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Abstract

A crucial aspect of evidential reasoning in crime investiga-
tion involves comparing the support that evidence provides
for alternative hypotheses. Recent work in forensic statis-
tics has shown how Bayesian Networks (BNs) can be em-
ployed for this purpose. However, the specification of BNs
requires conditional probability tables describing the uncer-
tain processes under evaluation. When these processes are
poorly understood, it is necessary to rely on subjective prob-
abilities provided by experts, which are difficult to describe
in a manner that is both accurate and precise. Recent work in
qualitative reasoning has developed methods to perform this
type of reasoning using coarser representations. However,
the latter types of approaches are too imprecise to compare
the likelihood of alternative hypotheses. This paper examines
the shortcomings of the qualitative approaches when applied
to the aforementioned problem, and identifies and integrates
techniques to refine them.

Introduction
While legal reasoning about evidence is mostly similar to
abductive diagnostic problem solving (Keppens & Schafer
2006), there are some crucial differences. The most impor-
tant of these is that there is no need for decision making
systems on legal evidential reasoning problems. Decisions
of this nature must be made by humans, be they judges or
jury panels. As such, decision support support systems for
legal evidential reasoning must be primarily concerned with
explaining the extent to which pieces of evidence support al-
ternative plausible scenarios (Keppens, Shen, & Lee 2005).

So-called Bayesian techniques for testing hypotheses
have proven to be a particularly influential approach to this
problem. On the one hand, and unlike conventional sym-
bolic inference mechanisms, the Bayesian approach to ev-
idence evaluation enables the use of the well-understood
classical probabilities in order to obtain a precise assess-
ment of the relative strength of support of a piece of evi-
dence for certain hypotheses. On the other hand, and unlike
conventional techniques for statistical hypothesis testing, the
Bayesian approach supports causal reasoning on how a piece
of evidence can materialise as a consequence of a hypothet-
ical scenario. This makes it particularly suitable for mod-
elling situations that occur relatively infrequent and are dif-
ficult to synthesise. Moreover, it provides a foundation from

which explanations for the results of a probabilistic analysis
can be derived.

However, the Bayesian approach is not without its draw-
backs. In legal evidential reasoning, it normally necessitates
the use of subjective probabilities (as does any probabilis-
tic reasoning approach). These are numbers that express a
person’s believe in the proposition of interest. Such proba-
bilities are more prone to inaccuracy than ones that express
the proportions of outcomes of a frequently repeated exper-
iment in which the proposition of interest is true. Moreover,
the acquisition of a set of precise expert beliefs in propo-
sitions that is consistent with the axioms of classical prob-
ability theory is a substantial problem in its own right. A
rigourous evaluation of the impact of these potential inaccu-
racies and inconsistencies, by such techniques as sensitivity
analysis, may help overcome the problem associated with
these drawbacks. But this may make the technique inacces-
sible for many people responsible for evidence evaluation,
such as crime investigators, juries and judges.

A substantial part of the difficulty of applying the
Bayesian approach is due to the amount of knowledge re-
quired to acquire precise and accurate numerical probabil-
ities. But in this domain, precise numerical probabilities
are not required. Indeed, in the evaluation of forensic evi-
dence, the objective is normally merely to produce a justifi-
able indication of the difference in magnitude of support for
one hypothesis over another, given the available evidence.
Therefore, various approaches for qualitative Bayesian in-
ference have been developed, such as qualitative probabilis-
tic networks (QPNs) (Wellman 1990), qualitative certainty
networks (QCNs) (Parsons & Mamdani 1993) and linguistic
Bayesian networks (Halliwell & Shen 2002).

Generally speaking, abductive diagnostic systems require
an approach to compose complete models from partial ones.
While earlier work has shown that models in the form of
numerical Bayesian networks can be composed from de-
scriptions of influences between variables, strong and some-
what unrealistic independence assumptions have to be made
in order to enable the composition of influences (Keppens,
Shen, & Lee 2005). However, the qualitative approaches
to Bayesian inference, such as QPNs and QCNs, provide a
means to reason explicitly about independent influences and,
with certain extensions such as those developed by Renooij
et. al. (Renooij, van der Gaag, & Parsons 2002), influ-



ences upon influences. As such, these approaches be easily
adapted to perform abductive reasoning.

The main limitation of the qualitative approaches is that
they are too vague to provide any useful information regard-
ing the relative support of evidence for hypothetical scenar-
ios, in all but the most obvious cases (Biedermann & Taroni
2006). This is due to qualitative overabstraction. Parsons
(Parsons 1995) has suggested the incorporation of order of
magnitude reasoning (Raiman 1991) in QPNs and QCNs,
which refines the precision of these qualitative probabilistic
reasoning approaches while maintaining their composabil-
ity.

This paper aims to identify how qualitative probabilistic
reasoning techniques can be employed to perform legal rea-
soning about evidence. It will examine the nature of typi-
cal relationships between variables in this domain and the
limitations of the basic QPN/QCN methods in representing
them. Various extensions that may address some of these is-
sues, and which have been developed independently in the
literature, are identified. By means of simple but realistic
examples, the paper shall demonstrate how these individual
extensions can be integrated with one another in order to
produce a rich qualitative approach to Bayesian inference,
which is sufficiently precise to help human decision mak-
ers assess the relative support of evidence for alternative hy-
potheses while retaining composability.

