
Collaborative Conceptual Modeling:
Share, Search and Reuse

Jochem Liem, Anders Bouwer and Bert Bredeweg

Human Computer Studies Laboratory – University of Amsterdam
Kruislaan 419 (Matrix I), 1098VA Amsterdam, The Netherlands {jliem,bouwer,bredeweg}@science.uva.nl

Abstract
Within the Qualitative Reasoning community there is a
desire to collaborate by integrating work and reusing parts
of existing models. Although there has been much attention
for the knowledge representation formalisms required for
these tasks, activities performed by knowledge engineers
such as copying model parts, searching for relevant models,
and sharing intermediate modeling results are often not
supported by existing modeling tools. This paper presents a
set of new features in the Garp3 qualitative reasoning and
modeling workbench to support these activities.

Introduction
An interesting idea of Qualitative Reasoning (QR) is to
build a generic library of model fragments that can be
applied by different users to simulate specific scenarios
[4,7]. However, in practice the development of unified
libraries has been limited. Modelers seem to prefer creating
their own idiosyncratic libraries that are tailored to their
specific needs, reusing only certain parts of previous
modeling efforts, and adapting or leaving out other parts.
In any case, whether a modeler wants to integrate modeling
work of different modelers to create a unifying library, or
reuse existing model fragments to create his own specific
library, functionality is required to share and reuse parts of
(partially) developed libraries. In this paper we present this
functionality as implemented in the Garp3 workbench.
 Taking a part of one body of knowledge and integrating
it into another has several issues. For instance, knowledge
parts usually relate to other knowledge parts. Without this
other knowledge semantics may get lost. On the other
hand, the existing body of knowledge may clash with the
part of knowledge that is being reused. In order to prevent
problems arising from such issues, we have defined a set of
principles to support knowledge reuse. These are
enumerated as: (1) Syntactical correctness should be
maintained. Knowledge is usually represented in some
formalism. After knowledge from one body of knowledge
has been added to another, the augmented knowledge body
should still adhere to the formalism. (2) Knowledge should
remain complete. Knowledge parts often depend on other
knowledge parts. When knowledge is reused in another
body, the knowledge parts on which it depends should also
be copied to that new context. (3) No redundant knowledge
should be added. Two knowledge bodies may have

overlapping parts. When reusing knowledge from one body
in another, and some of the knowledge already exists, this
knowledge should be reused as much as possible. (4)
Existing knowledge should not be altered. The knowledge
a modeler is working on can be assumed to be tailored to
the needs of this modeler. Therefore, the knowledge should
not be changed when knowledge from another knowledge
body is added, as it could break the purpose for which the
knowledge was developed. (5) Semantics should be
preserved as much as possible. Copying knowledge should
not cause the meaning of the knowledge to be changed or
lost. (6) Reuse solutions should be user-friendly. This
means the modeler should not have to provide too much
additional input, be asked difficult questions, and that the
functionality is easy to use.
 Next to reuse functionality, two other conditions have to
be fulfilled to efficiently reuse previously created bodies of
knowledge. Firstly, modelers should be able to share their
work within a community and the shared knowledge
should be made searchable and accessible to the entire
community. Otherwise, there is no knowledge to reuse.
Secondly, modelers should be able to search through the
shared knowledge in order to find knowledge that is
potentially reusable for their needs. In the Garp3
workbench search is facilitated by meta-data, the model
itself, and by high-level descriptions of the model and its
expected behavior, referred to as Sketches.

Garp3 – QR Workbench
In this paper, the reuse functionality is addressed in the
context of the Garp3 workbench (http://www.garp3.org),
which implements a diagrammatic approach to modeling
and simulating qualitative models [2]. Modeling in Garp3
starts by creating model ingredient definitions. These
definitions include entities, agents, assumptions,
configurations, quantities and quantity spaces. Entities,
which represent the structural objects in a system, are
organized in a sub-type hierarchy. They are defined by
their name and their position in the hierarchy. Agents and
assumptions are defined in the same way. Agents cause
influences from outside of the system, while assumptions
are labels that indicate that certain conditions are presumed
to be true. Configurations are structural relations between
entities that are defined by their name. Quantities represent
the features of entities and agents that change during

