
Learning Domain Theories via Analogical Transfer

Matthew Klenk and Kenneth D. Forbus

Qualitative Reasoning Group, Northwestern University
2133 Sheridan Road, Evanston, IL 60208 USA

{m-klenk, forbus}@northwesterrn.edu

Abstract
Learning domain theories is an important challenge for
qualitative reasoning. We describe a method for learning
new domain theories by analogy. We use analogies
between pairs of problems and worked solutions to create a
mapping between the familiar and the new domains, and
use this mapping to conjecture general knowledge about the
new domain. After some knowledge has been learned about
the new domain, another analogy is made between the
domain theories themselves providing conjectures about the
new domain. An experiment is described where the system
learns to solve rotational kinematics problems by analogy
with translational kinematics problems, outperforming a
version of the system that is incrementally given the correct
domain theory.

Introduction
Progress in qualitative reasoning has led to a variety of
techniques for model formulation, making predictions,
performing diagnosis, and handling other tasks. However,
little effort has focused on the process of learning domain
theories. To be sure, in some cases hand-engineering
domain theories is sufficient. However, this can be a very
time-consuming process, requiring considerable effort.
Being able to re-use this investment by automatically
constructing theories for similar domains could be of great
practical value. Furthermore, there is ample evidence that
people heavily use analogy to learn new domains (Gentner
& Gentner 1983; Gentner 2003). Systems that learn
domain theories by analogy could be used to model human
learning.

Falkenhainer’s (1988) PHINEAS system was the first
QR system to address this problem. Based on the
hypothesis that diagnosis, explanation and theory
formation are all intertwined, PHINEAS used similarity-
driven explanation to show how analogy can be used to
develop new theories about specific situations. As a
learning agent works in a new domain, it should be able to
transfer knowledge from previous well understood
domains. Falkenhainer called the inability to offer a best
guess or apply knowledge across domains the adaptability
problem.
 Textbook authors routinely exploit human adaptability
(Shive & Weber 1982). In the linear kinematics section of
the textbook used for this study (Giancoli 1991), there are
eight worked out examples, worked solutions, which show

all of the different ways in which the four linear kinematics
equations can be used. But in the later rotational
kinematics section, there are only two worked solutions.
Furthermore, two of the rotational kinematics equations are
not part of any worked solutions in the book. The summary
section of rotational motion chapter invites the learner to
use analogy to fill in the details: “The dynamics of rotation
is analogous to the dynamics of linear motion” (p. 197,
Giancoli 1991). This is common practice in textbooks, and
analogies between domains form the basis of system
dynamics (Olson 1966; Shearer et al. 1967).

This paper describes how analogies between worked
solutions can be used to learn domain theories. Our
strategy is itself analogous to that used in PHINEAS,
which used comparisons of (simulated) behavior to create
an initial cross-domain mapping that was subsequently
used to create a partial theory for the new domain. It
differs, however, in several significant ways: (1) We use
analogies between worked solution pairs to drive the
process, (2) We are learning quantitative, rather than
qualitative, domain theories, which requires very different
verification work, and (3) We are using a more
psychologically plausible retrieval mechanism. While our
current work focuses on quantitative domain theories, our
method should also be usable for qualitative domain
theories as well.
 We start by describing our representations and problem-
solver. Next we review the ideas of structure-mapping
theory and our computational models which are used in
this work. Then we describe our learning method, and
present an experiment showing that it can learn rotational
kinematics by analogy with translational kinematics, and
do so faster than a system that is told the laws of the
domain incrementally. We close with a discussion of
related work and future plans.

Representation and Problem Solving
Representing physics problems requires a broad
background of everyday knowledge, including the object
and event types found in such problems. We use the
ResearchCyc1 knowledge base contents, augmented with
our own extensions, as our starting point. Our extensions

1 http://research.cyc.com/

concern QP theory (Forbus 1984) and problem-solving
strategies, and are small compared to the 30,000+ concepts
and 8,000+ predicates already defined in the KB. Thus,
objects, relations, and events that appear in physics
problems such as “rotor”, “car”, and “driving” are already
defined in the ontology for us, rather than being created
specifically for this project.