Bayesian Evidential Reasoning
Underlying Bayesian methods for evidence evaluation lies
the notion that statistical hypothesis testing constitutes a
suitable paradigm for this purpose. Cook et. al. propose
that a piece of evidence e be evaluated by determining its
likelihood under alternative hypotheses h1 and h2 (Cook et
al. 1998). If the probability of e’s occurrence assuming hy-
pothesis h1, denoted Pr(e|h1), is substantially higher than
the probability of e’s occurrence assuming hypothesis h2,
denoted Pr(e|h2), then the investigator can conclude that e
provides stronger support for h1 than for h2.

Bayesian Networks
A Bayesian network (BN) is a representation that facili-
tates the computation of joint probability distributions over
a set of variables X = {X1, . . . , Xn}. Reasoning with
joint probability distributions over a large set of variables
{X1, . . . , Xn} is problematic because the number of vari-
able assignment combinations that need to be considered in-
creases exponentially with n. A BN simplifies these calcula-
tions by considering the independencies between variables.

A BN consists of a directed acyclic graph (DAG) that de-
scribes the independencies between variables, and a set of
probability distribution tables that quantify the relations be-
tween variables. Figure 1 is an example of such a BN, which
is partially based on work by Aitken et. al. (Aitken, Taroni,
& Garbolino 2003). The DAG contains a node for each vari-
able. And intuitively, each arc in the DAG from a variable A
to a variable B represents the notion that A influences B.

Independencies are defined formally in a BN by means
of the concept of d-separation. More specifically, a chain

Xb Xa

Xt

Xs

Xh

Xc Xm

Xp

Figure 1: Sample Bayesian network

Table 1: The variables of the sample BN
Symbol Meaning
Xb background of suspect involves handling blood
Xa suspect may have background blood splatters
Xs the suspect stabbed the victim
Xh the suspect examined the victim’s body
Xt blood was transferred from victim to suspect
Xc investigator chooses blood splatter from victim

on suspect for investigation
Xm a blood splatter matching the victim’s dna was

found on the suspect
Xp the blood splatter is a projected stain

of variables from A to B, formed by following arcs in the
DAG in either direction, is said to be blocked by a set C of
observed variables, if it contains
• a variable D 6∈ C with two incoming arcs in the chain

(e.g. given no observations the chain Xt → Xc ← Xa is
said to be blocked), or

• a variable D that is either observed (i.e. D ∈ C) or that
has an observed descendant (e.g. if Xp is observed, the
chain Xs → Xt → Xc is blocked).

Two variables A and B are said to be d-separated by a set
C of observed variables if all chains between A and B are
blocked by C. Variables that are d-separated in a BN by
an observation, are deemed conditionally independent given
that observation.

The latter feature of BN models helps simplify the cal-
culations of joint probability distributions. This is perhaps
best explained by means of the example in Figure 1. Let
each variable Xi in this BN have a boolean domain {xi, xi},
where xi denotes that Xi =true and xi that Xi =false.
Then, the joint probability that all variables are true can be
computed by:

P (xb,xa, xs, xh, xt, xc, xm, xp)
=P (xm|xc)× P (xp|xtxsxh)× P (xc|xtxa)×

P (xa|xb)× P (xb)× P (xt|xsxh)× P (xs)× P (xh)

Generally speaking, 28 − 1 or 255 distinct probabilities are
required to specify the joint probability distribution of the 8
variables in the BN of figure 1. With the BN, that number



Table 2: Conclusions drawn from likehood ratios by the
Forensic Science Service

Likelihood Ratio Support of evidence to prosecu-
tion claim over defense claim

1 to 10 limited
10 to 100 moderate
100 to 1,000 moderately strong
1,000 to 10,000 strong
over 10,000 very strong

can be reduced to 21 + 23 + 22 + 21 + 1 + 22 + 1 + 1 or
23 distinct probabilities. These probabilities are specified in
so-called conditional probability tables and prior probability
distributions.

For each non-root node X in its DAG, a BN contains a
conditional probability table that, in turn, contains a condi-
tional probability distribution for each set of assignments of
parent nodes of X . For each root node in its DAG, a BN
contains a prior probability distribution. For example, the
nodes Xt and Xc could have the following probability dis-
tributions:
P (xt|xsxh) = 0.99 P (xc|xtxa) = 0.3
P (xt|xsxh) = 0.99 P (xc|xtxa) = 1
P (xt|xsxh) = 0.7 P (xc|xtxa) = 0
P (xt|xsxh) = 0.01 P (xc|xtxa) = 0

The Likelihood Ratio Approach to Evidence
Evaluation
The likelihood ratio approach evaluates a piece of evidence
e with respect to two or more hypotheses. Let hp be the hy-
pothesis corresponding to the claim made by the prosecution
and hd be the one made by the defence in a trial. Then, the
likelihood ratio (LR):

LR =
Pr(e|hp)
Pr(e|hd)

expresses the degree to which the evidence is more plausi-
ble under the prosecution’s claim than under the defence’s
claim. For instance, the Forensic Science Service, a major
forensic laboratory in England and Wales, employs the like-
lihood ratio to report their findings in court. Table 2 sum-
marises the way they report their conclusions.

A BN is a natural representation to help compute the con-
ditional probabilities in the numerator and the denominator
of a LR. BNs are particularly suitable to represent uncer-
tain causal relations between relevant variables in a domain.
In the context of evidence evaluation in crime investigation,
they are used to describe how hypothetical situations and
events may lead to observable evidence. In such a model, the
hypotheses of interest typically correspond to one or more
root nodes and a piece of evidence to a leaf node.