simulation, and are defined by their name and a set of
possible quantity spaces. Quantity spaces represent the
possible values a magnitude (or derivative) of a quantity
can have, and are defined by their name and an ordered set
of possible values. Quantity spaces are associated to the
quantities of entities or agents.
 Next to the model ingredients defined by the modeler,
there is also a set of predefined model ingredients. These
include causal dependencies (proportionalities and
influences), correspondences, the operator relations plus
and minus, value assignments, and inequalities.
 The model ingredient definitions described above can be
used (instantiated) to create model fragments (MFs) and
scenarios. MFs can be seen as composite ingredients that
incorporate other ingredients as either conditions or
consequences. They are organized in a subtype hierarchy,
meaning that a child MF inherits the model ingredients of
its parents. Furthermore, a MF can incorporate other MFs
as conditional ingredients. MFs instantiated in another MF
are called Imported Model Fragments (IMFs). An example
MF incorporating another MF twice is shown in Figure 1.
 Scenarios are also composite model ingredients. They
describe specific system situations. During simulation,
MFs are sought which match on the scenario (i.e. the
model ingredients fulfill the conditions of the MF). The
consequences of matching MFs are merged with the
scenario to create an augmented state from which the next
states of behavior can be determined.

Figure 1: Liquid flow includes two Contained Liquid
IMFs, the Pipe, and the configurations as conditions, and
flow, its calculation and causal relations as consequences.

Reusing Parts of Models
A user-friendly way to support modelers with functionality
to reuse model parts (model ingredient definitions, MFs
and scenarios) is by allowing them to copy a model part in
one model and paste it into another model (hereafter called
copy functionality). From the modeler’s perspective,
copying model parts should be as easy as copying text
between documents (principle 6).
 The result of a copy should be assured to result in a
syntactically correct model (principle 2). For example,
ingredients must have unique names and arguments of
relations must have correct type. This is achieved by
rebuilding the copied model part in the target model as if
the modeler had created it from scratch. Since Garp3

checks each of the modeler’s actions, this assures that the
model remains syntactically correct.
 When a model part is copied to another model, no
redundant information should be added to the model
(principle 3). Therefore, when a model part and an already
existing model part have the same name, the existing
model part is reused if possible. The assumption is that if
the copied model part and the existing model part have the
same user-given name, they describe concepts in the same
domain. If the existing model parts cannot be reused
because semantics differ despite having the same name, the
copied model part receives a suffix to indicate this.

Storing Copied Model Ingredients
 Model parts often depend on other model parts without
which they are incomplete. The completeness of the model
part has to be maintained (principle 2) when a model part
is copied. Our solution is to create a complete sub-model
that contains the copied model part and all the model parts
it requires. This sub-model is self-contained, meaning it
can exist on its own, and is stored in a copy buffer (a
model data structure). Details on how this works for each
type of model part are explained in the next subsections.

Copying Model Ingredient Definitions
Entities are defined by their name and their position in the
entity hierarchy. When a set of entities is copied to another
model, they have to be integrated with the already existing
entity hierarchy in some way. If an entity with the name
already exists, redundancy should be avoided (principle 3).
Therefore, the entity is not created, since it assumed to
represent the same concept.
 The entities should be integrated into the hierarchy in
such a way that as much of the semantics is preserved as
possible (principle 5). For entities this means that their
position in the hierarchy should match as closely as
possible. This is not straightforward since the modeler can
select a subset of the entities in different branches. Only
these selected entities should be copied, as it would not be
user-friendly if the copy functionality would add more
entities than the modeler has selected (principle 6). As a
result, the final entity hierarchy will not always contain the
parents of each entity.
 Our solution to preserve as much of the semantics as
possible is to also store all the ancestors of the selected
entities in the copy buffer. When the selected entities are
copied to the target hierarchy, the algorithm checks
whether an ancestor (parent, grandparent, etc.) of each
entity already exists. The entity is placed below the closest
ancestor to recreate its semantics as closely as possible. If,
no ancestor exists, the definition is placed below the root
node. The modeler is allowed to choose a different position
in the hierarchy where the copied entities should be
recreated (principle 6). The hierarchy of entities is then
created below this definition. Agents and assumptions are
defined and copied in the same way.

