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Abstract 
Within the Qualitative Reasoning community there is a 
desire to collaborate by integrating work and reusing parts 
of existing models. Although there has been much attention 
for the knowledge representation formalisms required for 
these tasks, activities performed by knowledge engineers 
such as copying model parts, searching for relevant models, 
and sharing intermediate modeling results are often not 
supported by existing modeling tools. This paper presents a 
set of new features in the Garp3 qualitative reasoning and 
modeling workbench to support these activities. 

Introduction 
An interesting idea of Qualitative Reasoning (QR) is to 
build a generic library of model fragments that can be 
applied by different users to simulate specific scenarios 
[4,7]. However, in practice the development of unified 
libraries has been limited. Modelers seem to prefer creating 
their own idiosyncratic libraries that are tailored to their 
specific needs, reusing only certain parts of previous 
modeling efforts, and adapting or leaving out other parts. 
In any case, whether a modeler wants to integrate modeling 
work of different modelers to create a unifying library, or 
reuse existing model fragments to create his own specific 
library, functionality is required to share and reuse parts of 
(partially) developed libraries. In this paper we present this 
functionality as implemented in the Garp3 workbench. 
 Taking a part of one body of knowledge and integrating 
it into another has several issues. For instance, knowledge 
parts usually relate to other knowledge parts. Without this 
other knowledge semantics may get lost. On the other 
hand, the existing body of knowledge may clash with the 
part of knowledge that is being reused. In order to prevent 
problems arising from such issues, we have defined a set of 
principles to support knowledge reuse. These are 
enumerated as: (1) Syntactical correctness should be 
maintained. Knowledge is usually represented in some 
formalism. After knowledge from one body of knowledge 
has been added to another, the augmented knowledge body 
should still adhere to the formalism. (2) Knowledge should 
remain complete. Knowledge parts often depend on other 
knowledge parts. When knowledge is reused in another 
body, the knowledge parts on which it depends should also 
be copied to that new context. (3) No redundant knowledge 
should be added. Two knowledge bodies may have 

overlapping parts. When reusing knowledge from one body 
in another, and some of the knowledge already exists, this 
knowledge should be reused as much as possible. (4) 
Existing knowledge should not be altered. The knowledge 
a modeler is working on can be assumed to be tailored to 
the needs of this modeler. Therefore, the knowledge should 
not be changed when knowledge from another knowledge 
body is added, as it could break the purpose for which the 
knowledge was developed. (5) Semantics should be 
preserved as much as possible. Copying knowledge should 
not cause the meaning of the knowledge to be changed or 
lost. (6) Reuse solutions should be user-friendly. This 
means the modeler should not have to provide too much 
additional input, be asked difficult questions, and that the 
functionality is easy to use. 
 Next to reuse functionality, two other conditions have to 
be fulfilled to efficiently reuse previously created bodies of 
knowledge. Firstly, modelers should be able to share their 
work within a community and the shared knowledge 
should be made searchable and accessible to the entire 
community. Otherwise, there is no knowledge to reuse. 
Secondly, modelers should be able to search through the 
shared knowledge in order to find knowledge that is 
potentially reusable for their needs. In the Garp3 
workbench search is facilitated by meta-data, the model 
itself, and by high-level descriptions of the model and its 
expected behavior, referred to as Sketches. 

Garp3 – QR Workbench 
In this paper, the reuse functionality is addressed in the 
context of the Garp3 workbench (http://www.garp3.org), 
which implements a diagrammatic approach to modeling 
and simulating qualitative models [2]. Modeling in Garp3 
starts by creating model ingredient definitions. These 
definitions include entities, agents, assumptions, 
configurations, quantities and quantity spaces. Entities, 
which represent the structural objects in a system, are 
organized in a sub-type hierarchy. They are defined by 
their name and their position in the hierarchy. Agents and 
assumptions are defined in the same way. Agents cause 
influences from outside of the system, while assumptions 
are labels that indicate that certain conditions are presumed 
to be true. Configurations are structural relations between 
entities that are defined by their name. Quantities represent 
the features of entities and agents that change during 



