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ABSTRACT 

Aggregation is a qualitative reasoning technique 
which replaces repetitive cycles of process instances 
with a higher level description of a single continuous 
process. We investigate how this AI method can be 
used in the modeling and simulation of social 
organizations. Different levels of an organization 
such as first level employees, middle management, 
and top management view the available information 
using different degrees of abstraction. These different 
levels thus have different ontologies. Our approach 
involves starting with descriptions of low-level work 
processes and using the automatic abstraction 
mechanism to come up with higher level process 
descriptions employing ontologies with fewer details. 
The output of our aggregator provides a suggestion 
for how a hierarchy of tasks might be constructed in 
that organization.  

 
1. INTRODUCTION 

The choice of the abstraction level is a critical decision 
in modeling any system. A low-level, high-resolution 
model is more realistic than a more abstract one, but 
dealing with such models may be both computationally 
expensive, and, more importantly, cognitively 
inappropriate. Some abstraction is inevitable. A social 
organization such as a large company is a multilevel 
structure in which each upper level is an abstraction of 
the lower ones. Different levels view the available 
information using different “ontologies.” Finding the 
most suitable design for such hierarchies and 
determining the appropriate ontology for each level is an 
important problem in organization theory (Daft 2001).  
 
Computer modeling and simulation are used with 
increasing frequency in the study of organizations (Davis 
et al. 2007). Agent-based and equation based models, 
system dynamics, cellular automata and social network 
models are some of the dominant trends. Among the 
early significant contributions to this field, one can list 
the Garbage Can Model of Cohen, March and Olsen 
(1972), the evolutionary theory of economic change by 
Nelson and Winter (1982), and March’s work (1991) on 
exploration and exploitation in organizational learning. 
More recent studies include the model of organizational 
demography and culture by Carroll and Harrison (1998), 
Gavetti and Levinthal’s (2000) work on cognitive and 
experiential search, and the modeling of organization 
structure in unpredictable environments by Davis, 
Eisenhardt and Bingham (2006). 

 
We apply the qualitative reasoning technique of 
aggregation of processes introduced by Weld (1986) to 
organizational modeling. The basic form of aggregation 
as explained in Weld’s paper detects repeating cycles of 
discrete processes using the simulation history structure, 
and replaces them with a higher level of description, a 
continuous process which performs the same action as 
the processes in the repeating cycle. The process 
descriptions have two components; preconditions and 
changes. The preconditions define the conditions to be 
satisfied so that the process can be active. The changes 
are the effects that the process will create over other 
objects in the simulation when it is active.  
 
In this ongoing work, we implemented and used the 
basic aggregation algorithm for automatic identification 
of higher-level work processes in an organization setup, 
improved the method so that it can be used more 
conveniently and effectively in this domain, and 
identified new aggregation types that seem to be required 
for organizational modeling.  
 
2. MOTIVATION 

Identifying the abstraction degrees of the information 
viewed by the different managerial levels, and designing 
the managerial hierarchy which is appropriate for a given 
organization are important problems in the study of 
organizations. The aggregation technique seems to be a 
promising method for these purposes. Having obtained 
the different level models, it is possible to simulate all of 
them and see how the predictions of the more abstract 
ones diverge from those of the lowest level. In this 
regard, we are interested in the following questions: Are 
the upper level ontologies suggested by the program 
indeed the ones seen in real-life multi-level 
organizations? Do the simulation results of the different 
level models differ, and if they do, how do they differ? 
Does this mean that one or more of the simulations are 
wrong? In which way do discrete and continuous 
simulations differ? Can we see the difference between 
discrete and continuous simulations when we run a 
simulation with aggregated, disaggregated and partially 
aggregated processes? We hope to gain new insight 
about identification of different level processes in 
organizations, and, indeed, about multiple-level 
modeling in any domain, from the answers of such 
questions. 
 
 

 



3. WHAT IS AGGREGATION? 

When a sequence of processes is repeated, we obtain a 
cycle. Aggregation is a qualitative reasoning technique 
which replaces such a cycle of discrete processes with a 
higher level of description, a continuous process which 
has the same effects as the processes in the repeating 
cycle. 
 