Example Problem and Worked Solution
All problems and worked solutions used in this work were
taken from the same physics textbook (Giancoli 1991).
Problems are defined as cases. Consider the problem of
“How long does it take a car to travel 30m if it accelerates
from rest at a rate of 2 m/s2?” (Example 2-6, p. 26). This
problem is represented in our system as a case of 10 facts,
a subset of which appears in Figure 1.
 Worked solutions are represented at the level of
examples found in textbooks, which is more abstract than a
proof or problem-solving trace. For example, the worked
solution for problem 2-6 consisted of four steps:

1. Categorize the problem as a constant acceleration
linear mechanics problem

2. Instantiate the distance by velocity time equation (d =
vit + .5at2)

3. Because the car is stationary at the start of the event
infer that its velocity is zero (vi = 0 m/s)

4. Solve the equation for t (t = 5.8s)
Figure 2 shows how step 3 is represented.

Domain Theories
Our domain theories consist of encapsulated histories
(Forbus 1984) representing equations. Encapsulated
histories are templates describing pieces of histories
(Hayes 1978). They were motivated by two concerns.
First, some phenomena are best described by discontinuous

patterns of events (e.g., collisions). Second, they permit
constraints to be placed on time itself, which is not
possible for model fragments, given their semantics (i.e.,
time is implicit, and their consequences hold throughout
whatever period they are active). Equations like the
velocity/time law above hold over events (e.g.,
translational motion under constant acceleration), and
hence encapsulated histories are the appropriate
mechanism for describing the conditions under which they
hold.
 Figure 3 illustrates the encapsulated history representing
the equation of velocity as a function of time (vf=vi+at).
There are two participants, theObject and theEvent,
which must satisfy their type constraints, the abstractions
PointMass and Constant1DAccelerationEvent
respectively. Furthermore, the conditions of the
encapsulated history must be satisfied in order to
instantiate it and conclude its consequences. In this case, it
is necessary that theObject be the object moving in
theEvent. The compound form shown in Figure 3 is
automatically translated into a set of predicate calculus
facts. While the consequence of this encapsulated history
is a quantitative equation, the same representation could be
used to represent qualitative relationships. Similarly, this
technique should be adaptable to learning model fragments
as well.

Solving a Problem
Our system solves for quantities in three ways. First, the
quantity may already be known as part of the problem.
Second, rules can be used to apply modeling assumptions,
i.e., “Objects at rest have no velocity”. Third, an
encapsulated history may be instantiated that results in an
equation containing the sought after quantity. This is done
by satisfying the participant constraints and the
encapsulated history conditions statements in the problem.
Once the encapsulated history has been instantiated, the
system solves for the other quantities in the equation, and
then attempts to solve the equation for the original
parameter. The algebra routines are based upon the system
in Forbus and de Kleer (1993). Both the problem-solving
strategies and the mathematics knowledge are fixed in the
current system, and cannot be extended via learning.

(isa Car-2-6 Automobile)
(isa Acc-2-6

TransportWithMotorizedLandVehicle)
(objectStationary (StartFn Acc-2-6) Car-2-6)
(primaryObjectMoving Acc-2-6 Car-2-6)
(valueOf

((QPQuantityFn Distance) Car-2-6 Acc-2-6)
(Meter 30))

…
(query (valueOf ((QPQuantityFn Time-Quantity)

Acc-2-6) Duration-2-6))

Figure 1: Problem 2-6 Representation (sample)

(def-encapsulated-history
 VelocityByTime-1DConstantAcceleration
 :participants
 ((theObject :type PointMass)
 (theEvent :type Constant1DAccelerationEvent))
 :conditions
 ((primaryObjectMoving theEvent theObject))
 :consequences
 ((equationFor VelocityByTime
 (mathEquals
 (AtFn (Speed theObject)
 (EndFn theEvent))
 (PlusFn (AtFn (Speed theObject)
 (StartFn theEvent))
 (TimesFn
 (AtFn (Acceleration theObject) theEvent)
 (Time-Quantity theEvent)))))))