simulation, and are defined by their name and a set of 
possible quantity spaces. Quantity spaces represent the 
possible values a magnitude (or derivative) of a quantity 
can have, and are defined by their name and an ordered set 
of possible values. Quantity spaces are associated to the 
quantities of entities or agents. 
 Next to the model ingredients defined by the modeler, 
there is also a set of predefined model ingredients. These 
include causal dependencies (proportionalities and 
influences), correspondences, the operator relations plus 
and minus, value assignments, and inequalities. 
 The model ingredient definitions described above can be 
used (instantiated) to create model fragments (MFs) and 
scenarios. MFs can be seen as composite ingredients that 
incorporate other ingredients as either conditions or 
consequences. They are organized in a subtype hierarchy, 
meaning that a child MF inherits the model ingredients of 
its parents. Furthermore, a MF can incorporate other MFs 
as conditional ingredients. MFs instantiated in another MF 
are called Imported Model Fragments (IMFs). An example 
MF incorporating another MF twice is shown in Figure 1. 
 Scenarios are also composite model ingredients. They 
describe specific system situations. During simulation, 
MFs are sought which match on the scenario (i.e. the 
model ingredients fulfill the conditions of the MF). The 
consequences of matching MFs are merged with the 
scenario to create an augmented state from which the next 
states of behavior can be determined. 

Figure 1: Liquid flow includes two Contained Liquid 
IMFs, the Pipe, and the configurations as conditions, and 
flow, its calculation and causal relations as consequences. 

Reusing Parts of Models 
A user-friendly way to support modelers with functionality 
to reuse model parts (model ingredient definitions, MFs 
and scenarios) is by allowing them to copy a model part in 
one model and paste it into another model (hereafter called 
copy functionality). From the modeler’s perspective, 
copying model parts should be as easy as copying text 
between documents (principle 6). 
 The result of a copy should be assured to result in a 
syntactically correct model (principle 2). For example, 
ingredients must have unique names and arguments of 
relations must have correct type. This is achieved by 
rebuilding the copied model part in the target model as if 
the modeler had created it from scratch. Since Garp3 

checks each of the modeler’s actions, this assures that the 
model remains syntactically correct.  
 When a model part is copied to another model, no 
redundant information should be added to the model 
(principle 3). Therefore, when a model part and an already 
existing model part have the same name, the existing 
model part is reused if possible. The assumption is that if 
the copied model part and the existing model part have the 
same user-given name, they describe concepts in the same 
domain. If the existing model parts cannot be reused 
because semantics differ despite having the same name, the 
copied model part receives a suffix to indicate this. 

Storing Copied Model Ingredients 
 Model parts often depend on other model parts without 
which they are incomplete. The completeness of the model 
part has to be maintained (principle 2) when a model part 
is copied. Our solution is to create a complete sub-model 
that contains the copied model part and all the model parts 
it requires. This sub-model is self-contained, meaning it 
can exist on its own, and is stored in a copy buffer (a 
model data structure). Details on how this works for each 
type of model part are explained in the next subsections. 

Copying Model Ingredient Definitions 
Entities are defined by their name and their position in the 
entity hierarchy. When a set of entities is copied to another 
model, they have to be integrated with the already existing 
entity hierarchy in some way. If an entity with the name 
already exists, redundancy should be avoided (principle 3). 
Therefore, the entity is not created, since it assumed to 
represent the same concept. 
 The entities should be integrated into the hierarchy in 
such a way that as much of the semantics is preserved as 
possible (principle 5). For entities this means that their 
position in the hierarchy should match as closely as 
possible. This is not straightforward since the modeler can 
select a subset of the entities in different branches. Only 
these selected entities should be copied, as it would not be 
user-friendly if the copy functionality would add more 
entities than the modeler has selected (principle 6). As a 
result, the final entity hierarchy will not always contain the 
parents of each entity. 
 Our solution to preserve as much of the semantics as 
possible is to also store all the ancestors of the selected 
entities in the copy buffer. When the selected entities are 
copied to the target hierarchy, the algorithm checks 
whether an ancestor (parent, grandparent, etc.) of each 
entity already exists. The entity is placed below the closest 
ancestor to recreate its semantics as closely as possible. If, 
no ancestor exists, the definition is placed below the root 
node. The modeler is allowed to choose a different position 
in the hierarchy where the copied entities should be 
recreated (principle 6). The hierarchy of entities is then 
created below this definition. Agents and assumptions are 
defined and copied in the same way. 



