
USING AGGREGATION FOR AUTOMATIC IDENTIFICATION OF WORK PROCESSES IN THE
MANAGERIAL HIERARCHY

Bahadır Kaan Özütam, Cem Say

Boğaziçi University, Computer Engineering Department
İstanbul, Turkey

E-mail: ozutam@yahoo.com, say@boun.edu.tr

KEYWORDS

Aggregation, Modeling Organizations.

ABSTRACT

Aggregation is a qualitative reasoning technique
which replaces repetitive cycles of process instances
with a higher level description of a single continuous
process. We investigate how this AI method can be
used in the modeling and simulation of social
organizations. Different levels of an organization
such as first level employees, middle management,
and top management view the available information
using different degrees of abstraction. These different
levels thus have different ontologies. Our approach
involves starting with descriptions of low-level work
processes and using the automatic abstraction
mechanism to come up with higher level process
descriptions employing ontologies with fewer details.
The output of our aggregator provides a suggestion
for how a hierarchy of tasks might be constructed in
that organization.

1. INTRODUCTION

The choice of the abstraction level is a critical decision
in modeling any system. A low-level, high-resolution
model is more realistic than a more abstract one, but
dealing with such models may be both computationally
expensive, and, more importantly, cognitively
inappropriate. Some abstraction is inevitable. A social
organization such as a large company is a multilevel
structure in which each upper level is an abstraction of
the lower ones. Different levels view the available
information using different “ontologies.” Finding the
most suitable design for such hierarchies and
determining the appropriate ontology for each level is an
important problem in organization theory (Daft 2001).

Computer modeling and simulation are used with
increasing frequency in the study of organizations (Davis
et al. 2007). Agent-based and equation based models,
system dynamics, cellular automata and social network
models are some of the dominant trends. Among the
early significant contributions to this field, one can list
the Garbage Can Model of Cohen, March and Olsen
(1972), the evolutionary theory of economic change by
Nelson and Winter (1982), and March’s work (1991) on
exploration and exploitation in organizational learning.
More recent studies include the model of organizational
demography and culture by Carroll and Harrison (1998),
Gavetti and Levinthal’s (2000) work on cognitive and
experiential search, and the modeling of organization
structure in unpredictable environments by Davis,
Eisenhardt and Bingham (2006).

We apply the qualitative reasoning technique of
aggregation of processes introduced by Weld (1986) to
organizational modeling. The basic form of aggregation
as explained in Weld’s paper detects repeating cycles of
discrete processes using the simulation history structure,
and replaces them with a higher level of description, a
continuous process which performs the same action as
the processes in the repeating cycle. The process
descriptions have two components; preconditions and
changes. The preconditions define the conditions to be
satisfied so that the process can be active. The changes
are the effects that the process will create over other
objects in the simulation when it is active.

In this ongoing work, we implemented and used the
basic aggregation algorithm for automatic identification
of higher-level work processes in an organization setup,
improved the method so that it can be used more
conveniently and effectively in this domain, and
identified new aggregation types that seem to be required
for organizational modeling.

2. MOTIVATION

Identifying the abstraction degrees of the information
viewed by the different managerial levels, and designing
the managerial hierarchy which is appropriate for a given
organization are important problems in the study of
organizations. The aggregation technique seems to be a
promising method for these purposes. Having obtained
the different level models, it is possible to simulate all of
them and see how the predictions of the more abstract
ones diverge from those of the lowest level. In this
regard, we are interested in the following questions: Are
the upper level ontologies suggested by the program
indeed the ones seen in real-life multi-level
organizations? Do the simulation results of the different
level models differ, and if they do, how do they differ?
Does this mean that one or more of the simulations are
wrong? In which way do discrete and continuous
simulations differ? Can we see the difference between
discrete and continuous simulations when we run a
simulation with aggregated, disaggregated and partially
aggregated processes? We hope to gain new insight
about identification of different level processes in
organizations, and, indeed, about multiple-level
modeling in any domain, from the answers of such
questions.

3. WHAT IS AGGREGATION?

When a sequence of processes is repeated, we obtain a
cycle. Aggregation is a qualitative reasoning technique
which replaces such a cycle of discrete processes with a
higher level of description, a continuous process which
has the same effects as the processes in the repeating
cycle.