Discrete processes make atomic effects over the objects 
they affect, and the amount of this change is known in 
advance. If necessary, one can repeat the discrete process 
multiple times until the desired total amount of change is 
obtained. This effect can also be realized by a single 
instance of a continuous process, as will be demonstrated 
below.  
 
The history structure is a structure which keeps the 
history of the changes in the system state. Weld’s (1986)  
algorithm of aggregation detects the repetitive cycles 
occurring in the history, and aggregates them. The 
algorithm includes three phases;  

• The repetition recognition phase detects  two 
similar endpoints, which means two similar  
instances of the same process, in the history.   

• The candidate cycle extraction phase finds the 
sequences which connects these two endpoints. 

• The cycle verification phase checks to ensure 
that all the process instances in the sequence 
can repeat.  

 
Weld gives examples of the use of the algorithm in 
causal simulation to replace cycles of discrete processes 
with higher level continuous processes. 
 
Let us consider an example from our organizational 
model to illustrate what aggregation does:  
 
Example 1: Consider three processes to produce a 
Product using some Raw Material: 
SeizeMachine:  

Pre:  the production machine is idle 
 Ch: reserves the machine.  
ProduceHalfProduct:  

Pre:  the machine has been reserved, 
 a sufficient amount of raw material exists.  
Ch: converts a specific amount of raw material to a 
corresponding amount of half-product. 

ProduceProduct;  
Pre:  the machine is reserved, 

   a sufficient amount of half-product exists. 
Ch:  converts a specific amount of half-product to a finished  
 product, and release the machine. 

 
If we have some amount of raw material at the 
beginning, the sequence “SeizeMachine, 
ProduceHalfProduct, ProduceProduct” will repeat until 
almost all the raw material is transformed to products. 
The aggregation of a prefix of the simulation history 
generates a continuous process:  
CP1 

Pre: RawMaterial exists, 
 productOrder>0 
 The machine is idle 

Ch: convert RawMaterial to Product (Assuming one unit of  
 product is produced by one unit of Raw Material) 

 
CP1 runs when production machine is idle and there 
exists raw materials. It converts all the raw material to 
products.  
 
The process replacing the cycle must be a continuous 
process. If a discrete process is used to replace the cycle 
in an unsophisticated manner, the new process will just 
make a greater, but fixed amount of change every time it 
is activated. The duration and the total effect of a 
continuous process, on the other hand, are not 
determined before it runs. The effects it creates are 
defined in terms of change rates per unit time and the 
total effects of each different instance of the aggregated 
continuous process are different from each other in 
general, since they depend on the model environment.   
 
The processes that can be abstracted by aggregation need 
not all be discrete. Continuous processes can also be 
replaced. This allows the aggregator to find nested 
cycles, and make multiple replacements over the same 
set of processes.  
 
Let us add a new process to our model: Deliver(n) runs 
when n products exist, and delivers n products to the 
customer. In this new setup, CP1 (aggregated from 
SeizeMachine, ProduceHalfProduct, and 
ProduceProduct, as before,) does not run alone. An 
instance of Deliver(n) runs each time a new batch of n 
products have been produced. The sequence “CP1, 
Deliver” is repeated until all the raw material is 
converted to products and delivered. In this case, the 
aggregator finds a new cycle “CP1, Deliver” and 
replaces it with a new continuous process CP2, which 
converts the raw materials to products and delivers them. 
CP2 represents the operations of a Production 
Department in this organization.  
 
4. USING AGGREGATION IN 
ORGANIZATIONAL MODELING 

Different levels of an organization such as first level 
employees, middle management, and top management 
are actually different abstraction levels, and the 
information requirements of each level differ from the 
others, depending on their interests. So the focus of the 
modeler must be the different levels of an organization 
and the ways these levels view things. The different 
levels have different ontologies. In the higher levels, 
some groups of processes of the lower levels are 
represented with more abstract processes, some low level 
decisions are not seen, but only the cumulative results of 
these decisions are visible, some variables of the lower 
levels are not represented, and individuals are viewed 
collectively as groups having aggregated characteristics. 
A consequence of the point of view that the higher level 
views are basically summaries of the more detailed 
lower levels is that we can obtain the whole model of an 
organization by repeated abstractions once we construct  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1 : The Processes in the Organization Model 