 Configurations are the simplest model ingredients, since 
they are only defined by their name. To avoid redundancy 
(principle 3), a copied configuration is only created if it 
does not exist yet in the target model. 
 Quantity spaces are defined by their name and their total 
order of values. The order of the values is important, since 
it defines to which values the magnitude (or derivative) of 
a quantity can change. Again, redundancy has to be 
avoided (principle 3). Therefore, a quantity space is not 
created if a quantity space with the same name and the 
same set of ordered values already exists. When a quantity 
space with the same name does not exist, it can be created 
normally. However, if a quantity space with the same name 
but with different values (or differently ordered values) 
exists, the values of the existing quantity space cannot be 
altered to match the values of the copied quantity space. 
The reason is that changing an existing quantity space 
would potentially alter the possible values of already 
existing quantities and cause simulations to generate 
different behavior (violating principle 4).  Instead, a new 
definition is created with the suffix '(other values)'.   
 Quantities are defined by their name and a set of 
associated quantity spaces (of which only one can be 
chosen when it is added to a MF). To assure completeness 
(principle 2), the associated quantity spaces have to exist 
before the quantity can be created. Therefore, the 
associated quantity spaces of a quantity are created (as 
described above) before the quantity is copied. A quantity 
is copied normally if a quantity with the same name does 
not exist. A quantity is considered redundant and is not 
created if a quantity with the same name and the same 
quantity spaces already exists (principle 3).  
 When a quantity with the same name already exists, but 
has different associated quantity spaces, there are two 
options. The first option is creating a new quantity by 
adding the suffix ‘(different quantity spaces)’ to its name. 
This potentially adds redundant knowledge (violating 
principle 3). The second option is to merge the sets of 
associated quantity spaces, which means existing 
knowledge is altered (violating principle 4). We choose 
this second option in our approach, since the associated 
quantity spaces only indicate the possible values for 
quantities. Therefore, adding quantity spaces to the set of 
possible quantity spaces does not really change the 
semantics of the quantity in model fragments (i.e. the 
simulation results remain the same), but only provides the 
possibility to use the quantity in a different way. 

Copying Model Fragments 
To copy a MF to another model, the algorithm has to deal 
with the subtype hierarchy, the MFs imported as 
conditional elements (see Figure 1), the model ingredient 
definitions of which instances are used in the MF, and the 
actual creation of the MF and its contents.  
 Dealing with imported and parent model fragments.  
In order to create a MF, all MFs it imports and its parent 
MFs have to exist. Each parent MF and reused MF has the 
same requirements. Therefore copying a set of MFs 

requires that their required MFs are collected and created 
first. A list of the to-be-created MFs and their required 
MFs is determined in several steps. Firstly, MFs inherited 
from parents are considered to be IMFs. Secondly, the 
IMFs within the MFs are gathered. Thirdly, the MFs 
corresponding to these IMFs are added to the list of 
required MFs. For each of the MFs added to the list the 
same three steps are performed until no more IMFs can be 
found. Finally, duplicates in the list of required MFs are 
removed, and the to-be-copied MFs are added to the list. 
 Determining and copying used model ingredient 
definitions. In addition to the model ingredients that the 
copied MFs use, also the model ingredients that the 
required MFs use have to be created. Given the MFs list 
created in the previous step, finding the required model 
ingredient definitions is easy. A list of model ingredient 
definitions is created for each model ingredient type. Then, 
by looping through the model ingredients of each MF, the 
definition of each model ingredient is added to the list of 
its type (if it is not already there). The end result is a set of 
lists that contain all model ingredient definitions needed to 
create the set of MFs.  
 The required definitions are copied as if the definitions 
were individually copied (as described in the ‘Copying 
Model Ingredient Definitions’ section). There is one 
difference when dealing with entities, agents and 
assumptions. During development it became apparent that 
the semantics about entities was lost when certain 
scenarios (see Section ‘Garp3 – QR Workbench’) are 
copied before MFs. Scenarios tend to use more specific 
concepts (lower in the hierarchy) since they represent 
specific situations, while MFs use general concepts (higher 
in the hierarchy) since they model general situations. 
Consider a model that defines the entities container, barrel 
(which is a type of container), liquid, and water (a type of 
liquid). Copying a scenario modeling a barrel with water 
would add both the barrel and the water concept to the 
hierarchy in the target model. Copying a MF that models a 
liquid in a container afterwards, would add the container 
and the liquid to two other branches in the hierarchy, since 
no information about the children of entities is stored in the 
copy buffer. The fact that barrel is a container, and that 
water is a liquid would be lost. This issue is solved by not 
only copying the required definitions, but also their 
ancestors. In the example, the liquid and container 
concepts are immediately created when the scenario is 
copied, preserving the semantics (principle 5). 
 Creating the model fragments and their contents. 
After these steps, all required model ingredient definitions 
are present, and each of the MFs in the list (of required and 
to-be-copied MFs) has to be created. The parents and the 
MFs each MF imports have to exist before that MF can be 
created. Therefore, the order in which the MFs are created 
is important. Instead of ordering the MFs, the algorithm 
loops through the list of MFs and checks whether the 
required MFs exist for each MF. If not, it skips to the next 
one. If they exist, the MF is created and the MF is removed 
from the list. This continues until the list is empty. 