Discrete processes make atomic effects over the objects
they affect, and the amount of this change is known in
advance. If necessary, one can repeat the discrete process
multiple times until the desired total amount of change is
obtained. This effect can also be realized by a single
instance of a continuous process, as will be demonstrated
below.

The history structure is a structure which keeps the
history of the changes in the system state. Weld’s (1986)
algorithm of aggregation detects the repetitive cycles
occurring in the history, and aggregates them. The
algorithm includes three phases;

• The repetition recognition phase detects two
similar endpoints, which means two similar
instances of the same process, in the history.

• The candidate cycle extraction phase finds the
sequences which connects these two endpoints.

• The cycle verification phase checks to ensure
that all the process instances in the sequence
can repeat.

Weld gives examples of the use of the algorithm in
causal simulation to replace cycles of discrete processes
with higher level continuous processes.

Let us consider an example from our organizational
model to illustrate what aggregation does:

Example 1: Consider three processes to produce a
Product using some Raw Material:
SeizeMachine:

Pre: the production machine is idle
 Ch: reserves the machine.
ProduceHalfProduct:

Pre: the machine has been reserved,
 a sufficient amount of raw material exists.
Ch: converts a specific amount of raw material to a
corresponding amount of half-product.

ProduceProduct;
Pre: the machine is reserved,

 a sufficient amount of half-product exists.
Ch: converts a specific amount of half-product to a finished
 product, and release the machine.

If we have some amount of raw material at the
beginning, the sequence “SeizeMachine,
ProduceHalfProduct, ProduceProduct” will repeat until
almost all the raw material is transformed to products.
The aggregation of a prefix of the simulation history
generates a continuous process:
CP1

Pre: RawMaterial exists,
 productOrder>0
 The machine is idle

Ch: convert RawMaterial to Product (Assuming one unit of
 product is produced by one unit of Raw Material)

CP1 runs when production machine is idle and there
exists raw materials. It converts all the raw material to
products.

The process replacing the cycle must be a continuous
process. If a discrete process is used to replace the cycle
in an unsophisticated manner, the new process will just
make a greater, but fixed amount of change every time it
is activated. The duration and the total effect of a
continuous process, on the other hand, are not
determined before it runs. The effects it creates are
defined in terms of change rates per unit time and the
total effects of each different instance of the aggregated
continuous process are different from each other in
general, since they depend on the model environment.

The processes that can be abstracted by aggregation need
not all be discrete. Continuous processes can also be
replaced. This allows the aggregator to find nested
cycles, and make multiple replacements over the same
set of processes.

Let us add a new process to our model: Deliver(n) runs
when n products exist, and delivers n products to the
customer. In this new setup, CP1 (aggregated from
SeizeMachine, ProduceHalfProduct, and
ProduceProduct, as before,) does not run alone. An
instance of Deliver(n) runs each time a new batch of n
products have been produced. The sequence “CP1,
Deliver” is repeated until all the raw material is
converted to products and delivered. In this case, the
aggregator finds a new cycle “CP1, Deliver” and
replaces it with a new continuous process CP2, which
converts the raw materials to products and delivers them.
CP2 represents the operations of a Production
Department in this organization.

4. USING AGGREGATION IN
ORGANIZATIONAL MODELING

Different levels of an organization such as first level
employees, middle management, and top management
are actually different abstraction levels, and the
information requirements of each level differ from the
others, depending on their interests. So the focus of the
modeler must be the different levels of an organization
and the ways these levels view things. The different
levels have different ontologies. In the higher levels,
some groups of processes of the lower levels are
represented with more abstract processes, some low level
decisions are not seen, but only the cumulative results of
these decisions are visible, some variables of the lower
levels are not represented, and individuals are viewed
collectively as groups having aggregated characteristics.
A consequence of the point of view that the higher level
views are basically summaries of the more detailed
lower levels is that we can obtain the whole model of an
organization by repeated abstractions once we construct

Figure 1 : The Processes in the Organization Model

PurchaseRawMaterial SeizeMachine CollectMoney
Pre: RawMaterialAlternatives exists Pre: machine is idle, Pre: accounts_receivable>0
Ch: add RawMaterial, productionOrder>0, Ch: decrease accounts_receivable,
 decrease rawMaterialorder, RawMaterial exists increase money
 increase accounts_payable, Ch: machine is reserved PayMoney:
 remove RawMaterialAlternatives ProduceHalfProducts Pre: accounts_payable>0,

