list of triples comprising
the start, top and end points of each membership function.
For both computational and presentational simplicity, trian-
gular membership functions in which the edge of a fuzzy
set’s membership function is exactly intersected to the cen-
troid of the neighboring one are used in this paper. For ex-
ample, assume n = 5, then the defined quantity space of the
abstract fuzzy variable Level is shown in Fig. 2.

1

Figure 2: A quantity space

Non-abstract fuzzy variables are identified by means of
the absence of the keyword abstract. Such definition in-
volves ”is-a” relationships in which a non-abstract fuzzy
variable is said to inherit from an abstract fuzzy variable. It
requires addition of fields that are specific to the variable un-
der definition, with shared commonalities already defined in
the corresponding superior abstract fuzzy variable. In fuzzy
CM, such new fields are defined as follows:
• Is-a: The name of an abstract fuzzy variable which refers

to the immediate parent of the current fuzzy variable in a
given taxonomy.

• Scalar: A constant which is used to scale up or down
the normalized universe of discourse of the corresponding
abstract variable.

• Unit: The variable’s physical dimension. If a fuzzy vari-
able has no unit, a default value of none is set for this
field.

• Name of fuzzy sets: The name of each fuzzy set in the
defined quantity space.

• Unifiability: The declaration of a unifiable property of
the variable, specified by a predicate.

The following example defines a non-abstract fuzzy vari-
able named Chance that inherits from Level.

Define fuzzyvariable {
Name: Chance
Is-a: Level
Cardinality of partition: 5
Scalar: 1
Unit: none
Name of fuzzy sets: {extremely unlikely,
slim chance, likely, very likely, good chance}
Unifiability: Chance(X)

}
Obviously, this non-abstract fuzzy variable Chance is a

kind of Level. Due to property inheritance, its universe
of discourse equals to the normalized universe of discourse
multiplied by the scalar over the corresponding physical di-
mension. Its quantity space is evenly partitioned by 5 fuzzy
sets which are described respectively by the five linguistic
terms given. Also due to inheritance, the membership func-
tions of those fuzzy sets are obtained once again by multi-
plying the corresponding key points in each fuzzy set by the
scalar.

Fuzzy constraints
In CM, knowledge is normally expressed as constraints or
relations which must be obeyed by certain variables involved
in a given problem domain. For example, velocity and du-
ration relations often appear in physical reasoning systems;
population growth and competition relations often appear in
ecological reasoning system; length and angle relations of-
ten appear in spatial reasoning systems. Such constraints as
used in the existing work require numerical values to quan-
tify the probability of a consequence’s occurrence, as previ-
ously illustrated.

Since such subjective probability assessments are often
the product of barely articulate intuitions, the seemingly nu-
merically precise expressions may cause loss of efficiency,
accuracy and transparency (Cooman 2005; Halliwell, Kep-
pens, & Shen 2003; Halliwell & Shen 2007). Under many
circumstances, an expert may be unwilling or simply un-
able to suggest a numerical probability. For example, con-
sider the following scenario: a dead body of Smith was dis-
covered at home and the cause of the death was suspected
to be suicide. A psychologist was then invited to exam-
ine the mental condition of Smith by analysing his diary.
Consultation with the psychologist is unlikely to yield much
beyond vague statements like “According to his diary, he
is extremely unlikely to kill himself” or “According to his
diary, he stood a good chance of killing himself”. There-
fore, the initial work developed here models the vagueness
of the probability distribution in terms of subjective linguis-
tic probabilities. Rather than using numerical representation
as in the literature, a fuzzy variable called Chance which in-
herits the properties of the abstract fuzzy variable Level is
introduced to capture subjective probabilistic assessments.
Both the Chance variable and its superior abstract variable
Level have been presented in previous section.



Similar to the existing approach, a scenario fragment in-
cludes a set of probability distributions over the possible as-
signments of the consequent φt, for those interested combi-
nations of assignments to the variables within the structural
conditions and assumptions. Note that, it is not required to
define each combination, the probability distribution only
focuses on those of interest. This can be generally repre-
sented by:

P (a1 : v1, . . . , am : vm → c : vcp) = fsp (1)

where ai : vi, iε{1, 2, · · · ,m} denotes the assignment ob-
tained by assigning vi to variable ai, c : vc has a similar
interpretation, and fsp is a member of the quantity space
that specifies the fuzzy variable Chance.