 The creation of a MF also requires the creation of the 
contents of the MF. Again, the order in which the model 
ingredients are created is important, since Garp3 prevents 
model ingredients to be created that would result in a 
syntactically incorrect model (principle 1). Therefore, 
relations cannot be created if their arguments do not exist 
(e.g. a ‘preys on’ relation between two populations cannot 
exist without the two populations), quantities need their 
entities (e.g. a ‘size’ quantity of a ‘population’ cannot exist 
without the population), and value assignments need a 
quantity space before they can be created. To create the 
MF contents while maintaining a syntactically correct 
model at all times, the ingredients in the source MF are 
ordered. IMFs have to be created first, as model 
ingredients can be related to one of the model ingredients 
in the IMFs. Then, entities, assumptions, quantities, 
attributes, configurations, causal dependencies, value 
assignments, correspondences, plus or minus relations, and 
inequalities should be created. The algorithm loops through 
the sorted list of model ingredients creating each of the 
model ingredients and assigning it the same position on 
screen as in the source model. 

Imported Model Fragments 
 When recreating the model ingredients of a MF in 
another model, it is complex and inefficient to have to 
determine for each model ingredient to which other model 
ingredient it is connected (e.g. to which entity a quantity 
should be added, or what the arguments of a relation are).  
The model ingredient(s) to which a model ingredient is 
related are called its arguments. To be able to determine 
the arguments of a to-be-created model ingredient in a 
target MF, a mapping has to be maintained between the 
ingredients in the source MF and the ingredients in the 
target MF. The model ingredients in the target MF to 
which the arguments in the source MF are mapped are the 
arguments of the to-be-created model ingredient. 
 Maintaining a mapping between the model ingredients 
in a source MF and a target MF is easy when model 
ingredients are created one at a time. When looping 
through the ordered list of model ingredients in the source 
MF to create the model ingredients in the target MF, the 
model ingredient in the list is mapped to the newly created 
ingredient. However, when a MF is imported, a set of 
model ingredients is added to the MF. Therefore, a 
mapping between the model ingredients of the IMF in the 
source model and the ingredients of the IMF in the target 
model is harder to establish.    
 To create the mapping, the model ingredients are sorted 
in the same way as when creating the contents of a MF. 
The algorithm loops through the sorted model ingredients 
of the IMF in the source MF, and selects one of the 
imported model ingredients of that type in the target 
model. It checks whether the ingredient has the same 
name, associated arguments and relations. If the checks 
succeed, the correct model ingredient is chosen and a 
mapping between the ingredient in the IMF in the source 
MF and the ingredient in the IMF in the target MF is 

saved. Creating this mapping for each of the model 
ingredients in the IMF always succeeds, since the IMFs are 
guaranteed to be identical in both models. The mapping is 
also used to update the positioning information for the 
model ingredients in the IMF in the target MF. 