FindRawMaterials Pre: machine is reserved, money>0
Pre: rawMaterialorder>0 RawMaterial exists, Ch: decrease accounts_payable,

 Ch: add RawMaterialAlternatives HalfProduct doesn’t exist decrease money
SearchForCustomer Ch: add HalfProductStock, Research

Pre: marketingBudget>0 remove RawMaterial Pre: money>0,
 Ch: add RequestingCustomers ProduceProducts researchBudget>0
NegotiateWithCustomer Pre: HalfProduct exists, Ch: increase researchDone
 Pre: RequestingCustomers exists machine is reserved ProposeNewProduct

Ch: remove RequestingCustomers, Ch: remove HalfProduct, Pre: researchDone > X
 add CommittedRequests, add Product, Ch: add ProductProposed
 decrease marketingBudget idle the machine

AcceptBestOrder Deliver
 Pre: CommittedRequests exists Pre: at least N Product exists,

Ch: increase productionOrder, productionOrder >= N
 increase rawMaterialOrder, Ch: remove N Products,
 remove CommittedRequests decrease productionOrder by N,
 increase accounts_receivable

N = delivery amount, assumed constant. X = research necessary for a new product, assumed constant.
Y = research necessary for finding a new technology to use, assumed constant.
Variable names start with lower case (i.e. money), object names start with upper case (i.e. RawMaterial)

the lowest level of the model. Our aim is to realize this
kind of modeling by an automatic aggregation process,
which takes as its input a hand-made description of the
lowest level.

The following working example illustrates the use of the
aggregator described in the previous section to find such
“natural” abstractions of the lowest level work processes.
The higher level process descriptions output by the
aggregator can be seen as a suggestion about how a
hierarchy of tasks might be constructed in an
organization with these low-level processes.

Example 2: Consider a production company, whose
lowest-level processes are defined as shown in Figure 1.
The model is simulated with a scenario in which a
customer is found and a production order of a certain
amount is received from that customer. Taking the
simulation history as input, the aggregator gave the
replacements in the model shown in Figure 2.

An examination of the processes resulting after the
second-level aggregation leads one to say that this
organization can have five departments; CP1 =
Purchasing, CP6 = Marketing, CP7 = Production, CP4 =
Accounting, CP5 = Research and Development. Note
that the aggregator output is not just a suggestion of a
possible organizational structure. The descriptions of the
high-level processes also indicate which ontologies, i.e.
subsets of the set of objects and variables used in the
lowest level model, are used by the respective
“managers” of the departments when they talk to their
own superiors. For instance, the object type “Half-
Product” is not mentioned when the Production

Department’s manager communicates with top
management.

5. NEED FOR FURTHER AGGREGATION
METHODS

We took Weld’s algorithm (Weld 1986) as a starting
point in constructing the aggregator whose runs were
exemplified in Sections 3 and 4. Even in the simple case
of Example 2, Weld’s algorithm has problems in
identifying cycles, since multiple “departments” are
supposed to run in parallel. The improvements we
incorporated to the algorithm to handle such cases are
explained in Section 5.1.

The full realization of the goal of automatic
identification of work processes in the managerial
hierarchy requires more than even the improved version
of the cycle aggregation method we considered until
now. Consider Example 2. The highest aggregated level,
which is the furthest one can go and obtain sensible
results using this method, includes five continuous
processes. This is not the most abstract level one would
hope to obtain. Imagine the owner of the company, who
is not concerned with the internal operational details of
the company, but is only interested in the performance
measures of the company, rather than how they are
achieved. There must be a highest level process which
defines the entire organization in terms of the changes it
caused, and maybe more levels above the output of
Example 2 under this top level. We therefore need
further methods of aggregation to complete the
construction of the managerial hierarchy of the
organization. One such method that we examined is
explained in Section 5.2, including a working example.