 Configurations are the simplest model ingredients, since
they are only defined by their name. To avoid redundancy
(principle 3), a copied configuration is only created if it
does not exist yet in the target model.
 Quantity spaces are defined by their name and their total
order of values. The order of the values is important, since
it defines to which values the magnitude (or derivative) of
a quantity can change. Again, redundancy has to be
avoided (principle 3). Therefore, a quantity space is not
created if a quantity space with the same name and the
same set of ordered values already exists. When a quantity
space with the same name does not exist, it can be created
normally. However, if a quantity space with the same name
but with different values (or differently ordered values)
exists, the values of the existing quantity space cannot be
altered to match the values of the copied quantity space.
The reason is that changing an existing quantity space
would potentially alter the possible values of already
existing quantities and cause simulations to generate
different behavior (violating principle 4). Instead, a new
definition is created with the suffix '(other values)'.
 Quantities are defined by their name and a set of
associated quantity spaces (of which only one can be
chosen when it is added to a MF). To assure completeness
(principle 2), the associated quantity spaces have to exist
before the quantity can be created. Therefore, the
associated quantity spaces of a quantity are created (as
described above) before the quantity is copied. A quantity
is copied normally if a quantity with the same name does
not exist. A quantity is considered redundant and is not
created if a quantity with the same name and the same
quantity spaces already exists (principle 3).
 When a quantity with the same name already exists, but
has different associated quantity spaces, there are two
options. The first option is creating a new quantity by
adding the suffix ‘(different quantity spaces)’ to its name.
This potentially adds redundant knowledge (violating
principle 3). The second option is to merge the sets of
associated quantity spaces, which means existing
knowledge is altered (violating principle 4). We choose
this second option in our approach, since the associated
quantity spaces only indicate the possible values for
quantities. Therefore, adding quantity spaces to the set of
possible quantity spaces does not really change the
semantics of the quantity in model fragments (i.e. the
simulation results remain the same), but only provides the
possibility to use the quantity in a different way.

Copying Model Fragments
To copy a MF to another model, the algorithm has to deal
with the subtype hierarchy, the MFs imported as
conditional elements (see Figure 1), the model ingredient
definitions of which instances are used in the MF, and the
actual creation of the MF and its contents.
 Dealing with imported and parent model fragments.
In order to create a MF, all MFs it imports and its parent
MFs have to exist. Each parent MF and reused MF has the
same requirements. Therefore copying a set of MFs

requires that their required MFs are collected and created
first. A list of the to-be-created MFs and their required
MFs is determined in several steps. Firstly, MFs inherited
from parents are considered to be IMFs. Secondly, the
IMFs within the MFs are gathered. Thirdly, the MFs
corresponding to these IMFs are added to the list of
required MFs. For each of the MFs added to the list the
same three steps are performed until no more IMFs can be
found. Finally, duplicates in the list of required MFs are
removed, and the to-be-copied MFs are added to the list.
 Determining and copying used model ingredient
definitions. In addition to the model ingredients that the
copied MFs use, also the model ingredients that the
required MFs use have to be created. Given the MFs list
created in the previous step, finding the required model
ingredient definitions is easy. A list of model ingredient
definitions is created for each model ingredient type. Then,
by looping through the model ingredients of each MF, the
definition of each model ingredient is added to the list of
its type (if it is not already there). The end result is a set of
lists that contain all model ingredient definitions needed to
create the set of MFs.
 The required definitions are copied as if the definitions
were individually copied (as described in the ‘Copying
Model Ingredient Definitions’ section). There is one
difference when dealing with entities, agents and
assumptions. During development it became apparent that
the semantics about entities was lost when certain
scenarios (see Section ‘Garp3 – QR Workbench’) are
copied before MFs. Scenarios tend to use more specific
concepts (lower in the hierarchy) since they represent
specific situations, while MFs use general concepts (higher
in the hierarchy) since they model general situations.
Consider a model that defines the entities container, barrel
(which is a type of container), liquid, and water (a type of
liquid). Copying a scenario modeling a barrel with water
would add both the barrel and the water concept to the
hierarchy in the target model. Copying a MF that models a
liquid in a container afterwards, would add the container
and the liquid to two other branches in the hierarchy, since
no information about the children of entities is stored in the
copy buffer. The fact that barrel is a container, and that
water is a liquid would be lost. This issue is solved by not
only copying the required definitions, but also their
ancestors. In the example, the liquid and container
concepts are immediately created when the scenario is
copied, preserving the semantics (principle 5).
 Creating the model fragments and their contents.
After these steps, all required model ingredient definitions
are present, and each of the MFs in the list (of required and
to-be-copied MFs) has to be created. The parents and the
MFs each MF imports have to exist before that MF can be
created. Therefore, the order in which the MFs are created
is important. Instead of ordering the MFs, the algorithm
loops through the list of MFs and checks whether the
required MFs exist for each MF. If not, it skips to the next
one. If they exist, the MF is created and the MF is removed
from the list. This continues until the list is empty.