Figure 3: Example Encapsulated History

(isa Gia-2-7-Step-3 WorkedSolutionStep)
(hasSteps Gia-2-7-WS Gia-2-7-Step-3)
(priorStep Gia-2-7-Step-3 Gia-2-7-Step-2)
(stepType Gia-2-7-Step-3 AssumingValue)
(stepUses Gia-2-6-WS-Step-3
 (objectStationary (StartFn Acc-2-6) Car-2-6))
(stepResult Gia-2-6-WS-Step-3
 (valueOf

(AtFn ((QPQuantityFn Speed) Car-2-6)
(StartFn Acc-2-6))

 (MetersPerSecond 0)))
Figure 2: Problem 2-6 worked solution step 3

Structure-mapping and Analogy
We use Gentner’s (1983) structure-mapping theory, which
postulates that analogy and similarity are based on
structural alignment between two structured
representations (the base and target) to find the maximal
structurally consistent match between them. A structurally
consistent match must satisfy the constraints of tiered-
identicality, parallel connectivity, and one-to-one
mapping. Tiered-identicality constraint provides a strong
preference for only allowing identical predicates to match,
but allows for exceptions, when doing so would enable a
much larger structure to match. The parallel connectivity
constraint says that if two statements are matched then
their arguments must also match. One-to-one mapping
constraint requires that each element in the base
corresponds to at most one element in the target, and vice
versa. To explain why some analogies are better than
others, structure-mapping uses the principle of
systematicity: a preference for mappings that are highly
interconnected and contain deep chains of higher order
relations.
 The Structure Matching Engine (SME) simulates the
process of analogical matching between a base and target
(Falkenhainer et al. 1989). The output of this process is
one or more mappings. A mapping is a set of
correspondences representing a construal of what items
(entities and expressions) in the base go with what items in
the target. Mappings include a structural evaluation score
indicating the strength of the match, and candidate
inferences which are conjectures about the target using
expressions from the base which, while unmapped in their
entirety, have subcomponents that participate in the
mapping’s correspondences. SME operates in polynomial
time, using a greedy algorithm (Forbus & Oblinger, 1990).
 MAC/FAC (Forbus et. al. 1994) models similarity-based
retrieval. The inputs are a case, the probe, and a library of
cases. The first stage (MAC) uses a computationally
cheap, non-structural matcher to filter candidates from a
pool of memory items, returning up to three if they are
very close. The second stage (FAC) uses SME to compare
the cases retruned by MAC to the probe and returns the
best candidate (or candidates, if they are very similar).
Both SME and MAC/FAC have been used as performance
systems in a variety of domains and as cognitive models to
account for a variety of psychological results (Forbus
2001).

Different domains are often represented using different
predicates, especially when they are first being learned and
underlying commonalities with previous knowledge have
not yet been found. Minimal ascension (Falkenhainer
1988) is one method for matching non-identical predicates.
If two predicates are part of a larger aligned structure and
share a close common ancestor in the taxonomic hierarchy,
then SME can include them in the mapping. For example,
given the statements in Figure 4, if the stepUses
statements are aligned as well as the Step-Base and Step-

Target, Obj-Base and Obj-Target, and Event-Base and
Event-Target, then SME will attempt to match
primaryObjectMoving with objectRotating. They are
siblings in the ResearchCyc ontology, and hence minimal
ascension allows them to be placed into correspondence.