Consider, for example, an investigation of suspicious
death where the victim died from a stab wound. The crime
investigators have arrested a suspect, whom they believe has
stabbed the victim to death. And, an examination of the sus-
pect’s clothes revealed blood splatter matching the victim’s
dna. The suspect’s defence attorney claims that the suspect

did not stab the victim, but instead discovered the victim’s
body and tried to revive him. It is assumed that the suspect
does not come into contact with blood on a regular basis,
under either hypothesis. In this case, the prosecution hy-
pothesis is specified by {xs, xh, xb}, the defense hypothesis
is {xs, xh, xb}, and the evidence can be represented as xm.
The likelihood ratio P (xm|xsxhxb)

P (xm|xsxhxb)
can be calculated easily

by means of BN software, such as Hugin.

Discussion
While there is no universally accepted approach to evi-
dence evaluation within the forensic science and crime in-
vestigation community, there are some important benefits to
Bayesian evidence evaluation, which stem from combining
the advantages of statistical and logic-based approaches.

As a statistical method, a BN can be employed to com-
pare the relative support for alternative hypotheses by given
pieces of evidence. This differentiates the Bayesian ap-
proach to evidence evaluation from logic-based ones as the
latter are typically restricted to roles such as abductive rea-
soning about plausible hypotheses, reasoning about the im-
plication and validity of arguments and explanation genera-
tion. And while the latter roles are important, their remains
a crucial need for decision support in the area of comparing
the plausibility of hypotheses under consideration (Cook et
al. 1998).

Similar to logic-based approaches and contrary to most
conventional statistical inference methods, a BN can model
causal explanations for available evidence (Lacave & Dı́ez
2002; Pearl 1988). Such causal structures are important be-
cause they enable the forensic expert to justify the results of
evidence evaluation in court and identify how it relates to the
plausible crime scenarios under consideration. Eventually,
these structures can be transformed into arguments that con-
stitute a basis for legal proceedings in criminal cases (Bex et
al. 2003; Schum 1994).

There are some important objections to the Bayesian ap-
proach, however. Although, as explained in Section , BNs
reduce the requirement for probabilistic knowledge, collect-
ing sufficient and suitable conditional probability distribu-
tions remains an important stumbling block in many prac-
tical applications of BNs (Druzdzel & van der Gaag 2000).
There are processes that produce certain types of evidence,
which are well understood: e.g. the effect of mixtures
of DNA material on the corresponding profile (Mortera,
Dawid, & Lauritzen 2003). However, for many types of
hypothesis and evidence, it is difficult to identify the condi-
tional probability distributions from the underlying physical
processes. For example, it is very difficult to categorise and
relate types of contact between two people and the amount
of trace material that is transferred between those people as
a consequence (Aitken, Taroni, & Garbolino 2003).

In the latter case, experts may be able to provide esti-
mates of the conditional probabilities based on their knowl-
edge and experience. Such probabilities are called subjective
probabilities because they reflect the personal opinion of one
expert. The difficulty of obtaining point estimates of prob-
abilities from experts has been widely reported (Kahneman,



Table 3: Sign operations
⊗ + 0 - ?
+ + 0 - ?
0 0 0 0 0
- - 0 + ?
? ? 0 ? ?

⊕ + 0 - ?
+ + + ? ?
0 + 0 - ?
- ? - - ?
? ? ? ? ?

Slovic, & Tversky 1985; Zimmer 1983). Moreover, it has
been reported that verbal expressions of probabilistic uncer-
tainty were more accurate than numerical values in estimat-
ing the frequency of multiple attributes (Druzdzel & Henrion
1993; Zimmer 1986). This has led to the development of a
range of qualitative approaches to perform Bayesian infer-
ence.

Qualitative Bayesian Inference
Qualitative Certainty Networks (QCNs) (Parsons & Mam-
dani 1993) constitute qualitative abstractions of various
probabilistic and possibilistic reasoning techniques. Similar
to a BN, a QCN consists of a DAG that describes the inde-
pendencies between variables. But instead of a conditional
probability table, each arc A→ C between two variables A
and C in the DAG is associated with a set of so-called quali-
tative derivatives, one for each pair of values ai and cj from
the domains of A and C.

Definition 1 Given a QCN containing two variables A and
C connected by an arc A→ C, a value ai of A and a value
cj of C, the qualitative derivative [ dP (cj)

dP (ai)
] has the value +

iff for all values ak 6= ai of A and all assignments x of the
parent variables of C in the DAG other A.:

P (cj |ai,x) ≥ P (cj |ak,x) (1)

Informally, the qualitative derivative [ dP (cj)
dP (ai)

] is said to be
positive iff C is more likely to take cj when A is more likely
to take ai. The definitions for [ dP (cj)

dP (ai)
] = 0 and [ dP (cj)

dP (ai)
] = −

can be specified in the same way as Definition 1 by replacing
≥ with = and ≤ respectively. If [ dP (cj)

dP (ai)
] does not equal +,

0 or −, it is said to be ambiguous and takes value ?.
Let [∆P (ai)] denote a change in the sign of the probabil-

ity of variable A taking value ai. Then, such a change can
be propagated along an arc by:

[∆P (cj)] = [
dP (cj)
dP (ai)

]⊗ [∆P (ai)]

where ⊗ denotes sign multiplication. The effect of multi-
ple sign changes are combined with sign addition ⊕. Both
operations are defined in Table 3.