 The creation of a MF also requires the creation of the
contents of the MF. Again, the order in which the model
ingredients are created is important, since Garp3 prevents
model ingredients to be created that would result in a
syntactically incorrect model (principle 1). Therefore,
relations cannot be created if their arguments do not exist
(e.g. a ‘preys on’ relation between two populations cannot
exist without the two populations), quantities need their
entities (e.g. a ‘size’ quantity of a ‘population’ cannot exist
without the population), and value assignments need a
quantity space before they can be created. To create the
MF contents while maintaining a syntactically correct
model at all times, the ingredients in the source MF are
ordered. IMFs have to be created first, as model
ingredients can be related to one of the model ingredients
in the IMFs. Then, entities, assumptions, quantities,
attributes, configurations, causal dependencies, value
assignments, correspondences, plus or minus relations, and
inequalities should be created. The algorithm loops through
the sorted list of model ingredients creating each of the
model ingredients and assigning it the same position on
screen as in the source model.

Imported Model Fragments
 When recreating the model ingredients of a MF in
another model, it is complex and inefficient to have to
determine for each model ingredient to which other model
ingredient it is connected (e.g. to which entity a quantity
should be added, or what the arguments of a relation are).
The model ingredient(s) to which a model ingredient is
related are called its arguments. To be able to determine
the arguments of a to-be-created model ingredient in a
target MF, a mapping has to be maintained between the
ingredients in the source MF and the ingredients in the
target MF. The model ingredients in the target MF to
which the arguments in the source MF are mapped are the
arguments of the to-be-created model ingredient.
 Maintaining a mapping between the model ingredients
in a source MF and a target MF is easy when model
ingredients are created one at a time. When looping
through the ordered list of model ingredients in the source
MF to create the model ingredients in the target MF, the
model ingredient in the list is mapped to the newly created
ingredient. However, when a MF is imported, a set of
model ingredients is added to the MF. Therefore, a
mapping between the model ingredients of the IMF in the
source model and the ingredients of the IMF in the target
model is harder to establish.
 To create the mapping, the model ingredients are sorted
in the same way as when creating the contents of a MF.
The algorithm loops through the sorted model ingredients
of the IMF in the source MF, and selects one of the
imported model ingredients of that type in the target
model. It checks whether the ingredient has the same
name, associated arguments and relations. If the checks
succeed, the correct model ingredient is chosen and a
mapping between the ingredient in the IMF in the source
MF and the ingredient in the IMF in the target MF is

saved. Creating this mapping for each of the model
ingredients in the IMF always succeeds, since the IMFs are
guaranteed to be identical in both models. The mapping is
also used to update the positioning information for the
model ingredients in the IMF in the target MF.