Analogical Learning of Domain Theories
Our system learns a domain theory by using multiple
analogies. Learning is invoked when it fails to solve a
problem. After failing to solve a problem, the system is
given a worked solution for that problem, as a student
might get out of a textbook. It uses this worked solution to
create conjectures about knowledge in the new domain,
using the algorithm outlined in Figure 5. The case library
contains a set of worked solutions from the known domain.
First, the worked solution for the failed problem is used as
a probe to MAC/FAC, to retrieve an analogous worked
solution from memory. A comparison is made using SME,
with the retrieved worked solution constituting the base
and the worked solution for the failed problem as the
target. The mappings SME produces are then combined to
create a domain mapping. The reason for combining
multiple mappings is that each mapping often covers only
some aspects of the solution. The best mapping is used as
a starting point, with correspondences drawn from the
others included only if they do not violate the one-to-one

1. Retrieve analog using the target worked solution as a
probe in MAC/FAC

2. Use SME to create a match between the analog and the
worked solution

3. Retrieve correspondences from resulting mappings
4. Create domain mapping by selecting correspondences in

which the base element appears in the base domain
theory

5. Initialize target domain theory using these
correspondences

6. Use SME to create a match between the base and the
target theories constrained by the domain mapping

7. Transfer domain theory using the candidate inferences
8. Verify learned domain theory by attempting the failed

problem again
9. If failure, go once more to step 1. Otherwise, accept new

target domain knowledge as correct

Figure 5: Analogical Domain Learning

Base Expression:
(stepUses Step-Base
 (primaryObjectMoving Event-Base Obj-Base))
Target Expression:
(stepUses Step-Target
 (objectRotating Event-Target Obj-Target))

Figure 4: Minimal Ascension maps
primaryObjectMoving to objectRotating

constraint.
 When the system gets the first problem in a new
domain, its theory for that domain is empty. The candidate
inferences for the domain mapping thus become the basis
for a new domain theory. We currently require that every
concept in the encapsulated history is mentioned in the
domain mapping, i.e., there are no analogy skolems where
we must postulate a new predicate or category of entity. If
there is enough similar structure between the worked
solutions, at least one encapsulated history will be created.
If no encapsulated histories can be created due to an
inability to find a satisfactory domain mapping, the system
does not try to learn anything from this particular failure.

The system also extends a partially learned, or just
initialized, domain theory with another analogy. The
domain mapping becomes required correspondence
constraints of a new analogy between the base and target
domain theories themselves, ensuring that the overall
domain theory is consistent. As before, any encapsulated
history imported into the target becomes a conjecture about
the new domain theory.
 While powerful, analogies are not guaranteed to be
sound. Consequently, we verify the newly proposed
domain knowledge by trying again to solve the problem
whose failure motivated the learning. If this problem is
solved correctly, our system assumes that the new domain
theory constructs are correct. Otherwise, it deletes both
the new domain theory constructs and the domain
mapping. Then, it tries one more time, considering the
next best worked solution retrieved from memory.

Experiment
To examine how well this analogical learning method
works, we need a baseline. Our baseline spoon-fed system
consists of the same problem-solver, but with analogical
learning turned off. When it receives a problem it cannot
solve, it is given not just a worked solution, but whatever
general encapsulated histories are needed to solve that

specific target domain problem. In other words, it is given
the correct knowledge, in its internal representations, ready
for future use. This makes for a tough comparison, since
our system in the analogy condition must figure out the
encapsulated histories for itself.

Method
Both systems begin with a linear kinematics domain
theory, two worked solutions of linear kinematics
problems, and hard-coded rules for problem-solving
strategies and making modeling decisions. The systems
are then tested on how quickly they can learn rotational
kinematics problems. The testing materials are 5
problems, listed in Figure 6, and worked solutions.
Learning curves were created by running 120 trials
representing every possible ordering of the test materials.
In each trial, after each problem, the system was given
either the worked solution or encapsulated histories for
that problem, depending on the condition. After each trial,
the system’s knowledge was reset.