CP1 Pre: rawMaterialOrder>0
 Ch: add RawMaterial,
 decrease rawMaterialOrder
CP2 Pre: marketingBudget>0
 Ch: add CommittedRequests,
 decrease marketingBudget
CP3 Pre: machine is idle,
 productionOrder>0,
 RawMaterial exists
 Ch: remove RawMaterial,
 add Product
CP4 Pre: accounts_receivable>0,
 accounts_payable >0
 Ch: decrease accounts_receivable,
 decrease accounts_payable
CP5 Pre: money>0,
 researchBudget>0
 Ch: add ProductProposed
CP6 Pre: marketingBudget>0,
 Ch: increase productionOrder,

 increase rawMaterialOrder,
 decrease marketingBudget
CP7 Pre: Machine is idle,
 RawMaterial exists,

 productionOrder>0
 Ch: remove RawMaterial,
 decrease productionOrder,
 increase accounts_receivable

First-level Agg. Second-level Agg.

PurchaseRawMaterial
FindRawMaterials
SearchForCustomer
NegotiateWithCustomer
AcceptBestOrder………………
SeizeMachine
ProduceHalfProducts
ProduceProducts
Deliver………………………………
CollectMoney

CP1

CP2
CP6

CP3

Figure 2 : First and Second Level Aggregation of the processes in the organization model

Other, as yet unimplemented, ideas that we plan to look
at, are explained in Section 6.

5.1. Improvements in the algorithm

In many cases, Weld’s algorithm may detect multiple
alternative cycles as aggregation candidates in the
simulation history. To be able to prefer better
alternatives, the aggregator can be improved to choose
the cycle according to certain principles. A company has
several departments. Usually, mutually irrelevant tasks
take place in different departments. Descriptions of such
mutually irrelevant process instances which run in the
same time will be printed out close to each other in the
output of a sequential simulation (like the ones carried
out by our process simulator) of the entire company,
such that they may appear as candidates for being
aggregated together to a naïve algorithm.

Consider the sequence CollectMoney, PayMoney,
CollectMoney, PayMoney, … and a separate sequence
FindRawMaterials, PurchaseRawMaterial,
FindRawMaterials, PurchaseRawMaterial, … Although
the two departments perform mutually irrelevant tasks,
they operate simultaneously. When the aggregator
analyses the history, it may find several repetitions of the
sequence “CollectMoney, FindRawMaterials,
PayMoney, PurchaseRawMaterial”, and try to replace
this “cycle” of four with a single continuous process, and
this is clearly not what we want it to do. (This
predicament of distinguishing irrelevant processes is
referred to as the local evolution problem (Forbus
1993)). How can the aggregator distinguish these
mutually irrelevant processes? Let us define what we

mean by “mutually irrelevant” in terms of the
aggregator’s input.

Definition : A process A is a change predecessor of a
process B if at least one of the changes of A affects a
variable referenced in the preconditions of B.

Definition : Two processes are mutually irrelevant if
neither of them is a change predecessor of the other one.

(Note the similarity of our definition of change
predecessor with that of the notion of threats in nonlinear
planning (Russell and Norvig 1995)).

The main idea is that the processes in a cycle must
trigger each other so that they form a meaningful cycle.
Irrelevant processes may occur successively in time by
chance, in which case they do not form a meaningful
cycle.

What if a nonzero duration of time passes before the start
of B after its change predecessor A terminates? Can we
still say that A triggers B, and that they are good
candidates for a cycle? If A triggers B, changing a
variable which is referenced in the preconditions of B, B
must be activated just when A changes that variable. If
there is a gap between these two events, there must be
another event occurring in this gap which triggers B.
Thus, if this event had not occurred, B would not be
active. A does not trigger B, and they are not good
candidates for a cycle.

In our simulator, time proceeds in ticks, and the amount
of time between two successive time ticks is the unit
time (smallest amount of time that must be considered)

PayMoney
ProposeNewProduct
Research

CP5

CP4

CP7

for the simulation. The starting and ending times of
processes correspond to starting and ending of time units
since there can be no smaller time in the simulation (A
discrete process lasts one tick). Thus, if a process
triggers another process, the triggered process must start
just at the tick at which it is triggered.

Definition : An instance of a process A is a time
predecessor of an instance of another process B, if the
instance of B starts just when the instance of A
terminates.

If the aggregator only accepts the instances of processes
which trigger each other, it will avoid including
irrelevant processes appearing in one cycle and will form
meaningful cycles.