In the remainder of this paper, all variables are assumed to
have boolean domains. In this case, the domain of a variable
Y can be denoted as {y, y}. This allows the notation to be
simplified substantially because a single qualitative deriva-
tive implies all the others in these circumstances. That is,
when C takes values c and c and A takes values a and a,

+

++

−

+

+

−

?
+
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Figure 2: Sample QPN/QCN

then [ dP (c)
dP (a) ] = + implies that [ dP (c)

dP (a) ] = −, [ dP (c)
dP (a) ] = −

and [ dP (c)
dP (a) ] = + because P (c|a,x) ≥ P (c|a,x) implies

that P (c|a,x) ≤ P (c|a,x), P (c|a,x) ≤ P (c|a,x) and
P (c|a,x) ≥ P (c|a,x). In what follows, the sign of quali-
tative derivative [ dP (c)

dP (a) ] will be denoted by [S(A,C)]. Note
that, as shown by Parsons (Parsons 1995), the qualitative
derivative [ dP (c)

dP (a) ] of variables A and C with a boolean do-
mains {a, a} and {c, c} equals the sign of the qualitative
influences in Qualitative Probabilistic Networks (Wellman
1990).

It follows from the above that [S(A,C)] = [S(C,A)].
This property has enabled Druzdzel and Henrion (Druzdzel
& Henrion 1993) to devise an algorithm to propagate a
change in sign of any assignment h in these QPN/QCNs.
In a nutshell, this algorithm first initialises the change in
likelihood for every assignment to 0. Then, the algorithm
propagates the sign change of h to every other node in the
QPN/QCN, via every path, from H to other nodes, that is
not blocked. The sign change in a node A that is directly
connected to a node C via an arc A → C or A ← C on a
path that is not blocked is propagated by:

[∆P (c)] = [S(A,C)]⊗ [∆P (a)]
Given that the sign change has been provisionally set to
[∆P (c)]current by the algorithm and that a newly considered
sign change equals [∆P (c)]influence, then the combined sign
change equals:

[∆P (c)] = [∆P (c)]current ⊕ [∆P (c)]influence

Figure 2 shows a QPN/QCN describing a qualitative ver-
sion of the BN of Figure 1. This model indicates that both
the hypothesis that the suspect stabbed the victim (xs) and
the hypothesis that the suspect tried to determine whether he
could help the victim by examining the body (xh) justify the
observation of a blood splatter matching the victim’s dna on
the suspect (xm). It also suggests that the blood splatter is
more likely to be a projected bloodstain (xp) if the suspect
stabbed the victim and less likely to be a project bloodstain
(¬xp), i.e. a contact stain, if the suspect examined the vic-
tim’s body.

Consider, for instance, that blood splatter on the suspect
matching the victim’s dna is observed. This corresponds to
[∆P (xm)] = +. Druzdzel and Henrion’s algorithm propa-
gates this change as follows: [∆P (xc)] = +, [∆P (xa)] =



−, [∆P (xb)] = −, [∆P (xp)] =?, [∆P (xs)] = + and
[∆P (xh)] = +. Note that the change [∆P (xp)] =? is not
propagated to Xs and Xh because the paths Xt → Xp ←
Xs and Xt → Xp ← Xh are blocked.

Evidentiary reasoning with a QCN
The likelihood ratio approach is not directly applicable to
QCNs as they do not provide any numerical information
with which to calculate the fraction. However, the spirit
of the approach can be applied by comparing the effect of
different sets of hypotheses on a given piece of evidence.
Let ∆dP (e) denote the change of obtaining a piece of evi-
dence e if a given defence scenario is true and let ∆pP (e)
denote the change of obtaining a piece of evidence e if a
given prosecution scenario is true. The relative effect of the
defence scenario on P (e) compared to that of the prosecu-
tion scenario indicates how much more or less the evidence
supports the defence scenario compared to the prosecution
one.

Because QCNs can only provide information on the signs
of ∆dP (e) and ∆pP (e), which indicates a negative, zero,
positive or ambiguous change in P (e), their comparisons
rarely yield useful information in practice. Effective de-
fendants and prosecutors tend to hypothesise scenarios that
provide seemingly reasonable explanations for the available
evidence. In such situations, the hypotheses being com-
pared both render the available evidence more likely: i.e.
[∆dP (e)] = [∆pP (e)] = +.

One approach to address this issue is the use of so-called
product synergy in QPNs. Let A, B and C be variables con-
nected by arcs A→ C and B → C in a QPN. Then, there is
said to be negative product synergy between A and B for a
value c of C iff:

P (c|abx)P (c|abx)− P (c|abx)P (c|abx) ≤ 0 (2)

It has been shown that negative product synergy enables hy-
potheses to be explained away (Wellman & Henrion 1993).
Clearly, given (2), the observation of c implies that an in-
crease in the likelihood of a makes b less likely and vice
versa. Thus, if there is negative product synergy between A
and B for a value c of C, the observation of c entails that
[S(A,B)] = −, thereby enabling evidence that confirms
a to be used to undermine b. But while negative product
synergies provide the mechanism to infer counter-arguments
within the framework of a QPN, it leaves much room for am-
biguity. Indeed, the negative qualitative derivative implied
by a negative product synergy works both ways and evidence
that confirms either hypothesis undermines the other.

In the QPN/QCN of Figure 2, the prosecution hypothe-
sis corresponds to {[∆P (xs)] = +, [∆P (xb)] = −} and
the defense hypothesis to {[∆P (xh)] = +, [∆P (xb)] =
−}. Both hypotheses yield [∆P (xm)] = +. As such, a
QPN/QCN is not able to differentiate between both hypothe-
ses.