Results
Figure 7 compares the learning curves for the analogy and
baseline conditions. After studying just one worked
solution, the analogy system was able to solve next
problem correctly 80 percent of time. Furthermore, the
analogy system has perfect performance after working on
just two problems. The baseline system’s ceiling was at 80
percent, and after one problem it was only able to get the
next problem correct 45 percent of the time.
 Further analysis of these results details the strength of
the analogy approach. The baseline system failed to score
above 80 percent of any of the conditions. The baseline
system was unable to solve problem ‘b’ from Figure 6
regardless of what problems it has already seen, because
none of the other problems use the same equation. The
analogy system performed quite well, only in one situation

a) Through how many turns does a centrifuge rotor
make when accelerating from rest to 20,000 rpm
in 5 min? Assume constant angular acceleration

b) A phonograph turntable reaches its rated speed of
33 rpm after making 2.5 revolutions, what is its
angular acceleration?

c) Through how many turns does a centrifuge rotor
make when accelerating from rest to 10,000 rpm
in 270 Seconds? Assume constant angular
acceleration

d) An automobile engine slows down from 3600 rpm
to 1000 rpm in 5 seconds, how many radians does
the engine turn in this time?

e) A centrifuge rotor is accelerated from rest to
20,000 rpm in 5 min, what is the averaged angular
acceleration?

Figure 6: Test Problem Set

Rotational Kinematics Learning Curves

0

0.25

0.5

0.75

1

1 2 3 4 5
Problem Number

Pe
rc

en
t C

or
re

ct

Analogy

Baseline

Figure 7: Experiment Results

did the analogical domain transfer fail to learn the whole
rotational kinematics domain after just one worked
solution. This occurred when problem ‘b’ was the first
problem. Problem ‘b’ makes no mention of a time quantity
preventing a correspondence to be created for it. While a
time quantity exists in both of these domains, it does not
necessarily mean they should be aligned. The strength of
the analogical approach is that transfer is guided by
structural similarity. This is critical for broader application
of this theory. For example, in linear and rotational
dynamics, both domain theories have a mass quantity, but
transfer is only possible when a domain mapping is made
between mass, in linear dynamics, and moment of inertia,
in rotational dynamics. (e.g. F=ma and T=Iα)

Related Work
As noted above, the closest work is Falkenhainer’s
PHINEAS (1988), which learned qualitative descriptions
of processes based on analogies involving behaviors.
PHINEAS used envisioning to verify its conjectures,
whereas we use mathematical problem solving. Klenk &
Forbus (2007) describe a system that learns by
accumulating examples to solve AP physics problems
within the same domain. Klenk et al. (2005) describe a
system that learns causal models via analogies involving
sketches annotated with causal knowledge. Both of these
systems only learn within the same domain, and neither
constructs general domain theories, unlike the system
described here. Silver (1986) used explanation-based
learning to acquire new mathematical skills, by contrast
our system’s mathematical knowledge is hard-wired.
 In the QR community, de Kleer’s work (1977) in
reasoning on sliding motion problems demonstrated that
qualitative reasoning was required for solving many
quantitative physics problems. More recent AI work on
transfer learning has recognized the importance of
generating mappings between domains to allow for
knowledge transfer, Liu and Stone (2006) use a version of
SME to accelerate learning of state action policies in keep
away soccer. Instead of using structure-mapping to
accelerate learning, we use structure-mapping to learn new
general domain concepts.

Discussion
We have shown that a domain theory for solving physics
problems can be learned via cross-domain analogies. Our
experiment shows furthermore that such analogical
learning can be very efficient, when the two domains are
sufficiently similar. The process of constructing domain
mappings by exploiting similarities in worked solutions,
and using that to import theories from one domain to
another, is, we believe, a general and powerful process.

There are several directions we intend to pursue next.
First, we have only tested this method with encapsulated
histories, so we want to extend it to handle other types of

domain knowledge. Based on experience in other
analogical learning tasks, we believe that this will mainly
involve figuring out the appropriate verification
techniques. Second, we plan to integrate this algorithm
into the Companion-based learning system of Klenk &
Forbus (2007), so that we can combine both ways of
analogical learning. We plan to explore a broader range of
domain pairs, including domains which are quite distant, to
explore better strategies for making use of weaker
matches. We suspect that model-based diagnosis
techniques could be used to debug analogically-derived
domain theories, based on their success with diagnosing
misconceptions in student models (de Koning et al. 2000).
 We also expect that these techniques could be used more
broadly in the QR community for accelerating the process
of constructing domain theories. That is, given modeling
environments designed to help domain experts create
theories (cf. Bredeweg et al. 2006), there should be a
growing library of domain theories to draw upon. An
analogy-based assistant could help spot cross-domain
connections, accelerating the process of constructing new
domain theories.