Reusing Existing Model Fragments
When a set of MFs is copied to another model, they might
clash with MFs that already exist in the target model.
These MFs cannot simply be reused, since the semantics of
these MFs might be different. The existing MF might
contain different model ingredients, or model ingredients
might be differently connected than the model ingredients
in the source MF. To avoid redundancy (principle 3), the
existing MF should be reused if possible. A MF can only
be reused if its ingredients are equal or a superset of the
ingredients in the source MF, and if the corresponding
model ingredients are connected in exactly the same way.
 To determine if a MF can be reused, the mapping
algorithms used to deal with IMFs is used. The source MF
and the target MF are treated as IMFs, and the algorithm
tries to create a mapping between the contents of the MFs.
This mapping only succeeds if the target MF contains at
least all the model ingredients that are in the source MF,
and the model ingredients are connected in the same way.
In contrast to the mapping between IMFs, the mapping can
also fail, meaning that there is no mapping possible and
that the MF cannot be reused. Then, the semantics of the
to-be-created MF is different from the existing MF, and the
MF is created with the suffix ‘(copy)’. When the MF is
reused in other copied MFs, this new copy is used instead
of the existing MF to preserve the semantics of the copied
model fragment (principle 5). The existing MFs keep using
the existing MF (preserving principle 4).
 To preserve the semantics of a MF (principle 5), the
reused MFs should be identical to those in the source
model, as reusing different MFs results in a different
complete MF. On the other hand, not reusing a MF which
is a superset of the source MF (i.e. contains more
ingredients), but which is otherwise equal requires a new,
possibly redundant, MF to be created (violating principle
3). We feel that the best way to solve this issue is to ask the
modeler for feedback. Although this is a difficult question,
it makes the modeler aware that there are options, and each
choice has a significantly different end result. This solution
is more user-friendly than letting the algorithm make the
choice for the modeler (principle 6).

Sharing and Searching for Models
To reuse models of others, modelers have to be able to
share their work and access work of others. This is solved
by allowing models to be uploaded to and downloaded
from a central online model repository. However, the
number of models in the repository can potentially become
large, which means that modelers need to be supported by
search functionality to find reusable models.

 Typically, a modeler will want to search for models
which contain a certain entity or quantity (e.g. a model
which contains both an entity population and a quantity
size). Normal search engines search for keywords in text
and are unable to interpret the explicit knowledge
representation in qualitative models. So the search engine
is unable to distinguish between different types of model
ingredients, or between domain specific and domain
independent knowledge (i.e. the QR vocabulary and the
knowledge formalized by the modeler). This hampers the
search engine’s ability to find relevant models. A search
solution should make use of the explicit knowledge
representation in qualitative models to allow modelers to
focus their search using the QR vocabulary.

QR Models in the Web Ontology Language
The Semantic Web initiative proposes that “semantic
search” becomes possible by making content machine-
accessible [1]. The Web Ontology Language (OWL) is a
description-logic based knowledge representation
language, which is represented in RDF/XML, and is being
developed as part of the Semantic Web initiative. It has
become the de-facto standard for the sharing of knowledge
on the web in the form of ontologies. By formalizing
qualitative models as OWL ontologies, the models become
interpretable by OWL search engines, and searching for
models in which certain model ingredients or certain
structures are used becomes possible. Additionally, the
formalization of models in OWL opens up the possibility
for other QR-tool developers to implement functionality to
import these files. This could potentially make models
accessible to communities using different QR tools.
 There is no clear methodology for the creation of
ontologies, therefore we have created our own. Firstly, the
qualitative reasoning vocabulary was formalized as an
ontology that consists of a hierarchy of all the model
ingredients and their usage restrictions. Based on this
domain-independent ontology, an OWL file-format for
qualitative models was developed that refers to concepts
defined in the vocabulary ontology. Using OWL reasoners,
both the vocabulary and a set of model ontologies were
checked for consistency, and the model ontologies were
checked for correctness using the formalized usage
restrictions. Functionality to export models to OWL and
import them again was added to Garp3. The machine-
accessible OWL-model files allow search engines to use
the explicit knowledge representation of QR models.
 Originally, we had the aim to use OWL reasoners to
perform QR reasoning, but this proved to be impossible.
Since the OWL reasoners are classification engines, the
formalization should allow scenarios to be classified as
being instances of MFs. However, due to limits in the
expressiveness of OWL it is not possible to formalize MFs
in a way that this reasoning can be performed [13]. In
general, it is impossible to formalize general situations in
OWL in a way that specific situations can be classified
[11]. Due of this lack of expressiveness, the OWL

representation of MFs needed to be adapted. However, this
change has little effect on model search.
 An earlier effort to support the interchange and reuse
of MFs is the Compositional Modeling Language (CML)
[5], which aimed to enable this functionality by defining
CML in the Knowledge Interchange Format [10]. We have
chosen to use OWL instead of CML, since it has a large
user base and tools that are being actively developed.