As an example, the following fragment illustrates the con-
cepts and applicability of fuzzy constraints:

If {height(S), height(V)}
Assuming {attempted to kill(S,V )}
Then {difficult level(overpower(S,V ))}
Distribution difficult level(overpower(S,V )) {

tall, short, true →
easy: good chance, difficult: slim chance }

It describes a causal relation holding among structural
condition a1 and a2, assumption a3 and post-condition c,
here
a1 = height(S) indicates the height of a suspect S, which
is a fuzzy variable that takes on values from a predefined
quantity space of {very short, short, average, tall, very tall}.
a2 = height(V ) indicates the height of a victim V , whose
possible value assignment is the same as S.
a3 = attempted to kill(S, V ) describes that suspect S
attempted to kill victim V , representing a conventional
boolean predicate.
c = difficulty level(overpower(S, V )) describes the dif-
ficulty level for suspect S to overpower victim V , with pos-
sible assignments being easy, average and difficult.

Note that, when defining probability distributions in sce-
nario fragments, the names of those variables within the
structural conditions, assumptions and post-conditions (e.g.
a1, a2, a3 and c) are omitted when such omissions do not
affect the interpretation of the meaning of the associated
values, for the sake of presentational simplicity. Thus, the
probability distributions can be rewritten as follows:

v1, v2, · · · , vm → vc1 : fs1, · · · , vcp : fsp

The above fragment reveals a general relation between the
heights of two people involved in a fight and the difficulty
level for one to overpower the other, and it can be applied
to modelling various scenarios. For example, this fragment
covers a fuzzy production rule which indicates that if suspect
S is tall, while victim V is short, and the suspect indeed
attempted to kill the victim, then the suspect stands a good
chance of overpowering the victim easily. Conversely, if the
suspect is shorter than the victim and he indeed attempted
to kill the victim, then there is only a slim chance for the
suspect to overpower the victim easily.

Application to Crime Investigation: Outline of
Scenario Composition

The proposed knowledge representation formalism and how
it is used to support CM is illustrated here with a sample ap-
plication to the generation of plausible scenarios reflecting a
crime situation in which a number of fibers matching Bob’s
clothes (Bob is the suspect) have been found on the dead
body of Dave. Relevant evidence and the key scenario frag-
ments of the sample knowledge base are presented in Ap-
pendix A. From the given facts, collected evidence and this
knowledge base, a structural scenario space can be generated
by joint use of two conventional inference techniques named
abduction and deduction. Note that since the degree of pre-
cision of the information (including both predefined knowl-
edge and available evidence/facts) can vary greatly, the col-
lected evidence and the knowledge base cannot in general
be matched precisely. Thus, a fuzzy matching method is ap-
plied for scenario fragment instantiation.

Initialization
To generate a space of plausible scenarios, collected evi-
dence and any available facts are firstly entered. The present
example shows one piece of evidence in which a number
of fibers collected from Dave’s body have been identified
matching the fibers of Bob’s clothes, and two available facts
in which Dave is known to be the victim and Bob is under
suspicion. The result of this initialization phase is shown in
Fig. 3.

Figure 3: Result of initialization

Backward chaining phase
This phase involves the abduction of all domain objects and
their states that might cause the available evidence. These
plausible causes are created by instantiating the conditions
and assumptions of the scenario fragments in the knowledge
base, whose consequences match the collected evidence in
the emerging scenario space. After that, the newly created
instances of all plausible causes are recursively used in the
same manner as the original piece of evidence, instantiating
all relevant fragments and adding new nodes that correspond
to the instantiated conditions and assumptions to the emerg-
ing scenario space. For the present example, this phase leads
to what is shown in Fig. 4.

A brief explanation of how such abduction phase works
with respect to the following sample fragment and collected
evidence/facts is given below:

If {degree of fight(S,V )}
Assuming {transfer(X,S,V ),find match(X,V ,S)}



Then { evidence(amount(transferred(X,V ,S)))}
Distribution evidence(amount(transferred(X,V ,S)))

{intensive,true,true→many:good chance,few:slim chance

weak,true,true→many:slim chance,few:good chance}

Given the collected evidence that a number of fibers
matching Bob’s clothes have been found on the dead body of
Dave, which matches the consequent variable of the above
scenario fragment, the variables within the structural con-
ditions and assumptions X, S and V are firstly instantiated
with fibers, Bob and Dave, respectively. The resulting in-
stantiated nodes (e.g. Transfer fibers from Bob to Dave,
Degree of fight between Bob and Dave and Find fibers on
Dave matching Bob) are then added to the emerging sce-
nario space.
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height of Dave

Dave = Victim
Height of Dave

Bob = Suspect

Identify the 

height of Bob
Height of Bob

Bob overpowered 

Dave via a fight
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Dave overpowered 

Bob via a fight

 

Figure 4: Result of backward chaining
Fuzzy matching To allow instantiation of a fuzzy scenario
fragment when given a piece of evidence, the extended com-
positional modeller requires matching specific data items
with broader and relatively subjective information in the
knowledge base. As aforementioned, the evidence and the
knowledge base cannot always be matched precisely. Un-
der many circumstances, however, the values of the involved
fuzzy variables do not have to be identical, partial matching
suffices. Such matching is done by the following process.