PurchaseRawMaterial SeizeMachine CollectMoney 
Pre:  RawMaterialAlternatives exists  Pre: machine is idle,  Pre: accounts_receivable>0 
Ch: add RawMaterial,   productionOrder>0,  Ch: decrease accounts_receivable, 
  decrease rawMaterialorder,   RawMaterial exists   increase  money 
 increase accounts_payable,  Ch: machine is reserved PayMoney:    
  remove RawMaterialAlternatives ProduceHalfProducts  Pre: accounts_payable>0,  

FindRawMaterials  Pre: machine is reserved,   money>0 
Pre: rawMaterialorder>0   RawMaterial exists,  Ch: decrease accounts_payable, 

 Ch: add RawMaterialAlternatives   HalfProduct doesn’t exist   decrease  money 
SearchForCustomer  Ch: add HalfProductStock, Research    

Pre: marketingBudget>0   remove RawMaterial  Pre: money>0, 
 Ch: add RequestingCustomers ProduceProducts   researchBudget>0  
NegotiateWithCustomer  Pre: HalfProduct exists,  Ch: increase researchDone 
 Pre:  RequestingCustomers exists   machine is reserved ProposeNewProduct   

Ch: remove RequestingCustomers,  Ch: remove HalfProduct,  Pre: researchDone > X 
   add CommittedRequests,   add Product,  Ch: add ProductProposed 
 decrease marketingBudget   idle the  machine  

AcceptBestOrder Deliver    
 Pre: CommittedRequests exists  Pre: at least N Product exists,  

Ch:  increase productionOrder,   productionOrder >= N 
 increase rawMaterialOrder,  Ch: remove N Products,    
 remove CommittedRequests   decrease  productionOrder by N,  
     increase  accounts_receivable 

N = delivery amount, assumed constant.   X = research necessary for a new product, assumed constant. 
Y = research necessary for finding a new technology to use, assumed constant. 
Variable names start with lower case (i.e. money), object names start with upper case (i.e. RawMaterial)  

 
the lowest level of the model. Our aim is to realize this 
kind of modeling by an automatic aggregation process, 
which takes as its input a hand-made description of the 
lowest level.  
 
The following working example illustrates the use of the 
aggregator described in the previous section to find such 
“natural” abstractions of the lowest level work processes. 
The higher level process descriptions output by the 
aggregator can be seen as a suggestion about how a 
hierarchy of tasks might be constructed in an 
organization with these low-level processes.  
 
Example 2: Consider a production company, whose 
lowest-level processes are defined as shown in Figure 1. 
The model is simulated with a scenario in which a 
customer is found and a production order of a certain 
amount is received from that customer. Taking the 
simulation history as input, the aggregator gave the 
replacements in the model shown in Figure 2. 
 
An examination of the processes resulting after the 
second-level aggregation leads one to say that this 
organization can have five departments; CP1 = 
Purchasing, CP6 = Marketing, CP7 = Production, CP4 = 
Accounting, CP5 = Research and Development. Note 
that the aggregator output is not just a suggestion of a 
possible organizational structure. The descriptions of the 
high-level processes also indicate which ontologies, i.e. 
subsets of the set of objects and variables used in the 
lowest level model, are used by the respective 
“managers” of the departments when they talk to their 
own superiors. For instance, the object type “Half-
Product” is not mentioned when the Production 

Department’s manager communicates with top 
management. 
 

5. NEED FOR FURTHER AGGREGATION 
METHODS 

We took Weld’s algorithm (Weld 1986) as a starting 
point in constructing the aggregator whose runs were 
exemplified in Sections 3 and 4. Even in the simple case 
of Example 2, Weld’s algorithm has problems in 
identifying cycles, since multiple “departments” are 
supposed to run in parallel. The improvements we 
incorporated to the algorithm to handle such cases are 
explained in Section 5.1. 
 