 Definition : An instance Ai of a process A triggers an
instance Bi of another process B, if A is a change
predecessor of B, Ai is a time predecessor of Bi and there
doesn’t exist a process instance Ci that undoes the effects
of Ai on the variables referenced in the preconditions of
Bi.

Must the last process of a cycle trigger the first process
of the cycle? Considering the meaning of the word
“cycle,” one is tempted to say “yes”. But consider the
case where we produce products from raw materials. The
process will continue as long as we have raw materials
and a nonzero production order, despite the fact that the
act of finishing a product does not trigger the start of
another production. Thus, we have decided to accept
sequences in which every process except the first is
triggered by the previous one as valid cycle iterations,
even when the last process of such a sequence does not
trigger the first process. Example 2 was run on our
implementation of an improved aggregator in which
these augmented criteria for cycle detection enabled the
identification of the sensible hierarchy seen in Figure 2.

5.2. Superclass Aggregation

The aggregator described above recognizes a cycle only
if multiple instances of the same process are seen to be
repeating. In some cases, abstraction of two non-
identical but sufficiently similar process descriptions to a
“superclass” process may help. Consider the sequence
given below for a cleaner who is working in a building:

Cleaning the floor,

Walking down the stairs one floor,
Cleaning the floor,
Going down one floor by elevator,
Cleaning the floor, …

No proper repetition can be found. But if we abstract
“Walking down the stairs one floor” and “Going down
one floor by elevator”, to the new process “Going down
one floor”, we can obtain the new sequence

Cleaning the floor,
Going down one floor,
Cleaning the floor,
Going down one floor,
Cleaning the floor, …
in which a repetition can be detected easily.

Forbus and Falkenhainer give a good example of how to
compare processes to find out their similarity in their
work on analogical processing with the Structure-
Mapping Engine (Falkenhainer et al. 1990). The idea is
to accept two processes as subclasses of a superclass if a
significant proportion, rather than all, of their properties
are identical. This operation can of course create
problems if the non-identical features of the low-level
processes, which are abstracted away, play important and
different roles in the actual system. This method of
abstraction can therefore sometimes produce incorrect
higher-level models. The allowed error can in fact be
tuned by the user, since the aggregation algorithm
decides whether to create a superclass process for two
given low-level processes according to a similarity
function which measures the match between two
processes. Processes whose similarity degree exceeds a
user-defined constant are aggregated. Keeping the
required similarity degree high will avoid the kind of
error explained above, with the cost of a narrow scope
for aggregation. Keeping it low will allow more
processes to be aggregated together, and the divergence
of the higher-level model predictions from the lowest
level ones will increase. Upon receiving the input set of
process definitions before beginning the simulation, the
aggregator first tries to identify superclass processes
among these. Simulation with the aim of cycle detection
is then performed with the updated process list. Since
common superclasses can be detected even among the
newly abstracted processes during the higher-level
aggregations, the aggregator runs this similarity
detection procedure again whenever new process
descriptions are added to the list.

Example 3: Consider adding two new processes which
are similar to some already present processes to the
model of Example 2: The company has obtained a new
machine of type “NewMachine”, which uses the same
type and amount of raw materials, but produces a
different product of type “NewProduct” directly, without
going through the half-product stage. The new processes
are shown in Figure 3.

ProduceNewProduct
 Pre: RawMaterial exists,
 newProductOrder > 0
 Ch: convert RawMaterial to NewProduct
DeliverNewProduct

Pre: at least N NewProduct exists,
 newProductOrder >= N
Ch: remove N NewProducts,
 decrease newProductionOrder by N,
 increase accounts_receivable

N = delivery amount

Figure 3 : The processes added in Example 3

We submitted this model to the aggregator with a
scenario of receiving orders for Product and NewProduct
randomly with the same probability. Two different runs,
with required similarity degrees of 0.9 and 0.6,
respectively, were performed.

In the first run with a required similarity degree of 0.9,
shown in Figure 4, the cycles the aggregator replaced in
the first-level aggregation were the same as in Example
2, and ProduceNewProduct and DeliverNewProduct
were also aggregated to a new process. The second-level
aggregation had the same results as in Example 2, and
the new production process was not aggregated any
further.