QCN with orders of magnitude
Another approach to refine the reasoning that can be accom-
plished with a QCN involves the use qualitative or semi-
quantitative representations of the magnitudes of changes

Table 4: Multiplication of relative orders of magnitude
rel2

rel1

⊗ ≈ ∼ ' � �
≈ ≈ ∼ ' � �
∼ ∼ ∼ U � �
' ' U U U U
� � � U � U
� � � U U �

in probabilities and qualitative derivatives. In such an ap-
proach, each direction of change of a probability [∆iP (a)]
and each qualitative derivative [S(A,C)] is also associated
with a magnitude of change. These are denoted as |∆iP (a)|
and |S(A,C)| respectively. Note that while [ dP (c)

dP (a) ] =

[dP (a)
dP (c) ] in a QCP with an arc A → C, it is not necessarily

the case that | dP (c)
dP (a) | equals |dP (a)

dP (c) |. Therefore, the propa-
gation mechanisms discussed in the remainder of the paper
only apply in the direction of the arcs.

A range of order of magnitude reasoning (OMR) tech-
niques has been devised to express magnitudes in a qualita-
tive manner (Raiman 1991). There are two types of OMR:
relative OMR and absolute OMR. Relative OMR defines or-
ders of magnitudes of variables by relating them to one an-
other. For example, Dague’s Relative OMR, named ROM,
relates variables to one another using four types of ordering
relations between pairs of quantities: x is close to y (denoted
x ≈ y), x is comparable to y (x ∼ y), x is distant from y
(x ' y) and x is negligible compared to y (x � y) (Dague
1993). Parsons (Parsons 2003) has devised a method that
can be employed to propagate such order of magnitude in-
formation in a QCN. Let A, B, C and D be variables in a
QCN in which A and B are connected by an arc A→ B and
C and D by an arc C → D. Then, it can be shown that if
|S(A,B)|rel1|S(C,D)| and |∆iP (A)|rel2|∆jP (C)|, then
rel3 in |S(A,B)|.|∆iP (A)|rel3 |S(C,D)|.|∆jP (C)| is
given by Table 4.

The sample QCN of Figure 2, for instance, may include
the ordering relation |S(Xs, Xt)| � |S(Xh, Xt)|. When
comparing the effects of the prosecution and defence hy-
potheses, it can be assumed that the strength of the hypothe-
ses are of a similar order of magnitude: i.e. ∆pP (xs) ≈
∆dP (xh) and ∆pP (xb) ≈ ∆dP (xb). Based on these in-
puts, ROM based QCN infers that
|∆pP (xs)| ⊗ |S(Xs, Xt)| =

|∆pP (xt)| �|∆dP (xt)|
=|∆dP (xh)| ⊗ |S(Xh, Xt)|

because according to Table 4, ≈ ⊗ � yields �. Sim-
ilarly, ROM based QCN infers |∆pP (xc)| � |∆dP (xc)|
and |∆pP (xm)| � |∆dP (xm)|. Thus, QCN extended with
ROM computes that the discovery of transfer evidence sup-
ports the prosecution hypothesis more strongly than the de-
fence hypothesis.

A difficulty arises, however, when the model were to be
extended with an additional node, say, Xo, which describes
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Figure 3: A more difficult application of ROM

Table 5: Intervals for qualitative derivatives
Symbol Name Definition
SP Strong positive ]1, α]
WP Weak positive [α, 0[
Z Zero 0
WN Weak negative ]0,−α]
SN Strong negative [−α,−1[

whether or not the suspect touched the victim. The affected
part of the QPN/QCN is shown in Figure 3. This change
complicates the application of ROM considerably. This does
not only introduce a requirement of additional pairwise or-
dering information regarding qualitative derivatives affect-
ing the same node, but also between qualitative derivatives
affecting different nodes in order to determine whether there
are causal chains between the hypothesis nodes and Xt that
have a dominant effect. In this way, the need for ordering in-
formation can grow exponentially with the network, thereby
making this method impractical.

Absolute OMR defines magnitudes as numerical intervals
rather than by means of ordering relations between indi-
vidual magnitudes. Parsons (Parsons 1995) has briefly ex-
amined the use of absolute OMR for integration in QCNs
and suggested the interval distribution shown in Table 5 for
each qualitative derivative magnitude |S(A,C)| and the in-
terval distribution shown in Table 6 for each variable change
∆iP (a). He has also shown, using conventional interval
calculus, that if α = 0.5 and β = 1

3 , the results for multi-
plication and addition of intervals are given in Table 7 and
Table 8 respectively. Note that in these tables, [I1, I2] refers
to the combined interval containing both I1 and I2, and that
empty cells refer to impossible combinations of values.

Figure 4 shows a version of the QPN/QCN of Figure 1
with the aforementioned absolute order of magnitude scale.
In this approach, the prosecution scenario corresponds to
|∆pP (xs)| = CP and |∆pP (xb)| = CN and the de-
fence scenario to |∆dP (xh)| = CP and |∆dP (xb)| = CN .
These values can be propagated as follows:

Table 6: Intervals for variable changes
Symbol Name Definition
CP Complete positive 1
BP Big positive ]1, 1− β]
MP Medium positive [1− β, β]
LP Little positive [β, 0[
Z Zero 0
LN Little negative ]0,−β]
MN Medium negative [−β, β − 1]
BN Big negative [β − 1,−1[
CN Complete negative −1

Table 7: Interval multiplication
⊗ SP WP Z WN SN

CP [BP, MP ] [MP, LP ] Z [MN, LN ] [BN, MN ]