The full realization of the goal of automatic 
identification of work processes in the managerial 
hierarchy requires more than even the improved version 
of the cycle aggregation method we considered until 
now. Consider Example 2. The highest aggregated level, 
which is the furthest one can go and obtain sensible 
results using this method, includes five continuous 
processes. This is not the most abstract level one would 
hope to obtain. Imagine the owner of the company, who 
is not concerned with the internal operational details of 
the company, but is only  interested in the performance 
measures of the company, rather than how they are 
achieved. There must be a highest level process which 
defines the entire organization in terms of the changes it 
caused, and maybe more levels above the output of 
Example 2 under this top level. We therefore need 
further methods of aggregation to complete the 
construction of the managerial hierarchy of the 
organization. One such method that we examined is 
explained in Section 5.2, including a working example.  



 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CP1  Pre:  rawMaterialOrder>0 
 Ch:  add RawMaterial,  
   decrease rawMaterialOrder 
CP2 Pre: marketingBudget>0 
 Ch:   add CommittedRequests, 
   decrease marketingBudget 
CP3 Pre: machine is idle, 
   productionOrder>0, 
   RawMaterial exists 
 Ch:  remove RawMaterial, 
   add Product 
CP4 Pre:  accounts_receivable>0,  
   accounts_payable >0 
 Ch:  decrease accounts_receivable,  
   decrease accounts_payable 
CP5 Pre:  money>0,  
   researchBudget>0 
 Ch:  add ProductProposed 
CP6 Pre:  marketingBudget>0, 
 Ch:   increase productionOrder, 

  increase rawMaterialOrder, 
   decrease marketingBudget 
CP7 Pre: Machine is idle,  
   RawMaterial exists,  

  productionOrder>0 
 Ch:   remove RawMaterial,  
   decrease productionOrder,  
   increase accounts_receivable 

First-level Agg.  Second-level Agg. 
 
PurchaseRawMaterial 
FindRawMaterials 
SearchForCustomer  
NegotiateWithCustomer 
AcceptBestOrder……………… 
SeizeMachine 
ProduceHalfProducts  
ProduceProducts 
Deliver……………………………… 
CollectMoney  

CP1 

CP2 
CP6 

CP3 

Figure 2 : First and Second Level Aggregation of the processes in the organization model 
 
Other, as yet unimplemented, ideas that we plan to look 
at, are explained in Section 6. 
 
5.1. Improvements in the algorithm 

In many cases, Weld’s algorithm may detect multiple 
alternative cycles as aggregation candidates in the 
simulation history. To be able to prefer better 
alternatives, the aggregator can be improved to choose 
the cycle according to certain principles. A company has 
several departments. Usually, mutually irrelevant tasks 
take place in different departments. Descriptions of such 
mutually irrelevant process instances which run in the 
same time will be printed out close to each other in the 
output of a sequential simulation (like the ones carried 
out by our process simulator) of the entire company, 
such that they may appear as candidates for being 
aggregated together to a naïve algorithm.  
 
Consider the sequence CollectMoney, PayMoney, 
CollectMoney, PayMoney, … and a separate sequence 
FindRawMaterials, PurchaseRawMaterial, 
FindRawMaterials, PurchaseRawMaterial, … Although 
the two departments perform mutually irrelevant tasks, 
they operate simultaneously. When the aggregator 
analyses the history, it may find several repetitions of the 
sequence “CollectMoney, FindRawMaterials, 
PayMoney, PurchaseRawMaterial”, and try to replace 
this “cycle” of four with a single continuous process, and 
this is clearly not what we want it to do. (This 
predicament of distinguishing irrelevant processes is 
referred to as the local evolution problem (Forbus 
1993)). How can the aggregator distinguish these 
mutually irrelevant processes? Let us define what we 

mean by “mutually irrelevant” in terms of the 
aggregator’s input.  
 
Definition : A process A is a change predecessor of a 
process B if at least one of the changes of A affects a 
variable referenced in the preconditions of B. 
 
Definition : Two processes are mutually irrelevant if 
neither of them is a change predecessor of the other one. 
 
(Note the similarity of our definition of change 
predecessor with that of the notion of threats in nonlinear 
planning (Russell and Norvig 1995)).  
 
The main idea is that the processes in a cycle must 
trigger each other so that they form a meaningful cycle. 
Irrelevant processes may occur successively in time by 
chance, in which case they do not form a meaningful 
cycle.  
 