 In the second run, with a required similarity degree of
0.6, the aggregator first found out that Deliver and
DeliverNewProduct are similar processes. Similarly,
after generating CP3 from “SeizeMachine,
ProduceHalfProduct, ProduceProduct”, it also
recognized CP3 and ProduceNewProduct as similar
processes. Consequently, the program made the
aggregation shown in Figure 5, with the process
definitions given in Figure 1 and the production
“department” process of the organization came out to be
isomorphic to the one in the Example 2, (Figure 2)

As seen in Figure 5, the Deliver and DeliverNewProduct
processes were replaced by the more general process
CP10 and ProduceNewProduct and the new process
CP3, which was produced by the aggregation of
SeizeMachine, ProduceHalfProduct and ProduceProduct
were replaced by the more general process CP11.

The aggregator found the similarity of Deliver and
DeliverNewProduct to be 0.67, and the similarity of CP3
and ProduceNewProduct to be 0.72, causing both pairs
not to be abstracted together in the first run, and to be
abstracted together in the second run. Both results may
be preferable depending on the requirements of the
context. When analysis considering the sales of the
products individually is required, seeing the products as

separate units and getting the results accordingly will
help. In another case, for example, when the total sales
of the company, or only the total amount of money made
by the company is required, seeing the products as
equivalent and looking only at the totals will help.

6. FUTURE WORK

More tools are necessary for a complete and sensible
identification of and reasoning about the managerial
hierarchy of an organization. In this ongoing study, we
plan to implement the following additional methods.

6.1. Parallel Aggregation

Weld (Weld 1986) defines parallel aggregation as “the
replacement of multiple instances of the same process
occurring simultaneously”, without including the
working principles or any example. This idea promises
to serve as wide a range of possibilities as serial
aggregation does, so we plan to realize it. While serial
aggregation makes a vertical replacement in the history
of the simulation since it replaces instances spread over
time, parallel aggregation makes a horizontal
replacement, since it replaces process instances
occurring in the same time, but spreading over the actors
of the simulation.

In parallel aggregation, as well as the starting time, we
know the ending time since only one iteration occurs.
But we do not know the total effects, since we do not
know how many parallel processes will participate in
this parallel processing in different moments of the
simulation. The definition of parallel aggregation
requires defining a new type of process, since neither the
discrete nor the continuous process definition formats we
use meet the requirements of the process generated as a

Figure 5 : Aggregation in Example 3 when the required
similarity degree is 0.6

 First Aggregation Second Aggr.

PurchaseRawMaterial
FindRawMaterials
SearchForCustomer
NegotiateWithCustomer
AcceptBestOrder……………………………
SeizeMachine
ProduceHalfProducts
ProduceProducts
Deliver………………………………………
ProduceNewProduct
DeliverNewProduct
CollectMoney
PayMoney
ProposeNewProduct
Research

ProduceNewProduct ………………
SeizeMachine
ProduceHalfProduct
ProduceProduct

Deliver
DeliverNewProduct

S denotes superclass aggregation.

CP10

Pre: at least N Products exists,
 productionOrder >= N

Ch: remove N Product,
 decrease productionOrder by N,
 increase accounts_receivable

CP11
Pre: machine is idle,
 RawMaterial exists,
 productionOrder>0
Ch: remove RawMaterialStock,
 decrease productionOrder,
 increase accounts_receivable

S
CP12

CP11
CP3

CP10

S

CP2
CP6

CP6
CP7

CP9

Figure 4 : Aggregation in Example 3 when the required
similarity degree is 0.9

CP4

CP5

CP1

result of a parallel aggregation. This new type of process
occurs atomically, and its termination time is determined
when it starts. But unlike discrete processes, its total
effects can not be known before simulation, since it
depends on the number of parallel process instances
participating which can be different in different moments
of the simulation. As a result of this, the total effects of
the process change in different instances.

6.2. Reverse Aggregation

Consider the case where we are given the abstract
description of an organization, or some components of
the organization, and we attempt to obtain the
descriptions of the lower level processes. For instance,
we may try to guess the invisible structure of a rival
company from the partial information that is available
about that company. What we need to do is to “reverse
aggregate” the high-level models.