BP [BP, MP ] [MP, LP ] Z [MN, LN ] [BN, MN ]

MP [MP, LP ] [MP, LP ] Z [MN, LN ] [MN, LN ]

LP LP LP Z LN LN

Z Z Z Z Z Z

LN LN LN Z LP LP

MN [MN, LN ] [MN, LN ] Z [MP, LP ] [MP, LP ]

BN [BN, MN ] [MN, LN ] Z [MP, LP ] [BP, MP ]

CN [BN, MN ] [MN, LN ] Z [MP, LP ] [BP, MP ]

Table 8: Interval addition
⊕ CP BP MP LP Z

CP CP

BP [CP, BP ] BP

MP [CP, MP ] [CP, MP ] MP

LP [CP, BP ] [CP, MP ] [BP, LP ] LP

Z CP BP MP LP Z

LN [BP, MP ] [MP, Z] [LP, Z]

MN [BP, Z] [MP, Z]

BN [LP, Z]

CN

WP

SPSP

WN

SP

SP

WN

?
SP

Xb Xa

Xt

Xs

Xh

Xc Xm

Xp

Figure 4: Sample QPN/QCN with absolute orders of magni-
tude



|∆pP (xt)| =SP ⊗ CP = [BP, MP ]
|∆pP (xa)| =SP ⊗ CN = [BN,MN ]
|∆pP (xc)| =(WN ⊗ [BN,MN ])⊕ (SP ⊗ [BP, MP ])

=[MP,LP ]⊕ [BP, LP ] = [CP,LP ]
|∆pP (xm)| =SP ⊗ [CP,LP ] = [BP, LP ]

The outcome of this analysis (i.e. |∆pP (xm)| =
[BP, LP ]) is that there is a small to substantial increase in
likelihood to obtain a blood splatter from the suspect match-
ing the victim’s dna under the prosecution scenario. The
hypotheses of the defence scenario can be propagated in the
same way, resulting in |∆dP (xm)| = [BP, LP ]. As such,
this approach is not able to differentiate between both sce-
narios in this case.

Note that a basic QPN/QCN as defined in Section is a
special case of a QPN/QCN with orders of magnitude. It
employs the following intervals for both changes in likeli-
hood of variables and qualitative derivatives:

0 = [0] + = [0, 1] − = [−1, 0] ? = [−1, 1]
(3)

Reducing over-abstraction
The survey of qualitative Bayesian inference methods has
shown how these techniques can be applied to evidence eval-
uation in crime investigation. An important limitation of the
approaches discussed in the survey is that, even with the in-
troduction of order of magnitude calculi, they tend to pro-
duce very abstract results. Even in simple examples, such as
the one used throughout this paper, the propagation of like-
lihood changes quickly yields intervals that are too wide for
comparison. This problem of over-abstraction is inherent to
all types of interval calculi, including those involving orders
of magnitude and fuzzy sets. However, the nature of influ-
ences between variables in models for evidential reasoning
in crime investigation exhibits certain features that enable
the knowledge engineer to reduce the effects of qualitative
abstraction.

Cause v context
The order of magnitude approaches discussed herein pre-
sume that each arc A → C implies that the likelihood of c
is either proportionate or inversely proportionate to the like-
lihood of a. As such, these approaches are particularly well
suited to model processes whereby A adds to or removes
from the likelihood ofC (or vice versa). These are situations
in which A is a direct cause of C (or vice versa). However,
in evidential reasoning, this is not always the case. Certain
variables, which will be called context variables, affect the
process rather than the consequence. Figure 5 illustrates this
distinction.

The crucial difference between a causal and a context
variable of an influence is that the causal variable always af-
fects the consequent, whereas the effect of the context on
the consequent determines the magnitude with which the
process takes place. Four types of context variables can be

Process
Consequent
Variable

Context
Variables

Causal
Variables

Figure 5: Cause v context

identified: enablers, which are conditions for the process to
take place; disablers, which prevent the process from taking
place; amplifiers, which increase the effect of the process;
and inhibitors, which decrease the effect of the process.

The example used throughout this paper contains two con-
text variables. Firstly, Xa is an inhibitor to Xt → Xc. Here,
the transfer of blood from the the victim to the suspect (Xt)
generates blood traces that are relevant to the crime and may
be retrieved by the investigators (Xc). Blood splatter on the
suspect from a source unrelated to the crime (Xa) makes it
less likely that the investigators will retrieve blood splatter
related to the crime. Thus, the likelihood of xa has a neg-
ative effect on the likelihood of xc, but only if xt is true to
begin with. Secondly, Xt is an enabler to Xs → Xp and
to Xh → Xp. Both hypotheses, i.e. the suspect stabbed
the victim (xs) and the suspect examined the body of the
victim (xh), affect the pattern of the blood splatter that is
transferred Xp. However, blood must be transferred from
suspect to victim for there to be a pattern to examine.

Context variables can be identified in a conventional nu-
merical BN as follows. Let A be a cause of C and B be a
context variable, such that

P (c|ab) = α P (c|ab) = β P (c|ab) = ε1 P (c|ab) = ε2.

where ε1 ≈ 0 and ε2 ≈ 0. Then, B is an enabler if α >
β = 0, a disabler if β > α = 0, an amplifier if α > β
and an inhibitor if α < β. As such, the likelihood of context
variables assignments is not proportional to the likelihood of
consequent variable assignments, which, in turn, makes the
order of magnitude approaches unsuitable.