What if a nonzero duration of time passes before the start 
of B after its change predecessor A terminates? Can we 
still say that A triggers B, and that they are good 
candidates for a cycle? If A triggers B, changing a 
variable which is referenced in the preconditions of B, B 
must be activated just when A changes that variable. If 
there is a gap between these two events, there must be 
another event occurring in this gap which triggers B. 
Thus, if this event had not occurred, B would not be 
active. A does not trigger B, and they are not good 
candidates for a cycle.  
 
In our simulator, time proceeds in ticks, and the amount 
of time between two successive time ticks is the unit 
time (smallest amount of time that must be considered)  

 
PayMoney     
ProposeNewProduct  
Research 
 

CP5 

CP4 

CP7 



 
 
 
 
 
 
 
 
 
 
 
for the simulation. The starting and ending times of 
processes correspond to starting and ending of time units 
since there can be no smaller time in the simulation (A 
discrete process lasts one tick). Thus, if a process 
triggers another process, the triggered process must start 
just at the tick at which it is triggered.  
 
Definition : An instance of a process A is a time 
predecessor of an instance of another process B, if the 
instance of B starts just when the instance of A 
terminates.  
 
If the aggregator only accepts the instances of processes 
which trigger each other, it will avoid including 
irrelevant processes appearing in one cycle and will form 
meaningful cycles.  
 
 Definition : An instance Ai of a process A triggers an 
instance Bi of another process B, if A is a change 
predecessor of B, Ai is a time predecessor of Bi and there 
doesn’t exist a process instance Ci that undoes the effects 
of Ai on the variables referenced in the preconditions of 
Bi.  
 
Must the last process of a cycle trigger the first process 
of the cycle? Considering the meaning of the word 
“cycle,” one is tempted to say “yes”. But consider the 
case where we produce products from raw materials. The 
process will continue as long as we have raw materials 
and a nonzero production order, despite the fact that the 
act of finishing a product does not trigger the start of 
another production. Thus, we have decided to accept 
sequences in which every process except the first is 
triggered by the previous one as valid cycle iterations, 
even when the last process of such a sequence does not 
trigger the first process. Example 2 was run on our 
implementation of an improved aggregator in which 
these augmented criteria for cycle detection enabled the 
identification of the sensible hierarchy seen in Figure 2. 
 
5.2. Superclass Aggregation  

The aggregator described above recognizes a cycle only 
if multiple instances of the same process are seen to be 
repeating. In some cases, abstraction of two non-
identical but sufficiently similar process descriptions to a 
“superclass” process may help. Consider the sequence 
given below for a cleaner who is working in a building: 
 
Cleaning the floor,  

Walking down the stairs one floor,  
Cleaning the floor,  
Going down one floor by elevator,  
Cleaning the floor, … 
 
No proper repetition can be found. But if we abstract 
“Walking down the stairs one floor” and “Going down 
one floor by elevator”, to the new process “Going down 
one floor”, we can obtain the new sequence  
 
Cleaning the floor,  
Going down one floor,  
Cleaning the floor,  
Going down one floor,  
Cleaning the floor, …  
in which a repetition can be detected easily.  
 
Forbus and Falkenhainer give a good example of how to 
compare processes to find out their similarity in their 
work on analogical processing with the Structure-
Mapping Engine (Falkenhainer et al. 1990). The idea is 
to accept two processes as subclasses of a superclass if a 
significant proportion, rather than all, of their properties 
are identical. This operation can of course create 
problems if the non-identical features of the low-level 
processes, which are abstracted away, play important and 
different roles in the actual system. This method of 
abstraction can therefore sometimes produce incorrect 
higher-level models. The allowed error can in fact be 
tuned  by the user, since the aggregation algorithm 
decides whether to create a superclass process for two 
given low-level processes according to a similarity 
function which measures the match between two 
processes. Processes whose similarity degree exceeds a 
user-defined constant are aggregated. Keeping the 
required similarity degree high will avoid the kind of 
error explained above, with the cost of a narrow scope 
for aggregation. Keeping it low will allow more 
processes to be aggregated together, and the divergence 
of the higher-level model predictions from the lowest 
level ones will increase. Upon receiving the input set of 
process definitions before beginning the simulation, the 
aggregator first tries to identify superclass processes 
among these. Simulation with the aim of cycle detection 
is then performed with the updated process list. Since 
common superclasses can be detected even among the 
newly abstracted processes during the higher-level 
aggregations, the aggregator runs this similarity 
detection procedure again whenever new process 
descriptions are added to the list. 
 