Sharing and Searching in the Model Repository
A qualitative model repository1 was implemented as a
webpage that allows modelers to share their own models as
OWL files, and search and download models of others.
The main issue of implementing the repository is making it
usable for modelers. The repository should be instantly
usable for the user. Therefore, modelers should not be
required to learn an OWL query language.
 There are two different ways of implementing search
functionality. The first is building an interface on top of an
OWL query language, and the second is programming our
own solution. Since building an interface on top of an
OWL query language is complex, and implementing
dedicated solutions has become easier due to the
availability of semantic web libraries, we have chosen the
second solution. The model repository is developed using
the SWI-Prolog Semantic Web Library2 and PHP3.
 The search functionality shows the model ingredient
definitions of all the models. Selecting a definition reduces
the list of matching models, allowing the modeler to
iteratively refine the list of potentially useful models.

Sketch: Supporting Structured Modeling
The Garp3 workbench has been extended with the Sketch
environment to allow modelers to create high-level
representations of systems before starting the model
implementation. The goal of the Sketch environment is
threefold:
• to offer guidance during the modeling process, by

providing editors that support different steps in the
structured modeling methodology [3];

• to document initial ideas and intermediate modeling
decisions by allowing the creation of external
representations for them. Although not all captured
ideas may end up in the final model, these Sketch
representations can aid in communicating about the
domain and establishing consensus between
collaborating modellers;

1 http://hcs.science.uva.nl/QRM/models/repository/
2 http://www.swi-prolog.org/packages/semweb.html
3 http://www.php.net

• to facilitate determining whether an existing model is
relevant for a modeler, by providing a set of Sketch
representations as a high-level abstraction and
introduction to the model. Together with the metadata
that was already introduced in Garp3 [2] (including
abstract, keywords, and descriptions of the model
goals, domain, and intended audience), this makes it
possible to find out what the model is about, without
having to analyze the details of the model implementa-
tion, which might be hard to understand at first glance.

Compared to the Build environment interface of Garp3 as
described in [2], the editors in the Sketch environment
have been designed to have a sparser user-interface. Each
editor focuses on a specific kind of knowledge, so that the
modeler has to focus on only a few types of ingredients per
editor. Furthermore, the Sketch editors do not impose some
of the grammatical constraints associated with the model
implementation (e.g., quantities do not have to be
associated to an entity, and quantity space values do not
have to be characterized as points or intervals), to facilitate
the flow of ideas in the initial stages of modeling. Not
enforcing these constraints does not create a problem in the
Sketch environment because the Sketches are not used
directly as input for the simulation engine.

The Sketch Editors
The Sketch4 environment consists of seven different
editors. Their recommended use is in the order matching
Figure 2, which shows an overview of the intermediate
modeling results and how they follow up on and refine
each other.

4 The term ‘Sketch’ is used here to refer to the
preliminary and relatively unconstrained nature of the
representations, rather than free-form drawing

 In the Concept Map editor, inspired by the IHMC Cmap
Tools [14], a modeler specifies the concepts and
relationships that are considered important in the domain
as a graph consisting of labeled nodes and links,
respectively. No additional building blocks or constraints
are given at this stage (such as having to create modeling
ingredients in a particular order), allowing the modeler to
freely specify his or her initial ideas. The concept map
addresses the model goals and serves as a basis for
refinement into the other Sketches.
 In the Structural Model editor, the modeler needs to
focus on the physical structure of the system and how it
relates to the environment. The graphical format is similar
to the Concept Map editor, but here each node is assigned a
type (entity, agent, assumption, or undefined concept).
This guides the modeler to be more specific about the
nature of what is represented. Common structural relation-
ships have been predefined (connected-to, contains, is-a),
but the modeler can add new relation definitions as well.
 The generic knowledge about system behavior can be
represented in three editors: the Process Definitions editor,
the Actions and External Influences Definitions editor, and
the Causal Model editor. The Process Definitions editor
allows the modeler to define processes that affect the
system by specifying the related entities, quantities, start
conditions, effects, stop conditions, and behavioural
assumptions. The Actions and External Influences
Definitions editor is used to specify influences exerted
from outside the system, and is similar to the Process
Definitions editor except for an additional field for the
agents causing the influence. The Causal Model editor is
used to describe the causal dependencies between
quantities, to indicate how they affect each other. This type
of editor relates to tools such as VModel [9] and Betty’s
Brain [12]. In the Sketch Causal Model editor there are