At first sight, reverse aggregation seems to be a hopeless
task, since it involves creating a more detailed
description than its input. But if we also have a library of
common lowest-level process descriptions, we might at
least guess a candidate input process list which would,
when aggregated, result in the higher-level models that
have been given to us.

6.3. Mixed Levels of Abstraction

Abstraction is meaningful if we do not need the detailed
information we lost, or we have the ability to reconstruct
it in case we need it later. Consider a manager who
manages several working teams including several
workers. The manager would not care about the workers
individually, and would not want to know the details of
each worker. In his daily operation, he would rather
know the output of the teams, leaving the details of what
happens within the teams to team leaders. The point of
view of this manager is an aggregated level, which hides
the first level employees inside teams. But one day, in
case a problem about an individual first level employee
occurs and affects the operation of the team, or even the
whole organization, the manager would want to
understand the case and need the details about the
operation of the first level employee. This would require
the manager to adopt, for the purposes of this case, a
“mixed-level” model, which does not necessarily include
all the complexity of the lower level processes which are
irrelevant in this case, but which contains the details
necessary for the present reasoning task. We believe that
the infrastructure we are preparing for the application of
the methods described above can easily be adapted for
examining such mixed-level modeling tasks.

6.4 Aggregation of Probabilistic Models

One of the simplistic aspects of Example 2 is that all
processes are deterministic; e.g. once its preconditions
are satisfied, ProduceProducts does its job, assuming that
the machine will never fail. This, of course, is

unrealistic. We plan to consider an alternative process
format which supports probabilistic models like one
where the machine in example 3 can be stipulated to
have a specific fault probability, and the results of such
eventualities can be described separately in the process
descriptions. An aggregation algorithm for such
probabilistic models may produce higher-level models
which are themselves probabilistic.

7. CONCLUSION

The hierarchical structure of an organization such as a
large company provides a suitable domain for
investigating aggregation, since the hierarchical levels
composed of various positions (first level employee,
middle management, CEO, etc.) in the organization
correspond to different aggregation levels. Our
experiments so far with our improved version of Weld’s
aggregator have helped us identify some other tools that
are necessary for reasoning about these issues in this
domain. We are actively working on the design and
development of these tools.

REFERENCES
Carroll, G. and Harrison, J. R. 1998. “Organizational

Demography and Culture: Insights from a Formal Model
and Simulation”, Administrative Science Quarterly, 43:
637-667.

Cohen, M. D., March, J., and Olsen, J. P. A. 1972. “Garbage
Can Model of Organizational Choice”, Administrative
Science Quarterly, 17(1): 1-25.

Daft R. L. 2001. Essentials of Organization Theory and
Design, Ohio: South-Western College.

Davis, J., Eisenhardt, K. and Bingham, C. 2006. “Complexity
Theory, Market Dynamism, and the Strategy of Simple
Rules”, Stanford Technology Ventures Program - Working
Paper.

Davis, J., Eisenhardt, K. and Bingham, C. 2007. “Developing
Theory Through Simulation Methods”, Academy of
Management Review, 32(2): 480-499

Falkenhainer, B., Forbus, Kenneth D. and Gentner, D. 1990.
“The structure-mapping engine: algorithm and examples”,
Artificial Intelligence, 41: 1-63.

Forbus, K. D. 1993. “Qualitative Process Theory”, Artificial
Intelligence, 59: 115-123.

Gavetti, G., and Levinthal, D. 2000. “Looking Forward and
Looking Backward: Cognitive and Experiential Search”,
Administrative Science Quarterly, 45: 113-137.

March, J. G. 1991. “Exploration and Exploitation in
Organizational Learning”, Organization Science, 2(1): 71-
87.

Nelson, R. R. and Winter, S. G. 1982. An Evolutionary Theory
of Economic Change, Cambridge, Massachusetts: Belknap
- Harvard University Press.

Prietula, Michael J., Kathleen M. C. and Gasser, L. (ed) 1998.,
Simulating Organizations: Computational Models of
Institutions and Groups, AAAI Press /MIT Press.

Russell, S. and Norvig, P. 1995. Artificial Intelligence: A
Modern Approach, New Jersey: Prentice Hall. Inc.

Weld, D. S. 1986. “The Use of Aggregation in Causal
Simulation”, Artificial Intelligence, 30: 1-17.