Example 3: Consider adding two new processes which 
are similar to some already present processes to the 
model of Example 2: The company has obtained a new 
machine of type “NewMachine”, which uses the same 
type and amount of raw materials, but produces a 
different product of type “NewProduct” directly, without 
going through the half-product stage. The new processes 
are shown in Figure 3. 
 

ProduceNewProduct 
 Pre:  RawMaterial exists, 
   newProductOrder > 0 
 Ch: convert RawMaterial to  NewProduct 
DeliverNewProduct 

Pre: at least N NewProduct exists, 
 newProductOrder >= N 
Ch: remove N NewProducts,  
 decrease  newProductionOrder by N,  
 increase  accounts_receivable 

N = delivery amount 

Figure 3 : The processes added in Example 3 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We submitted this model to the aggregator with a 
scenario of receiving orders for Product and NewProduct 
randomly with the same probability. Two different runs, 
with required similarity degrees of 0.9 and 0.6, 
respectively, were performed. 
 
In the first run with a required similarity degree of 0.9, 
shown in Figure 4, the cycles the aggregator replaced in 
the first-level aggregation were the same as in Example 
2, and ProduceNewProduct and DeliverNewProduct 
were also aggregated to a new process. The second-level 
aggregation had the same results as in Example 2, and 
the new production process was not aggregated any 
further. 
 
 In the second run, with a required similarity degree of 
0.6, the aggregator first found out that Deliver and 
DeliverNewProduct are similar processes. Similarly, 
after generating CP3 from “SeizeMachine, 
ProduceHalfProduct, ProduceProduct”, it also 
recognized CP3 and ProduceNewProduct as similar 
processes. Consequently, the program made the 
aggregation shown in Figure 5, with the process 
definitions given in Figure 1 and the production 
“department” process of the organization came out to be 
isomorphic to the one in the Example 2, (Figure 2) 
 
As seen in Figure 5, the Deliver and DeliverNewProduct 
processes were replaced by the more general process 
CP10 and ProduceNewProduct and the new process 
CP3, which was produced by the aggregation of 
SeizeMachine, ProduceHalfProduct and ProduceProduct 
were replaced by the more general process CP11.  
 
The aggregator found the similarity of Deliver and 
DeliverNewProduct to be 0.67, and the similarity of CP3 
and ProduceNewProduct to be 0.72, causing both pairs 
not to be abstracted together in the first run, and to be 
abstracted together in the second run. Both results may 
be preferable depending on the requirements of the 
context. When analysis considering the sales of the 
products individually is required, seeing the products as  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
separate units and getting the results accordingly will 
help. In another case, for example, when the total sales 
of the company, or only the total amount of money made 
by the company is required, seeing the products as 
equivalent and looking only at the totals will help. 
 
6. FUTURE WORK 

More tools are necessary for a complete and sensible 
identification of and reasoning about the managerial 
hierarchy of an organization. In this ongoing study, we 
plan to implement the following additional methods.  
 
6.1. Parallel Aggregation 

Weld (Weld 1986) defines parallel aggregation as “the 
replacement of multiple instances of the same process 
occurring simultaneously”, without including the 
working principles or any example. This idea promises 
to serve as wide a range of possibilities as serial 
aggregation does, so we plan to realize it. While serial 
aggregation makes a vertical replacement in the history 
of the simulation since it replaces instances spread over 
time, parallel aggregation makes a horizontal 
replacement, since it replaces process instances 
occurring in the same time, but spreading over the actors 
of the simulation.  
 
In parallel aggregation, as well as the starting time, we 
know the ending time since only one iteration occurs. 
But we do not know the total effects, since we do not 
know how many parallel processes will participate in 
this parallel processing in different moments of the 
simulation. The definition of parallel aggregation 
requires defining a new type of process, since neither the 
discrete nor the continuous process definition formats we 
use meet the requirements of the process generated as a 

Figure 5 : Aggregation in Example 3 when the required 
similarity degree is 0.6 

    First Aggregation  Second Aggr. 