Figure 2: Overview of the intermediate representations used in the structured approach.

four types of causal relationships: they are either direct or
indirect, and either positive or negative [8]. Together, they
provide an overview of the effects of the processes and
actions defined in the previous two editors, and how these
effects propagate through the system.
 Finally, there are two editors that deal with specific
behavior: the Scenario Definitions editor, and the Behavior
Graph (or Expected Behaviors Map) editor. In the Scenario
Definitions editor, scenarios can be specified to represent
different initial situations of the system, which will be the
starting points in the system’s behavior. In this structured
text based editor scenarios can be defined by specifying the
entities, agents, quantities, initial values, (in)equality
statements, and behavioral assumptions that pinpoint what
is relevant in determining the behavior of the system.
 In the Behavior Graph editor, the modeler can indicate
how quantities and (in)equalities are expected to change
over time given an initial scenario. The modeler creates the
states, defined by a set of value and (in)equality
statements, and possible transitions between them to
represent the main aspects of the system’s anticipated
behavior. The value and (in)equality statements are
displayed within the state nodes, to present a clear
overview of the content of the possible behaviors. A
screenshot of several of the Sketch editors is shown in
Figure 3. The contents of the figure are taken from a case

study within the NaturNet-Redime project about the
Danube Delta Biosphere Reserve [6].
 To further support working through the structured
modeling methodology (following Figure 2), it is possible
to import certain parts from one Sketch into another,
thereby enabling reuse and refinement of ideas. For
example, concepts specified in the Concept Map editor can
be imported (and refined into other types) in the other
editors. Entities, agents, and assumptions specified in the
Structural Model editor can be imported in the Process
Definitions editor, the Actions and External Influences
Definitions editor, and the Scenario Definitions editor.

Conclusions and Future Work
This paper presents new collaborative modeling features of
the Garp3 qualitative reasoning and modeling workbench
[2] to further facilitate the articulation of knowledge.
Engineers of conceptual knowledge use Garp3 to construct
qualitative models. Particularly, partners in the NaturNet-
Redime project use the workbench to capture knowledge
about river restoration ecology.
 To prevent redoing of work within a community a
central online model repository has been developed in
which qualitative models (formalized in the Web Ontology
Language) can be shared and searched for. Within Garp3
multiple model support and copy functionality have been

Figure 3: A screenshot of the Sketch environment.

added so that model parts can be easily reused. This makes
it possible to reuse parts of existing models, integrate
models to create larger models, and create alternative
representations of systems to share within communities.
 To support synchronous collaborative modeling the
Sketch environment has been developed. Sketch helps
consensus building through explicit representations to
focus discussions and solidify established consensus.
Another role of the Sketch environment is to ease the
transition from initial ideas to implementation of the
model, following a structured approach to model building
[3]. Because the Sketches provide a high-level description
of the implemented model, inspecting the Sketches can
also help modelers to determine if a particular model is
useful for them, without having to inspect the details of the
model implementation itself. This is another added value.

Future work will focus on three issues. First, using the
Sketch representations to (partially) automate model
construction. Because the representations used in the
Sketch environment are less constrained than the definitive
Garp3 format for model implementation, certain model
ingredients from the Sketches (e.g., the structural model,
the causal model, the processes, and scenarios) might be
reused or refined into the final model. The State-Transition
Graph Sketch that represents anticipated behaviors can be
compared to the actual simulation results to find
discrepancies that may be used to refine the model, or the
expectations.

Second, reusing model parts can cause undesired
behavior during simulation. Investigating what kinds of
issues occur, and how results deviate from modeler’s
expectations will further the design of repair methods, and
eventually, automated support for troubleshooting.

Third, studies with modelers are planned, in the context
of the NaturNet-Redime project, to evaluate the new
functionality.

Acknowledgements
The research presented here is co-funded by the European
Commission within the 6th Framework Programme for
Research and Development (2002-2006) (project
NaturNet-Redime, number 004074, www.naturnet.org).
We thank the reviewers and the participants of the
NaturNet-Redime workshops in Sofia, Bulgaria (March
2006) and Birini, Latvia (September 2006) for their
insightful feedback.