Reusing Existing Model Fragments 
When a set of MFs is copied to another model, they might 
clash with MFs that already exist in the target model. 
These MFs cannot simply be reused, since the semantics of 
these MFs might be different. The existing MF might 
contain different model ingredients, or model ingredients 
might be differently connected than the model ingredients 
in the source MF. To avoid redundancy (principle 3), the 
existing MF should be reused if possible. A MF can only 
be reused if its ingredients are equal or a superset of the 
ingredients in the source MF, and if the corresponding 
model ingredients are connected in exactly the same way.  
 To determine if a MF can be reused, the mapping 
algorithms used to deal with IMFs is used. The source MF 
and the target MF are treated as IMFs, and the algorithm 
tries to create a mapping between the contents of the MFs. 
This mapping only succeeds if the target MF contains at 
least all the model ingredients that are in the source MF, 
and the model ingredients are connected in the same way. 
In contrast to the mapping between IMFs, the mapping can 
also fail, meaning that there is no mapping possible and 
that the MF cannot be reused. Then, the semantics of the 
to-be-created MF is different from the existing MF, and the 
MF is created with the suffix ‘(copy)’. When the MF is 
reused in other copied MFs, this new copy is used instead 
of the existing MF to preserve the semantics of the copied 
model fragment (principle 5). The existing MFs keep using 
the existing MF (preserving principle 4). 
 To preserve the semantics of a MF (principle 5), the 
reused MFs should be identical to those in the source 
model, as reusing different MFs results in a different 
complete MF. On the other hand, not reusing a MF which 
is a superset of the source MF (i.e. contains more 
ingredients), but which is otherwise equal requires a new, 
possibly redundant, MF to be created (violating principle 
3). We feel that the best way to solve this issue is to ask the 
modeler for feedback. Although this is a difficult question, 
it makes the modeler aware that there are options, and each 
choice has a significantly different end result. This solution 
is more user-friendly than letting the algorithm make the 
choice for the modeler (principle 6). 

Sharing and Searching for Models 
To reuse models of others, modelers have to be able to 
share their work and access work of others. This is solved 
by allowing models to be uploaded to and downloaded 
from a central online model repository. However, the 
number of models in the repository can potentially become 
large, which means that modelers need to be supported by 
search functionality to find reusable models.  



 Typically, a modeler will want to search for models 
which contain a certain entity or quantity (e.g. a model 
which contains both an entity population and a quantity 
size). Normal search engines search for keywords in text 
and are unable to interpret the explicit knowledge 
representation in qualitative models. So the search engine 
is unable to distinguish between different types of model 
ingredients, or between domain specific and domain 
independent knowledge (i.e. the QR vocabulary and the 
knowledge formalized by the modeler). This hampers the 
search engine’s ability to find relevant models. A search 
solution should make use of the explicit knowledge 
representation in qualitative models to allow modelers to 
focus their search using the QR vocabulary. 

QR Models in the Web Ontology Language 
The Semantic Web initiative proposes that “semantic 
search” becomes possible by making content machine-
accessible [1]. The Web Ontology Language (OWL) is a 
description-logic based knowledge representation 
language, which is represented in RDF/XML, and is being 
developed as part of the Semantic Web initiative. It has 
become the de-facto standard for the sharing of knowledge 
on the web in the form of ontologies. By formalizing 
qualitative models as OWL ontologies, the models become 
interpretable by OWL search engines, and searching for 
models in which certain model ingredients or certain 
structures are used becomes possible. Additionally, the 
formalization of models in OWL opens up the possibility 
for other QR-tool developers to implement functionality to 
import these files. This could potentially make models 
accessible to communities using different QR tools. 
 There is no clear methodology for the creation of 
ontologies, therefore we have created our own. Firstly, the 
qualitative reasoning vocabulary was formalized as an 
ontology that consists of a hierarchy of all the model 
ingredients and their usage restrictions. Based on this 
domain-independent ontology, an OWL file-format for 
qualitative models was developed that refers to concepts 
defined in the vocabulary ontology. Using OWL reasoners, 
both the vocabulary and a set of model ontologies were 
checked for consistency, and the model ontologies were 
checked for correctness using the formalized usage 
restrictions. Functionality to export models to OWL and 
import them again was added to Garp3. The machine-
accessible OWL-model files allow search engines to use 
the explicit knowledge representation of QR models.  
 Originally, we had the aim to use OWL reasoners to 
perform QR reasoning, but this proved to be impossible. 
Since the OWL reasoners are classification engines, the 
formalization should allow scenarios to be classified as 
being instances of MFs. However, due to limits in the 
expressiveness of OWL it is not possible to formalize MFs 
in a way that this reasoning can be performed [13]. In 
general, it is impossible to formalize general situations in 
OWL in a way that specific situations can be classified 
[11]. Due of this lack of expressiveness, the OWL 

representation of MFs needed to be adapted. However, this 
change has little effect on model search. 
  An earlier effort to support the interchange and reuse 
of MFs is the Compositional Modeling Language (CML) 
[5], which aimed to enable this functionality by defining 
CML in the Knowledge Interchange Format [10]. We have 
chosen to use OWL instead of CML, since it has a large 
user base and tools that are being actively developed. 