PurchaseRawMaterial  
FindRawMaterials     
SearchForCustomer   
NegotiateWithCustomer 
AcceptBestOrder…………………………… 
SeizeMachine 
ProduceHalfProducts  
ProduceProducts 
Deliver……………………………………… 
ProduceNewProduct 
DeliverNewProduct 
CollectMoney 
PayMoney     
ProposeNewProduct  
Research 

 
ProduceNewProduct ……………… 
SeizeMachine 
ProduceHalfProduct  
ProduceProduct 
 
Deliver    
DeliverNewProduct 
 
S denotes superclass aggregation. 
 
CP10 

Pre: at least N Products exists, 
  productionOrder >= N 

Ch: remove N Product, 
 decrease productionOrder by N, 
 increase accounts_receivable 

CP11 
Pre: machine is idle,  
 RawMaterial exists,  
 productionOrder>0 
Ch:  remove RawMaterialStock, 
 decrease productionOrder,  
 increase accounts_receivable 

S 
CP12 

CP11 
CP3 

CP10 

S 

CP2 
CP6 

CP6 
CP7 

CP9 

Figure 4 : Aggregation in Example 3 when the required 
similarity degree is 0.9 

CP4 

CP5 

CP1 



result of a parallel aggregation. This new type of process 
occurs atomically, and its termination time is determined 
when it starts. But unlike discrete processes, its total 
effects can not be known before simulation, since it 
depends on the number of parallel process instances 
participating which can be different in different moments 
of the simulation. As a result of this, the total effects of 
the process change in different instances. 
 

6.2. Reverse Aggregation 

Consider the case where we are given the abstract 
description of an organization, or some components of 
the organization, and we attempt to obtain the 
descriptions of the lower level processes. For instance, 
we may try to guess the invisible structure of a rival 
company from the partial information that is available 
about that company. What we need to do is to “reverse 
aggregate” the high-level models. 
 
At first sight, reverse aggregation seems to be a hopeless 
task, since it involves creating a more detailed 
description than its input. But if we also have a library of 
common lowest-level process descriptions, we might at 
least guess a candidate input process list which would, 
when aggregated, result in the higher-level models that 
have been given to us. 
 
6.3. Mixed Levels of Abstraction 

Abstraction is meaningful if we do not need the detailed 
information we lost, or we have the ability to reconstruct 
it in case we need it later. Consider a manager who 
manages several working teams including several 
workers. The manager would not care about the workers 
individually, and would not want to know the details of 
each worker. In his daily operation, he would rather 
know the output of the teams, leaving the details of what 
happens within the teams to team leaders. The point of 
view of this manager is an aggregated level, which hides 
the first level employees inside teams. But one day, in 
case a problem about an individual first level employee 
occurs and affects the operation of the team, or even the 
whole organization, the manager would want to 
understand the case and need the details about the 
operation of the first level employee. This would require 
the manager to adopt, for the purposes of this case, a 
“mixed-level” model, which does not necessarily include 
all the complexity of the lower level processes which are 
irrelevant in this case, but which contains the details 
necessary for the present reasoning task. We believe that 
the infrastructure we are preparing for the application of 
the methods described above can easily be adapted for 
examining such mixed-level modeling tasks.  
 
6.4 Aggregation of Probabilistic Models 

One of the simplistic aspects of Example 2 is that all 
processes are deterministic; e.g. once its preconditions 
are satisfied, ProduceProducts does its job, assuming that 
the machine will never fail. This, of course, is 

unrealistic. We plan to consider an alternative process 
format which supports probabilistic models like one 
where the machine in example 3 can be stipulated to 
have a specific fault probability, and the results of such 
eventualities can be described separately in the process 
descriptions. An aggregation algorithm for such 
probabilistic models may produce higher-level models 
which are themselves probabilistic. 
 

7. CONCLUSION  

The hierarchical structure of an organization such as a 
large company provides a suitable domain for 
investigating aggregation, since the hierarchical levels 
composed of various positions (first level employee, 
middle management, CEO, etc.) in the organization 
correspond to different aggregation levels. Our 
experiments so far with our improved version of Weld’s 
aggregator have helped us identify some other tools that 
are necessary for reasoning about these issues in this 
domain. We are actively working on the design and 
development of these tools. 
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