References
[1] Antoniou, G. and van Harmelen, F. A Semantic Web
Primer, The MIT Press, Cambridge, Massachusetts, April
2004.
[2] Bredeweg, B., Bouwer, A., Jellema, J., Bertels, D.,
Linnebank, F. and Liem, J. Garp3 - A new Workbench for
Qualitative Reasoning and Modelling. 20th International
Workshop on Qualitative Reasoning (QR-06), C. Bailey-
Kellogg and B. Kuipers (eds), pages 21-28, Hanover, New
Hampshire, USA, 10-12 July, 2006.

[3] Bredeweg, B., Salles, P., Bouwer, A., Liem, J., Nuttle,
T., Cioaca, E., Nakova, E., Noble, R., Caldas, A.L.R.,
Uzunov, Y., Varadinova, E. and Zitek, A. Towards a
Structured Approach to Building Qualitative Reasoning
Models and Simulations. Ecological Informatics (in press).
[4] Bredeweg, B. and Struss, P. (eds). 2003. Current
Topics in Qualitative Reasoning. AI Magazine (special
issue), Volume 24, Number 4 (winter), pages 13-130.
[5] Bobrow, D., Falkenhainer, B., Farquhar, A., Fikes, R.,
Forbus, K., Gruber, T., Iwasaki, Y., and Kuipers, B.
(1996). A Compositional Modeling Language. In Iwasaki,
Y., and Farquhar, A., editors, Proceedings of the Tenth
International Workshop for Qualitative Reasoning(QR-96),
pages 12-21, AAAI Press, AAAI Technical Report WS-96-
01, Menlo Park, California, USA.
[6] Cioaca, E., S. Covaliov, C. David, M. Tudor, L.
Torok, O. Ibram, Textual description of the Danube Delta
Biosphere Reserve case study focusing on basic biological,
physical, and chemical processes related to the
environment. Naturnet-Redime, STREP project co-funded
by the European Commission within the Sixth Framework
Programme (2002-2006), Project no. 004074, Project
Deliverable Milestone M6.2.1.
[7] Falkenhainer, B. C. and K. D. Forbus. Compositional
modeling: Finding the right model for the job. Artificial
Intelligence, 51:95–143, 1991.
[8] Forbus, Kenneth D., Qualitative Process Theory,
Artificial Intelligence, 24, p. 86-168, 1984 .
[9] Forbus, K., L. Ureel, Carney, K., and Sherin, B..
Qualitative modeling for middle-school students. In J. de
Kleer and K. D. Forbus (eds.) Proceedings of QR 2004,
18th International Workshop on Qualitative Reasoning,
Evanston, USA, August 2–4, 2004, pp. 81–88, 2004.
[10] Genesereth, M. R. and Fikes, R. E. (1992).
Knowledge Interchange Format, Version 3.0 Reference
Manual. Technical Report Logic-92-1, Stanford University
Logic Group.
[11] Hoekstra, R., Liem, J., Bredeweg, B. and Breuker, J.
Requirements for Representing Situations. Proceedings of
the OWLED'06 workshop on OWL: Experiences and
Directions. In Bernardo Cuenca Grau and Pascal Hitzler
and Conor Shankey and Evan Wallace (Eds.): CEUR
Workshop Proceedings 216. Athens, Georgia, USA,
November 10-11 2006.
[12] Leelawong, K., Y. Wang, G. Biswas, N. Vye, J.
Bransford, and D. Schwartz. Qualitative reasoning
techniques to support learning by teaching. In G. Biswas,
(ed.), Proceedings of QR 2001, 15th International
Workshop on Qualitative Reasoning, St. Mary’s
University, San Antonio, Texas, 17-18 May 2001, pp. 65–
72, Stoughton, WI, 2001. The Printing House.
[13] Liem, J. and Bredeweg, B. OWL and qualitatative
reasoning models. In C. Freksa, M. Kohlhase, and K.
Schill (Eds.): KI 2006, Lecture Notes in Artificial
Intelligence 4314, pp. 33-48. Springer-Verlag Berlin
Heidelberg 2007. (to appear)
[14] Novak, J. D. and D. B. Gowin. Learning How to
Learn. Cambridge University Press, New York, 1984.