First, find those scenario fragments that involve the same
variables as the underlying fuzzy variables that describe the
collected evidence. For example, in the backward chaining
phase, the consequence and collected evidence in the above
example both contain the amount of the transferred sub-
stance X (with the amount being a fuzzy variable). Second,
identify the degree of the match between the evidence and
the found scenario fragments. Third, return a matched sce-
nario fragment for instantiation if the match degree is larger
than a predefined threshold, otherwise, no match between
them is found.

Fig. 5 illustrates how such a fuzzy match mechanism ac-
tually works. Given the collected evidence that a number of
transferred fibers exist, a match degree of 0.8 is obtained by
calculating the maximum membership value over the over-
lapping area between “a number of” and “many” fuzzy sets.

Note that more complex calculi for matching degree may
be developed; however, for computational simplicity and
thanks to the employment of triangular fuzzy sets only, this
straightforward matching method is adopted here. Clearly,
much remains to be done in order to have a more general ap-
proach regarding the set-up of the important threshold used
in the third step. Yet, this does not affect the understanding
of the underlying inference techniques introduced herein.

1

ManyA number of

Figure 5: The fuzzy matching mechanism
Forward chaining phase
While all plausible causes of the collected evidence and
some pieces of additional evidence may be introduced to
the emerging scenario space during the backward chaining
phase, the forward chaining phase is responsible for extend-
ing the scenario space by adding all plausible consequences
of the fragments whose conditions and assumptions match
the instances created in the last phase. This produces poten-
tial pieces of evidence that have not yet been identified but
may be used to improve the plausible scenario description.

This procedure applies logical deduction to all the sce-
nario fragments in the knowledge base, whose conditions
and assumptions match the existing nodes in the emerging
scenario space. The actual matching method used is basi-
cally the same as that used previously (except step 1 obvi-
ously). For the running example, based on those newly in-
troduced nodes such as “Bob = victim”, “Dave = suspect”
and “Dave overpowered Bob via a fight”, their deduced cor-
responding consequences are then created and added to the
emerging scenario space. Fig. 6 depicts the resulting sce-
nario space that may be the outcome of this phase (depend-
ing on the actual knowledge base used).
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Figure 6: Result of forward chaining

Removal of spurious nodes
In the backward chaining phase, some spurious nodes may
have been added to the emerging scenario space. Such nodes



are root nodes in the space graph which are neither facts or
instantiated assumptions nor the justifying nodes that sup-
port the instantiated assumptions. This step aims to remove
the spurious nodes and their immediate consequences. In
this example, the emerging scenario space containing the
following information that Dave is both the suspect and vic-
tim at the same time, and the same for Bob. Since Dave is
known to be the victim whereas Bob is known as the sus-
pect, the nodes “Dave = suspect” and “Bob = Victim” as
well as their directly supported nodes can be removed from
this emerging scenario space. The remaining scenario space
is shown in Fig. 7.
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Figure 7: Result of spurious node removal

Use of generated scenario space
Once the plausible scenario space is generated, it provides
effective assistance for crime investigators by allowing them
to seek potential answers to a range of possible queries. For
instance, an investigator may query the system for scenar-
ios by inputing his/her interested evidence or hypotheses.
Also, the investigator might discover that a tall person was
observed entering the crime scene on a CCTV camera, and
wonders whether this would rule out homicidal death. The
system can answer this type of question by adding this new
evidence to the set of collected pieces of evidence and modi-
fying the generated scenario description to establish whether
the new evidence indeed supports the hypothesis. Note that
compared with previous work, the present approach pro-
vides more flexible query support, as it has the capability
to deal with fuzzy queries.

Conclusions
This paper has enriched and adapted the knowledge repre-
sentation formalism in existing CM work, to enable it to rep-
resent, store and support reasoning about vague and impre-
cise data, by the use of fuzzy sets. The new knowledge rep-
resentation formalism concerns both fuzzy parameters and
fuzzy constraints by incorporating them into the represen-
tation of conventional model fragments. The applicability
of the proposed method is illustrated by means of a simple
worked example for aiding inexperienced crime investiga-
tors in speculating about all plausible causes of the collected
evidence.

Note that, attempts to model probabilistic terms using
fuzzy sets have proven more successful. For example, a rela-
tively sophisticated experimental method for eliciting fuzzy
models of probabilistic terms has been developed in (Wall-
sten et al. 1986) and the inter-subjective stability of gen-
erated terms has been examined with promising results. In
addition, it has been reported in (Zimmer 1990) that verbal
expressions of probabilistic uncertainty can be “more accu-
rate” than numerical values in estimating the frequency of
multiple attributes by experimental studies. Whilst there
are outstanding problems such as context sensitivity with
the fuzzy approach to modelling probabilistic terms, these
psychometric studies are unanimous in preferring fuzzy de-
scriptions of probability to numerical estimates.