Renooij et. al. (Renooij, van der Gaag, & Parsons 2002)
have extended the basic (i.e. sign-only) QPN approach with
so-called non-monotonic influences. The sign of a non-
monotonic influence changes with the assignment of another
variable. For example, in the QPN of Figure 2, the signs of
the qualitative derivatives S(Xs, Xp) and S(Xh, Xp) could
be specified as follows:

[S(Xs, Xp)] =
{

+ if xt

0 if xt
and [S(Xh, Xp)] =

{
− if xt

0 if xt

Let Sx(A,C) denote the qualitative derivative in effect
given the set of assignments x of the context variables of
A→ C. Then, the above derivative signs can be denoted as:
[Sxt(Xs, Xp)] = +, [Sxt

(Xs, Xp)] = 0, [Sxt
(Xh, Xp)] =

− and [Sxt
(Xh, Xp)] = 0.

When the assignments of the context variables are not all
know, then the smallest possible range of effects that in-
cludes all plausible contexts must be assumed (using the in-
terval definitions of (3)). Thus, given an influence A → C



and two sets of assignments x and y of the context variables
of A→ C, then:

[Sx∩y(A,C)] ⊆ [Sx(A,C)] ∪ [Sy(A,C)]

It follows that if x′ denotes a partial specification of the con-
text variables of A→ C, then

[Sx′(A,C)] =
⋃

x′⊆x

[Sx(A,C)]

where the x are all assignments of the context variables of
A→ C such that x′ ⊆ x. Note that it follows from (3) that:

0 ⊂ + 0 ⊂ − + ⊂? − ⊂?

Therefore, if in the example, the assignment of the context
variable Xt of Xs → Xp and Xh → Xp is unknown, then:

[S(Xs, Xp)] = [Sxt
(Xs, Xp)] ∪ [Sxt

(Xs, Xp)] = + ∪ 0 = +
[S(Xh, Xp)] = [Sxt(Xh, Xp)] ∪ [Sxt(Xh, Xp)] = − ∪ 0 = −

which is identical to the original specification of the network
in Figure 2.

Clearly, this idea can be generalised to absolute orders of
magnitudes by using more precise interval definitions than
those of (3). Generally speaking, given an influence A→ C
and two sets of assignments x and y of the context variables
of A → C, the context specific magnitudes of qualitative
derivatives must adhere to:

|Sx∩y(A,C)| ⊆ |Sx(A,C)| ∪ |Sy(A,C)|

Categorical influences
Because Bayesian inference models in general, and qualita-
tive abstractions of such models in particular, have an ex-
planatory role in addition to a computational one, it is im-
portant that the structure of the network matches the way
the human user would organise his/her arguments. For ex-
ample, in practice, the arcs in BNs often describe causal re-
lations between variables, even though that is not necessary.
However, causal relations are often the most natural way of
justifying analyses.

To improve the explanatory benefits of a QPN/QCN, ad-
ditional variables that do not introduce any source of uncer-
tainty may need to be introduced. In the original version of
the BN shown in Figure 1, Xa is such a variable (Aitken,
Taroni, & Garbolino 2003). Its probability distribution is
defined as P (xa|xb) = 1 and P (xa|xb) = 0. The vari-
able describes that a certain background of a suspect (xb)
may constitute an alternative source of blood splatter on the
suspect (xa), which in turn inhibits the discovery of blood
splatter matching the victim’s dna on the suspect (in the hy-
pothetical case that blood has been transferred from victim
to suspect).

Categorical influences represent precisely this type of in-
formation in the restricted setting of a sign calculus (Parsons
1995; 2004). Table 9 displays sign multiplication in a setting
where a qualitative derivative [S(A,C)] can take values ++
and −−, indicating a categorical influence. Variable change
signs [∆P (a)] can take values ++ and −−, which describe
that the variable increases to 1 or decreases to 0 respectively.

Table 9: Sign multiplication with categorical influences
⊗ ++ + 0 - -- ?
++ ++ + 0 - -- ?
+ + + 0 - - ?
0 0 0 0 0 0 0
- - - 0 + + ?
-- -- - 0 + ++ ?
? ? ? 0 ? ? ?

The approach can be generalised and integrated into
the context of the absolute order of magnitude reasoning.
In essence, a categorical influence A → C propagates
any changes in P (a) directly to P (c). Formally, given
a magnitude change ‖DeltaP (a)| and a categorical influ-
ence S(A,C) = ++, the magnitude change |∆P (c)| =
|∆P (a)|. Similarly, given a magnitude change |∆P (a)|
and a categorical influence S(A,C) = −−, |∆P (c)| =
−|∆P (a)|.

Magnitudes

As illustrated by the example, the absolute order of magni-
tude scale discussed in Section is too abstract to derive a
firm conclusion. The main problem with the use of absolute
orders of magnitude is that every propagation of probability
changes along an arc on a path from a hypothesis node to
an evidence node involves an interval multiplication. And,
every interval multiplication produces a result that tends to
be wider than the constituent factors. Context variables and
categorical influences can, to some extent, alleviate these is-
sues. However, in more complex models, a more refined
order of magnitude scale has to be employed.