Sharing and Searching in the Model Repository 
A qualitative model repository1 was implemented as a 
webpage that allows modelers to share their own models as 
OWL files, and search and download models of others. 
The main issue of implementing the repository is making it 
usable for modelers. The repository should be instantly 
usable for the user. Therefore, modelers should not be 
required to learn an OWL query language.  
 There are two different ways of implementing search 
functionality. The first is building an interface on top of an 
OWL query language, and the second is programming our 
own solution. Since building an interface on top of an 
OWL query language is complex, and implementing 
dedicated solutions has become easier due to the 
availability of semantic web libraries, we have chosen the 
second solution. The model repository is developed using 
the SWI-Prolog Semantic Web Library2 and PHP3. 
 The search functionality shows the model ingredient 
definitions of all the models. Selecting a definition reduces 
the list of matching models, allowing the modeler to 
iteratively refine the list of potentially useful models.  

Sketch: Supporting Structured Modeling 
The Garp3 workbench has been extended with the Sketch 
environment to allow modelers to create high-level 
representations of systems before starting the model 
implementation. The goal of the Sketch environment is 
threefold:  
• to offer guidance during the modeling process, by 

providing editors that support different steps in the 
structured modeling methodology [3];  

• to document initial ideas and intermediate modeling 
decisions by allowing the creation of external 
representations for them. Although not all captured 
ideas may end up in the final model, these Sketch 
representations can aid in communicating about the 
domain and establishing consensus between 
collaborating modellers;  

                                                
1 http://hcs.science.uva.nl/QRM/models/repository/ 
2 http://www.swi-prolog.org/packages/semweb.html 
3 http://www.php.net 



• to facilitate determining whether an existing model is 
relevant for a modeler, by providing a set of Sketch 
representations as a high-level abstraction and 
introduction to the model. Together with the metadata 
that was already introduced in Garp3 [2] (including 
abstract, keywords, and descriptions of the model 
goals, domain, and intended audience), this makes it 
possible to find out what the model is about, without 
having to analyze the details of the model implementa-
tion, which might be hard to understand at first glance.  

Compared to the Build environment interface of Garp3 as 
described in [2], the editors in the Sketch environment 
have been designed to have a sparser user-interface. Each 
editor focuses on a specific kind of knowledge, so that the 
modeler has to focus on only a few types of ingredients per 
editor. Furthermore, the Sketch editors do not impose some 
of the grammatical constraints associated with the model 
implementation (e.g., quantities do not have to be 
associated to an entity, and quantity space values do not 
have to be characterized as points or intervals), to facilitate 
the flow of ideas in the initial stages of modeling. Not 
enforcing these constraints does not create a problem in the 
Sketch environment because the Sketches are not used 
directly as input for the simulation engine.  

The Sketch Editors 
The Sketch4 environment consists of seven different 
editors. Their recommended use is in the order matching 
Figure 2, which shows an overview of the intermediate 
modeling results and how they follow up on and refine 
each other.  
                                                
4   The term ‘Sketch’ is used here to refer to the 
preliminary and relatively unconstrained nature of the 
representations, rather than free-form drawing 

 In the Concept Map editor, inspired by the IHMC Cmap 
Tools [14], a modeler specifies the concepts and 
relationships that are considered important in the domain 
as a graph consisting of labeled nodes and links, 
respectively. No additional building blocks or constraints 
are given at this stage (such as having to create modeling 
ingredients in a particular order), allowing the modeler to 
freely specify his or her initial ideas. The concept map 
addresses the model goals and serves as a basis for 
refinement into the other Sketches.  
 In the Structural Model editor, the modeler needs to 
focus on the physical structure of the system and how it 
relates to the environment. The graphical format is similar 
to the Concept Map editor, but here each node is assigned a 
type (entity, agent, assumption, or undefined concept). 
This guides the modeler to be more specific about the 
nature of what is represented. Common structural relation-
ships have been predefined (connected-to, contains, is-a), 
but the modeler can add new relation definitions as well. 
 The generic knowledge about system behavior can be 
represented in three editors: the Process Definitions editor, 
the Actions and External Influences Definitions editor, and 
the Causal Model editor. The Process Definitions editor 
allows the modeler to define processes that affect the 
system by specifying the related entities, quantities, start 
conditions, effects, stop conditions, and behavioural 
assumptions. The Actions and External Influences 
Definitions editor is used to specify influences exerted 
from outside the system, and is similar to the Process 
Definitions editor except for an additional field for the 
agents causing the influence. The Causal Model editor is 
used to describe the causal dependencies between 
quantities, to indicate how they affect each other. This type 
of editor relates to tools such as VModel [9] and Betty’s 
Brain [12]. In the Sketch Causal Model editor there are 

Figure 2: Overview of the intermediate representations used in the structured approach. 