While the proposed method presented here shows pow-
erful potential functionalities and significant benefits in sup-
porting qualitative reasoning, there are still many open prob-
lems and areas that require further research. In particular,
the proposed method is not yet able to analyze the generated
scenarios space and therefore to provide evidence collection
strategies for decision support. In order to improve the ef-
fectiveness of evidence collection, the generated plausible
scenarios need to be evaluated by means of calculating the
most likely scenario.

Also, the fuzzy constraints within a single scenario frag-
ment are defined by employing a fuzzy variable named
Chance. However, when dynamically composing these po-
tential relevant scenario fragments into plausible scenario
descriptions, the fuzzy constraints will be propagated from
individual fragments to their related ones. How to combine
and propagate fuzzy probabilities, in conjunction with the
backward and forward propagation of the fuzzy matching
degrees, in an emerging model space is a tough problem that
needs to be taken into account in further research. Original
work as represented in (Halliwell, Keppens, & Shen 2003;
Halliwell & Shen 2007) may serve as a starting point for
this.

While solving complex problems, the size of the knowl-
edge base and the number of attributes involved might be-
come very large, the abduction and deduction inference
mechanism is quite expensive to generate the scenario
spaces and is only practical for simple knowledge bases.
In order to enhance the effectiveness and efficiency of the
generation of scenario spaces by selecting the most relevant
attributes, another important piece of future work concerns
the use of dynamic constraint satisfaction problem (DCSP)
(Mittal & Falkenhainer 1990) techniques where activity con-
straints are employed to dynamically determine which at-
tributes should be activated in the problem, thus the problem
of dimensionality may be greatly reduced.
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Appendices
Key Sample Data and Scenario Fragments

Define action{
name = find match
description = find the substance X on V matching S
unifiability = find match(X,V,S)}
Define action{
name = identify height
description = identify the height of P
unifiability = identify(height(P))}
Define evidence{
name = report of amount
description = report of the amount of X
unifiability = evidence(amount(X))}
Define fuzzyvariable {
name = height
is-a = measurement
cardinality of partition = 5
scalar = 250
unit = centimeter
names of fuzzy sets = {very short, short, average, tall,
very tall}
unifiability = height(P)}
Define fuzzyvariable {
name = amount
is-a = capacity
cardinality of partition = 5
scalar = 1
unit = none
names of fuzzy sets = {none, few, several, a number of, many }
unifiability = amount(X)}
If {suspect(S),victim(V)}
Assuming {overpower(S,V)}
Then { transfer(X,S,V)}
Distribution transfer(X,S,V){
true,true,true→true:good chance, false:slim chance}
If {suspect(S),victim(V)}
Assuming {overpower(S,V)}
Then { transfer(X,V,S)}
Distribution transfer(X,V,S){
true,true,true→true:good chance, false:slim chance}
If {person(P)}
Assuming {Identify(height(P))}
Then { height(P)}
Distribution height(P){
true,true→true:1, false:0}
If {degree of fight(S,V)}
Assuming {transfer(X,S,V),find match(X,V,S)}
Then { evidence(amount(transferred(X,V,S)))}
Distribution evidence(amount(transferred(X,V,S)))
{intensive,true,true→many:good chance,few:slim chance
weak,true,true→many:slim chance,few:good chance}
If {height(V), height(S)}
Assuming {overpower(S,V)}
Then {degree of fight(S,V)}
Distribution degree of fight(S,V)
{tall,short,true→intensive:slim chance,weak:good chance
short,tall,true→intensive:slim chance,weak:good chance
tall,tall,true→intensive:good chance,weak:slim chance
short,short,true→intensive:good chance,weak:slim chance}
If {height(V), height(S)}
Assuming {overpower(S,V)}
Then {degree of fight(V,S)}
Distribution degree of fight(V,S)
{tall,short,true→intensive:slim chance,weak:good chance
short,tall,true→intensive:slim chance,weak:good chance
tall,tall,true→intensive:good chance,weak:slim chance
short,short,true→intensive:good chance,weak:slim chance}
Translation {unifiability = overpower(S,V)
description: S overpowers V}
Translation {unifiability = degree of fight(S,V)
description: the degree of fight between S and V}
Translation {unifiability = transfer(X,S,V)
description: X were transferred from S to V}
Translation {unifiability = find match(X,V,S)
description: find the substance X on V matching S}
Translation {unifiability = amount(X)
description: the amount of X}

Translation {unifiability = identify(height(P))
description: identify the height of person P}
Translation {unifiability = evidence(amount(transferred(X,V,S)))
description: report of the amount of transferred X found on V
matching S}
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