One approach of defining absolute order of magnitude
scales, which limits the amount of interval size expansion
and facilitates flexible definition of absolute order of mag-
nitude scales, is NAPIER (Nayak 1992). In NAPIER, the
order of magnitude of a quantity is defined as the nearest
lowest integer of the logarithm of that quantity. That is:

om(p) = blogb |p|c (4)

where b is the base of the logarithm. Thus, in this approach,
magnitudes are defined by integers, where low integers in-
dicate values closer to 1. In addition to the integer id of the
order of magnitude, each qualitative derivative and magni-
tude change remains associated with a sign indicating the
direction of change. An example of an order of magnitude
scale and corresponding verbal qualifications of the corre-
sponding values is shown in Table 10. Note that this table
also includes the additional magnitudes ++ and −− to de-
note categorical changes and influences discussed in Section
.

Using this approach, orders of magnitude for multiplica-
tion of two quantities p1 and p2 is given by (see (Nayak
1992)):

om(p1 × p2) = [om(p1) + om(p2), om(p1) + om(p2) + 1]



Table 10: A sample absolute order of magnitude scale
Id Description Range
++/-- complete positive/negative 1 or -1
0 very strong positive/negative [0.8, 1[

1 strong-very strong positive/negative [0.64, 0.8[

2 strong positive/negative [0.51, 0.64[

3 moderate-strong postive/negative [0.41, 0.51[

4 moderate positive/negative [0.33, 0.41[

5 weakly moderate positive/negative [0.26, 0.33[

6 weak-weakly moderate postive/negative [0.21, 0.26[

7 weak positive/negative [0.17, 0.21[

8 very weak postive/negative [0.13, 0.17[

+

++

+

+

Magnitudes and non−monotic influence signs:

|Sxt
(Xh, Xp)| = 5

Xb Xa

Xt

Xs

Xh

Xm

Xp

Xc

|S(Xs, Xt)| = 0
|S(Xh, Xt)| = 2

|Sxa
(Xt, Xc)| = ++

|Sxa
(Xt, Xc)| = 5

|S(Xc, Xm)| = 0

[Sxt
(Xs, Xp)] = +

[Sxt
(Xs, Xp)] = 0

[Sxt
(Xh, Xp)] = −

[Sxt
(Xh, Xp)] = 0

|Sxt
(Xs, Xp)| = 0

Figure 6: QPN/QCN with logarithmic order of magnitude
scale, categorical influences and non-monotonic influences

Integrating the refinements
The refinements discussed above can now be combined
in the ongoing example. Figure 6 shows the resulting
QPN/QCN with integrated non-monotonic influences, cat-
egorical influences and the logarithmic order of magnitude
scale of Table 10. With this approach, the prosecution sce-
nario corresponds to |∆pP (xs)| = (++) and |∆pP (xb)| =
(−−) and the defence scenario to |∆dP (xh)| = (++) and
|∆dP (xb)| = (−−). These values can be propagated as
follows:

|∆pP (xt)| =(++)⊗ (0) = (0)
|∆pP (xa)| =(++)⊗ (++) = (++)

The latter result implies that the magnitude |Sxa
(Xt, Xc)| =

++ is in effect. Therefore,

|∆pP (xc)| =(++)⊗ (0) = (0)
|∆pP (xm)| =(0)⊗ (0) = (0, 1)

Similarly,

|∆dP (xt)| =(++)⊗ (2) = (2)
|∆dP (xa)| =(++)⊗ (++) = (++)
|∆dP (xc)| =(++)⊗ (2) = (2)
|∆dP (xm)| =(2)⊗ (0) = (2, 3)

This result indicates that obtaining blood matching the vic-
tim’s dna from the suspect’s clothes is somewhat more likely
under the prosecution scenario than under the defence sce-
nario, which is consistent with our intuition. Note that this
outcome does not entail a claim regarding the extent to
which the case of the prosecution is shown, as that is ul-
timately to be decided in court. However, in combination
with the supporting network providing causal explanations,
it captures all the information that is relevant regarding this
piece of evidence and its support of the alternative hypothe-
ses. As such, qualitative representations of this type con-
stitute a suitable basis upon which decision support systems
for legal evidential reasoning may be built.

Conclusions and Future Work
This paper has discussed qualitative approaches to proba-
bilistic reasoning. It has examined the need for qualitative
probabilistic reasoning and shown how qualitative proba-
bilistic inference methods can be employed to perform anal-
yses similar to that of Bayesian evidence evaluation. How-
ever, it has been clarified that while the level of abstraction
employed in the qualitative probabilistic reasoning enables
the generation of intuitive explanations to justify decisions,
it also prevents Bayesian-like evidence evaluation. A crit-
ical survey has presented a range of extensions designed
to improve the precision of qualitative probabilistic reason-
ing techniques while maintaining their explanation gener-
ation ability. This has identified number of features that
Bayesian models designed for evidentiary reasoning exhibit.
By means of small examples, it has been shown that the each
of the extensions can effectively describe some of these fea-
tures. Last but not least, the paper has shown how these
extensions can be integrated with one another.



The ideas discussed herein can form the foundation for
future applications that model the lines of inquiries of crime
investigators, both for educational and case management
software. As such, the development and analysis of such
software constitutes an interesting area of future research.
Apart from this, some important theoretical concerns re-
main. One of these relates to the potential availability of
knowledge of varying degrees of precision about the proba-
bility distributions involved in the models. Especially at the
early stages of an investigation, the investigators can em-
ploy a broad range of evidence types, including some that
can benefit the investigation but may not be admissible in
court. These include: hearsay, witness testimony, records
and recordings, psychological profiles and, of course, the en-
tire spectrum of physical evidence. The lack of knowledge
regarding reliability and accuracy varies considerably be-
tween these different types of evidence. Thus, future works
should examine if and how these can be represented and in-
tegrated in a single model.
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