Acknowledgements
This research was supported by the Cognitive Science
Program of the Office of Naval Research.

References
Bredeweg, B., Salles, P., Bouwer, A., and Liem, J. 2006.

Garp3 – A new Workbench for Qualitative Reasoning and
Modelling. Proceedings of the 20th International Workshop
on Qualitative Reasoning. Hanover, NH.

de Kleer, J. 1977. Multiple representations of
knowledge in a mechanics problem solver. In Proceedings
of IJCAI-77.

de Koning, K., Bredeweg, B., Breuker, J., and Wielinga,
B. 2000. Model-Based Reasoning about Learner Behavior.
Artificial Intelligence, 117(2).

Falkenhainer, B. 1988. Learning from Physical
Analogies. Technical Report No. UIUCDCS-R-88-1479,
University of Illinios at Urbana-Champaign. (Ph.D.
Thesis)

Falkenhainer, B., Forbus, K. and Gentner, D. 1989.
The Structure-Mapping Engine. Artificial Intelligence. 41.

Forbus, K. 1984. Qualitative process theory. Artificial
Intelligence 24.

Forbus, K. 2001. Exploring analogy in the large. In
Gentner, D., Holyoak, K., & Kokinov, B. (Eds.) Analogy:
Perspectives from Cognitive Science. MIT Press.

Forbus, K. & de Kleer, J. 1993. Building Problem
Solvers, MIT Press.

Forbus, K., Gentner, D., & Law, K. MAC/FAC: A
model of similarity-based retrieval. 1994. Cognitive
Science, 19.

Forbus, K. & Oblinger, D. (1990). Making SME greedy
and pragmatic. In Proceedings of CogSci-1990.

Gentner, D. 1983. Structure-mapping: A theoretical
framework for analogy, Cognitive Science 7(2).

Gentner, D. 2003. Why we’re so smart. In Gentner, D.
and Goldin-Meadow, S. (Eds.), Language in mind:
Advances in the study of language and thought. pp. 195-
235. MIT Press.

Gentner, D. and Gentner, D. R. 1983. Flowing waters or
teeming crowds: Mental models of electricity. In D.
Gentner & A. Stevens (Eds.), Mental Models. Lawrence
Erlbaum Associates.

Giancoli, D. 1991. Physics: Principles with
Applications. 3rd Edition. Prentice Hall.

Hayes, P. 1978. The Naive Physics Manifesto. In D.
Michie (ed), Expert Systems in the Microelectronic Age.
Edinburgh University Press, Edinburgh, Scotland.

Klenk, M., Forbus, K., Tomai, E., Kim,H., and
Kyckelhahn, B. 2005. Solving Everyday Physical
Reasoning Problems by Analogy using Sketches
Proceedings of 20th National Conference on Artificial
Intelligence (AAAI-05).

Klenk, M., and Forbus, K. 2007. Measuring the level of
transfer learning by an AP Physics problem-solver. In
Proceedings of AAAI-07. Vancouver, CA.

Olson, H. 1966. Solutions of Engineering Problems by
Dynamical Analogies, D. Van Nostrand.

Shearer, J., Murphy, A., and Richardson, H. 1967.
Introduction to Systems Dynamics. Addison-Wesley
Publishing Company.

Shive, J. and Weber, R. 1982. Similarities in Physics.
Adam Hilger Ltd.

Silver, B. 1986. Meta-Level Inference: Representing and
Learning Control Information in Artificial Intelligence.
Elsevier.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