 



four types of causal relationships: they are either direct or 
indirect, and either positive or negative [8]. Together, they 
provide an overview of the effects of the processes and 
actions defined in the previous two editors, and how these 
effects propagate through the system.  
 Finally, there are two editors that deal with specific 
behavior: the Scenario Definitions editor, and the Behavior 
Graph (or Expected Behaviors Map) editor. In the Scenario 
Definitions editor, scenarios can be specified to represent 
different initial situations of the system, which will be the 
starting points in the system’s behavior. In this structured 
text based editor scenarios can be defined by specifying the 
entities, agents, quantities, initial values, (in)equality 
statements, and behavioral assumptions that pinpoint what 
is relevant in determining the behavior of the system. 
 In the Behavior Graph editor, the modeler can indicate 
how quantities and (in)equalities are expected to change 
over time given an initial scenario. The modeler creates the 
states, defined by a set of value and (in)equality 
statements, and possible transitions between them to 
represent the main aspects of the system’s anticipated 
behavior. The value and (in)equality statements are 
displayed within the state nodes, to present a clear 
overview of the content of the possible behaviors. A 
screenshot of several of the Sketch editors is shown in 
Figure 3. The contents of the figure are taken from a case 

study within the NaturNet-Redime project about the 
Danube Delta Biosphere Reserve [6]. 
 To further support working through the structured 
modeling methodology (following Figure 2), it is possible 
to import certain parts from one Sketch into another, 
thereby enabling reuse and refinement of ideas. For 
example, concepts specified in the Concept Map editor can 
be imported (and refined into other types) in the other 
editors. Entities, agents, and assumptions specified in the 
Structural Model editor can be imported in the Process 
Definitions editor, the Actions and External Influences 
Definitions editor, and the Scenario Definitions editor. 

Conclusions and Future Work 
This paper presents new collaborative modeling features of 
the Garp3 qualitative reasoning and modeling workbench 
[2] to further facilitate the articulation of knowledge.  
Engineers of conceptual knowledge use Garp3 to construct 
qualitative models. Particularly, partners in the NaturNet-
Redime project use the workbench to capture knowledge 
about river restoration ecology.  
 To prevent redoing of work within a community a 
central online model repository has been developed in 
which qualitative models (formalized in the Web Ontology 
Language) can be shared and searched for. Within Garp3 
multiple model support and copy functionality have been 

Figure 3: A screenshot of the Sketch environment. 



added so that model parts can be easily reused. This makes 
it possible to reuse parts of existing models, integrate 
models to create larger models, and create alternative 
representations of systems to share within communities.  
 To support synchronous collaborative modeling the 
Sketch environment has been developed. Sketch helps 
consensus building through explicit representations to 
focus discussions and solidify established consensus.   
Another role of the Sketch environment is to ease the 
transition from initial ideas to implementation of the 
model, following a structured approach to model building 
[3]. Because the Sketches provide a high-level description 
of the implemented model, inspecting the Sketches can 
also help modelers to determine if a particular model is 
useful for them, without having to inspect the details of the 
model implementation itself. This is another added value. 

Future work will focus on three issues. First, using the 
Sketch representations to (partially) automate model 
construction. Because the representations used in the 
Sketch environment are less constrained than the definitive 
Garp3 format for model implementation, certain model 
ingredients from the Sketches (e.g., the structural model, 
the causal model, the processes, and scenarios) might be 
reused or refined into the final model. The State-Transition 
Graph Sketch that represents anticipated behaviors can be 
compared to the actual simulation results to find 
discrepancies that may be used to refine the model, or the 
expectations.   

Second, reusing model parts can cause undesired 
behavior during simulation. Investigating what kinds of 
issues occur, and how results deviate from modeler’s 
expectations will further the design of repair methods, and 
eventually, automated support for troubleshooting.  

Third, studies with modelers are planned, in the context 
of the NaturNet-Redime project, to evaluate the new 
functionality.   
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